A Pyrrhic Victory? –
Bank Bailouts and Sovereign Credit Risk

Viral V. Acharya2
NYU-Stern, CEPR and NBER

Itamar Drechsler3
NYU-Stern

Philipp Schnabl4
NYU-Stern

J.E.L. Classification: G21, G28, G38, E58, D62.
Keywords: financial crises, forbearance, deleveraging,
sovereign debt, growth, credit default swaps

First draft: August 2010; This draft: 6 December 2010
Preliminary and Incomplete

1We are grateful to Isabel Schnabel (discussant) and seminar participants at Austrian Central
Bank for helpful comments. Farhang Farazmand and Nirupama Kulkarni provided valuable research
assistance.

2Contact: Department of Finance, Stern School of Business, New York University, e-mail:
vacharya@stern.nyu.edu. Acharya is also a Research Affiliate of the Centre for Economic Policy
Research (CEPR) and a Research Associate at the National Bureau of Economic Research
(NBER).

3Contact: Department of Finance, Stern School of Business, New York University e-mail: Ita-
mar.Drechsler@stern.nyu.edu.

4Contact: Department of Finance, Stern School of Business, New York University e-mail: pschn-
abl@stern.nyu.edu.
A Pyrrhic Victory? –
Bank Bailouts and Sovereign Credit Risk

Abstract

We develop a model in which financial sector bailout and sovereign credit risk are intimately linked. The bailout ameliorates the under-investment problem of the financial sector. However, as the bailout is ultimately funded through taxation of the future profits of the non-financial sectors, it weakens their incentives to invest. This can adversely affect the sovereign’s own credit risk which severely limits the size of the efficient bailout. In the short-run, the bailout is funded through issuance of government bonds, which erodes the value of existing bonds, including those held by the financial sector and potentially creates a “crisis spiral”. The model provides testable implications concerning the relation between the credit risk of the sovereign and its financial sector before the crisis, around the bailout announcement, and post-bailout. We provide supporting empirical evidence using data from the credit default swaps (CDS) market around the bailouts and bank stress tests conducted during the financial and sovereign crises of 2007-10.

J.E.L. Classification: G21, G28, G38, E58, D62.

Keywords: financial crises, forbearance, deleveraging, sovereign debt, growth, credit default swaps
1 Introduction

On September 30, 2008 the government of Ireland announced that it had guaranteed all deposits of the six of its biggest banks. The immediate reaction that grabbed newspaper headlines the next day was whether such a policy of a full savings guarantee was anti-competitive in the Euro area. However, there was something deeper manifesting itself in the credit default swap (CDS) markets for purchasing protection against the sovereign credit risk of Ireland and that of its banks. Figure 1 shows that while the cost of purchasing such protection on Irish banks – their CDS fee – fell overnight from around 400 basis points to 150 basis points, the CDS fee for the Government of Ireland’s credit risk rose sharply. Over the next month, this rate more than quadrupled to over 100 basis points and within six months reached 400 basis points, the starting level of its financial firms’ CDS. While there was a general deterioration of global economic health over this period, the event-study response in Figure 1 makes it clear that the risk of the financial sector had been substantially transferred to the government balance sheet, a cost that Irish taxpayers must eventually bear.

Viewed as of the Fall of 2010, this cost has risen to dizzying heights prompting economists to wonder if the precise manner in which bank bailouts were awarded have rendered the financial sector rescue exorbitantly expensive. Just one of the Irish banks, Anglo Irish, has cost the government up to Euro 25 billion (USD 32 billion), amounting to 11.26% of Ireland’s Gross Domestic Product (GDP). Ireland’s finance minister Brian Lenihan justified the propping up of the bank “to ensure that the resolution of debts does not damage Ireland’s international credit-worthiness and end up costing us even more than we must now pay.” However, rating agencies and credit markets revised Ireland’s ability to pay future debts significantly downward. The original bailout cost estimate of Euro 90 billion was re-estimated to be 50% higher and the Irish 10-year bond spread over German bund widened significantly as well crossing 600 basis points in November 2010. This ultimately led to a bailout of Irish government of over Euro 80 billion by the stronger Eurozone countries as well as non-Eurozone countries such as UK and Sweden.\(^1\)

This episode is not isolated to Ireland though it is perhaps the most striking case. In fact, a number of Western economies that bailed out their banking sectors in the Fall of 2008 have experienced, in varying magnitudes, similar risk transfer between their financial sector and government balance-sheets. Our paper develops a theoretical model and provides empirical evidence that help understand this interesting phenomenon. Our results call into serious question the assumption, implicit in much of the banking literature, that government resources are vastly deep and that the main problem posed by bailouts is primarily that of moral hazard – that is, the distortion of future financial sector incentives. While the moral hazard cost is certainly pertinent, our conclusion is that bailout costs are not just in the future, but are tangible right around the timing of bailouts and priced into the sovereign’s

credit risk and cost of borrowing. Aggressive bailout packages that stabilize financial sectors in the short run but ignore the ultimate taxpayer cost might end up being a Pyrrhic victory.

Our theoretical model consists of two sectors of the economy – “financial” and “corporate” (more broadly, also the household and other non-financial parts of the economy), and a government. The two sectors contribute jointly to produce aggregate output: the corporate sector makes productive investments and the financial sector invests in intermediation “effort” (e.g., information gathering and capital allocation) that enhance the return on corporate investments. Both sectors, however, face a potential under-investment problem. The financial sector is leveraged (in a crisis, it may in fact be insolvent) and under-invests in its contributions due to the well-known debt overhang problem (Myers, 1977). The corporate sector is un-levered for simplicity. However, if the government undertakes a “bailout” of the financial sector, in other words, makes a transfer from the rest of the economy that results in a net reduction of the financial sector debt, then the transfer must be funded in the future (at least in part) through taxation of corporate profits. Such taxation, assumed to be proportional to corporate sector output, induces the corporate sector to under-invest.

A government that is fully aligned with maximizing the economy’s current and future output determines the optimal size of the bailout. In particular, it determines the size of a transfer funded through future proportional corporate tax rates that balances the trade off of reducing the financial sector’s under-investment problem against aggravating under-investment by the corporate sector. We show that tax proceeds that can be used to fund the bailout, in general, have a Laffer curve property, so that the optimal bailout size and tax rate are interior. The optimal tax rate that the government is willing to undertake for the bailout is greater when the financial sector’s debt overhang is higher and its relative contribution (or size) in output of the economy is larger.

In practice, governments fund bailouts in the short run by borrowing or issuing bonds. Since new issuance must be repaid in future by taxation, our qualitative insights carry through. There are, however, two interesting results that emerge. One, the greater is the legacy debt of the government, the lower is its ability to undertake a bailout. This is because the Laffer curve of tax proceeds leaves lesser room for the government to increase tax rates for repaying its bailout-related debt. Second, the announcement of the bailout lowers the price of government debt due to the anticipated dilution from newly issued debt. Now, if the financial sector of the economy has assets in place that are in the form of government bonds, the bailout is in fact associated with some “collateral damage” for the financial sector itself. The possibility of such a “crisis spiral” in which bailouts cause government bonds to lose value further limit the size of the optimal bailout.²

²Again, a tangible example of this chain of effects can also be seen in the case of Ireland. First, as the Irish government decided in the Fall of 2010 to continue to borrow in order to fund the ailing banking sector, its credit rating fell and credit spreads widened, highlighting the cost of bank bailouts on sovereign balance-sheet. Second, as the bailout providers to the Irish government insisted on Ireland raising its corporate tax rates, companies such as Hewlett Packard with substantial presence there threatened to leave Ireland, illustrating the Laffer curve property of tax proceeds (Source: http://noir.bloomberg.com/apps/news?pid=newsarchive&sid=am1bJ0LntiO8). And, finally, as the uncer-
All of the above results hold in a model even with no uncertainty about future output of the economy. We extend the model to allow for uncertainty in the output of the corporate sector, keeping financial sector’s outcomes as deterministic. This introduces a possibility of default on government debt. We assume that there are some deadweight costs of such default, for example, due to international sanctions or from being unable to borrow in debt markets for some time. Then, the greater the uncertainty of economic output, the greater is the quantity of bonds the government needs to issue in order to undertake a given bailout transfer and greater is the rise in its risk of default. As before, greater legacy debt of the government also limits optimal bailout size and raises sovereign credit risk more upon the bailout announcement.

Interestingly, due to the deadweight costs of default, there may be a precautionary component to government taxation. And, finally, given the collateral damage channel, an increase in uncertainty about sovereign’s economic output not only lowers its own debt values but also increases the financial sector’s risk of default (as some of its assets in place, e.g., government bond holdings, fall in value). The latter induces a post-bailout co-movement between financial sector’s credit risk and that of the sovereign even though the immediate effect of the bailout is to lower financial sector’s credit risk and raise that of the sovereign.

Our empirical work analyzes financial sector bailouts in Western economies during the financial crisis of 2007-10 and corroborates the theory. In particular, we examine sovereign and banks CDS in the period from 2007 to 2010 and find three distinct periods:

1. The first period (Figure 2) covers the start of the financial crisis in January 2007 until the bankruptcy of Lehman Brothers. Across all Western economies, we see a large rise in bank CDS but sovereign CDS remain small. This evidence is consistent with a significant increase in the default risk of the banking sector with little effect on sovereigns in the pre-bailout period.

2. The second period (Figure 3) covers the banks bailouts starting with the announcement of a bailout in Ireland in late September 2008 and ending with a bailout in Sweden in late October 2008. During this one-month period, we find a significant decline in bank CDS across all countries and a corresponding increase in sovereign CDS. This evidence suggests that bank bailouts transferred the default risk from the banking sector to the sovereign.

3. The third period (Figure 4) covers the period after the bank bailouts until early 2010. We find that both sovereign and bank CDS are increasing during this period. Further, the increase in sovereign CDS is larger for countries with significant public debt during this period (Figure 6) unlike the pre-crisis period where the relationship between sovereign CDS and public debt is essentially flat (Figure 5). This evidence suggests that

\footnotesize{tainty about the Irish bailout, tax policy and future Irish growth continued to prevail, the five-year CDS spread of Irish banks (Allied Irish Banks, Anglo Irish and Bank of Ireland) crossed 1000 basis points in November 2010 (See “Why the Irish crisis is a huge test for the eurozone”, Martin Wolf, Financial Times, December 1st, 2010).}
banks and sovereigns share the default risk after the announcement of banks bailouts and that the risk increased in the relative size of countries’ public debt.

We also employ the data on bank holdings of different sovereign government bonds released following the stress tests of the European banks in 2010. We show that a variable based on this data that captures the exposure of a bank to sovereigns explains the extent to which the bank’s credit default swap spread co-moves with sovereign credit default spreads (after controlling for market-wide fluctuations in spreads). Put together, this empirical analysis suggests an important relationship between sovereign and bank credit risk. The bank bailouts generated sovereign credit risk. But, in turn, sovereign credit risk affects bank credit risk. This is supportive of the “crisis spiral” mechanism described in our model.

To summarize, the appearance of meaningful sovereign credit risk right around bank bailout packages are announced is an important immediate cost of bailout. This cost is a reflection of the future taxation (or inflation) risk imposed on corporate and household sectors of the economy. Such an ex-post cost of bailouts has received little theoretical attention and has also not been analyzed much empirically (except for some recent papers we cite in Section 2). Taking cognizance of this ultimate cost of bailouts has important consequences for the future resolution of financial crises, the design of fiscal policy, and the nexus between the two. Finally, Reinhart and Rogoff (2009a, b) and Reinhart and Reinhart (2010) document, for instance, that economic activity remains in deep slump “after the fall” (that is, after a financial crisis), and private debt shrinks significantly while sovereign debt rises, especially beyond a threshold of 90% debt to GDP ratio of the sovereign. These effects are potentially all consistent with our model of how financial sector bailouts affect sovereign credit risk and economic growth.

The remainder of the paper is organized as follows. Section 2 discusses the related literature. Section 3 presents our theoretical analysis, starting with a benchmark model without uncertainty about solvency of the economy and next analyzing the model with uncertainty. Section 5 provides evidence supporting the model’s implications using sovereign and financial firm credit default swaps data around the financial crisis of 2007–09. Section 6 concludes. All proofs not in the main text of the paper are contained in the Appendix.

2 Related literature

Our paper is related to three different strands of literature: (i) the theoretical literature on bank bailouts; (ii) the literature on costs of sovereign default; and, (iii) the recent empirical literature on effects of bank bailouts on sovereigns.

The theoretical literature on bank bailouts has mainly focused on how to structure bank bailouts efficiently. While the question of how necessarily involves an optimization with some frictions, the usual friction assumed is the inability to resolve failed bank’s distress entirely due to agency problems. This could be due to under-investment problem as in our setup (e.g., Philippon and Schnabl, 2009), adverse selection (e.g., Gorton and Huang, 2004), risk-shifting or asset substitution (e.g., Acharya, Shin and Yorulmazer, 2008, Diamond and
Rajan, 2009), or tradeoff between illiquidity and insolvency problems (e.g., Diamond and Rajan, 2005). Some other papers (Philippon and Schnabl, 2010, Bhattacharya and Nyborg, 2010, among others) focus on specific claims through which bank bailouts can be structured to limit these frictions.

A large body of existing literature in banking considers that bank bailouts are inherently a problem of time consistency and induce moral hazard at individual-bank level (Mailath and Mester, 1994) and at collective level through herding (Penati and Protopapadakis, 1988, Acharya and Yorulmazer, 2007). Aghion, Bolton and Fries (1999) consider the cost that bank debt restructuring can in some cases delay the recognition of loan losses. Brown and Dinc (2009) show empirically that the governments are more likely to rescue a failing bank when the banking system, as a whole, is weak.

A small part of this literature, however, does consider *ex-post* costs of bailouts. Notably, Diamond and Rajan (2005, 2006) study how bank bailouts can take away a part of the aggregate pool of liquidity from safe banks and endanger them too. Acharya and Yorulmazer (2007, 2008) model, in a reduced-form manner, a cost of bank bailouts to the government or regulatory budget that is increasing in the quantity of bailout funds. They provide taxation-related fiscal costs as a possible motivation. Panageas (2010a,b) considers the optimal taxation to fund bailouts in a continuous-time dynamic setting, also highlighting when banks might be too big to save.

In the theoretical literature on sovereign defaults, Bulow and Rogoff (1989a, 1989b) initiated a body of work that focused on ex-post costs to sovereigns of defaulting on external debt, e.g., due to reputational hit in future borrowing, imposition of international trade sanctions and conditionality in support from multi-national agencies. Broner and Ventura (2005), Broner, Martin and Ventura (2007), Acharya and Rajan (2010) and Gennaioli, Martin and Rossi (2010), among others, consider a collateral damage to the financial institutions and markets when a sovereign defaults. They employ this as a possible commitment device that gives the sovereign “willingness to pay” its creditors. Our model considers both of these effects, an ex-post deadweight cost of sovereign default in external markets as well as an internal cost to the financial sector through bank holdings of government bonds.

Some recent empirical work focuses on the distortionary design of bank bailout packages. Acharya and Sundaram (2009) document how the loan guarantee program of the Federal Deposit Insurance Corporation in the Fall of 2008 was charged in a manner that favored weaker banks at the expense of safer ones, producing a downward revision in CDS spreads of the former. Veronesi and Zingales (2009) conduct an event study and specifically investigate the U.S. government intervention in October 2008 through TARP and calculate the benefits to banks and costs to taxpayers. They find that the government intervention increased the value of banks by over $100 billion, primarily of bank creditors, but also estimate a taxpayer cost between $25 to $47 billion. Panetta et al. (2009) and King (2009) assess the Eurozone bailouts and reach the conclusion that while bank equity was wiped out in most cases, bank creditors were backstopped reflecting a waiting game on part of bank regulators and governments.

Finally, our empirical work relating financial sector and sovereign credit risk during the
ongoing crisis shares some similarity to the very recent papers on this theme. Sgherri and Zoli (2009) and Attinasi, Checherita and Nickel (2009) focus on the effect of bank bailout announcements on sovereign credit risk measured using CDS spreads. Some of their evidence mirrors our descriptive evidence. Dieckmann and Plank (2009) analyze sovereign CDS of developed economies around the crisis and document a significant rise in co-movement following the collapse of Lehman Brothers. Demirgüç-Kunt and Huizinga (2010) do an international study of equity prices and CDS spreads around bank bailouts and show that some large banks may be too big to save rather than too big to fail. Our analysis corroborates and complements some of this work. In particular, our empirical investigation of banking sector holdings of government debt and how this introduces a linkage between bank CDS and sovereign CDS is novel.

3 Model

We first sketch in words the setup and timing of the model and then present it formally. The productive economy consists of two parts, a financial sector and a non-financial sector. In addition, there is a government and a representative consumer. All agents are risk-neutral. The government has two policy instruments available to it: a proportional tax rate and a wealth transfer (injection) into the financial sector. The transfer is accomplished by issuing government bonds and giving them to the financial sector. The objective of the government is to maximize the welfare of the consumer, who consumes the output of the economy net of investment costs.

The financial sector has both liabilities and assets on its books. If, at maturity, the liabilities are greater than the combined value of its assets and the profits it generates, the financial sector is liquidated. In that case, the financial sector receives no payoff and its efforts go unrewarded. The financial sector generates operating revenues by providing financial services to the non-financial sector in a competitive market. Since it is liquidated if its assets’ payoffs plus profits are not great enough, the financial sector suffers from debt-overhang. In other words, when the liabilities of the financial sector are large, the efforts of the financial sector are likely to go unrewarded, since under liquidation, the operating revenues generated by those efforts will be captured by its creditors.

The non-financial sector produces output by combining financial services and its own capital. It must decide how much financial services to buy, given the cost of financial services. It must also decide how much capital investment to make, taking into account the proportional tax rate levied on the investment’s future investment payoffs by the government.

The government wants to maximize the total output of the economy, and hence the welfare of the consumer, by reducing the debt-overhang problem of the financial sector. This will spur greater effort by the financial sector and increase total output. To do this, it can increase the assets of the financial sector by making a transfer of government bonds
to the balance sheet of the financial sector. The government funds these treasuries with a proportional tax on the future payoffs of the investment of the non-financial sector. This new debt issuance adds to the existing stock of debt that the government has accumulated from past activities. Hence, the government is faced with two decisions. First, it must choose the optimal tax rate to funds its new and existing treasuries. Second, it must choose how many new treasuries to issue to make the transfer to the non-financial sector.

Finally, the representative consumer chooses his portfolio, which consists of his holdings of government bonds, and he consumes the output generated by the non-financial sector.

3.1 Setup

There are three time periods in the model: \(t = 0, 1, \) and \(2 \).

At \(t = 0 \), the operator of the financial sector faces the following problem, which involves the choice of the amount of financial services to supply at \(t = 0 \) in order to maximize the expected value of its net payoff at \(t = 1 \):

\[
\max_{s_0} E_0 \left[\left(w_s s_0 - L_1 + \tilde{A}_1 + A_G + T_0 \right) \times \mathbb{1}_{\left\{ -L_1 + \tilde{A}_1 + A_G + T_0 > 0 \right\}} \right] - c(s_0)
\]

(1)

where \(s_0 \) is the amount of financial services supplied by the financial sector at \(t = 0 \). The financial sector earns revenues at the rate of \(w_s \) per unit of output, with \(w_s \) being determined in equilibrium. To produce \(s_0 \) units, the operator of the financial sector needs to expend \(c(s_0) \) units of effort. We assume that \(c'(s_0) > 0 \) and \(c''(s_0) > 0 \). \(L_1 \) denotes the liabilities of the financial sector, which are due (mature) at \(t = 1 \). We distinguish between two types of assets held by the financial sector, denoted \(\tilde{A}_1 \) and \(A_G \). \(A_G \) is the value of the financial sector’s holdings of a fraction \(k_A \) of outstanding government bonds, while \(\tilde{A}_1 \) represents the payoff of the other assets held by the financial sector.\(^3\) We model the payoff \(\tilde{A}_1 \) as a continuously valued random variable that is realized at \(t = 1 \) and takes values in \([0, \infty)\). The payoff and value of government bonds is discussed below. Finally, \(T_0 \) represents the value of the time 0 transfer made by the government to the financial sector.

The financial sector operator maximizes the expected payoff at \(t = 1 \) net of the effort cost required to produce the financial services it sells at \(t = 0 \), as indicated in (1) by the time-0 expectation. Note that the financial sector operator only receives a positive payoff at \(t = 1 \) if \(-L_1 + \tilde{A}_1 + A_G + T_0 > 0\). In other words, there is a payoff only if the financial sector is solvent at time 1. In case of insolvency, debtholders receive ownership of all financial sector assets and wage revenue.\(^4\)

\(^3\)While we refer to government claims principally as government bonds, a broader interpretation can include claims on quasi-governmental agencies (e.g., Fannie Mae, Freddie Mac) and perhaps also the value of explicit and implicit government guarantees or support.

\(^4\)Note that we could include the wage revenues in the solvency indicator function, which would provide an additional channel for wages to feedback into the probability of solvency. Although such a channel would
The non-financial sector comes into \(t = 0 \) with an existing capital stock \(K_0 \). Its objective is to maximize the sum of the expected value of its net payoffs at times 1 and 2:

\[
\max_{s_0^d, K_1} E_0 \left[f(K_0, s_0^d) - w_s s_0^d + (1 - \theta_0) \tilde{V}(K_1) - (K_1 - K_0) \right]
\]

(2)

The function \(f \) is the production function of the non-financial sector, which takes as inputs the financial services it demands (buys), \(s_0^d \), and its capital stock \(K_0 \). Using these inputs, it produces consumption goods as output at \(t = 1 \). The output from this function is deterministic. Moreover, we assume that \(f \) is increasing in both arguments and concave. At \(t = 1 \), the non-financial sector is faced with a decision of how much capital \(K_1 \) to invest in a project \(\tilde{V} \), whose payoff is realized at \(t = 2 \). This project represents the future or continuation value of the non-financial sector and is in general subject to uncertainty. The expectation at \(t = 1 \) of this payoff is \(V(K_1) = E_1[\tilde{V}(K_1)] \) and, as indicated, is a function of the investment \(K_1 \). Moreover, we assume that \(V'(K_1) > 0 \) and \(V''(K_1) < 0 \), so that the expected payoff is increasing but concave in investment. A proportion \(\theta_0 \) of the payoff of the continuation project is taxed by the government to pay its debt, both new and outstanding. The tax rate \(\theta_0 \) is set by the government at \(t = 0 \) (though the tax is taken at \(t = 2 \) upon realization of the project’s payoff). We assume that the government credibly commits to this tax rate. Finally, the incremental cost of investing \(K_1 \) in the continuation project is \(K_1 - K_0 \).

As mentioned above, the government issues bonds to make the transfer to the financial sector. These bonds are paid out from the taxes levied on the non-financial sector at a tax-rate of \(\theta_0 \). Let \(N_D \) denote the number of bonds that the government has issued in the past – its outstanding stock of debt. For simplicity, we let bonds have a face value of one, so the face value of outstanding debt equals the number of bonds, \(N_D \). The government issues \(N_T \) new bonds to accomplish the transfer to the financial sector. Hence, at \(t = 2 \) the government receives realized taxes equal to \(\theta_0 \tilde{V}(K_1) \) and then uses them to pay bondholders \(N_T + N_D \). We assume that if there are still tax revenues left over (a surplus), the government spends them on programs for the representative consumer, or equivalently, just rebates them to the consumer. On the other hand, if tax revenues fall short of \(N_T + N_D \), then the government defaults on its debt. In that case, it pays only a fraction \(\tilde{m} < 1 \) of the debt’s face value and gives back any remaining tax funds to the consumer. We assume that the government credibly commits to a payout policy (a policy for \(\tilde{m} \)) and that this policy is known. We further assume that default incurs a deadweight loss. In case of default, the sovereign incurs a fixed deadweight loss of \(D \). Hence, default is costly and there is an incentive to avoid it. Finally, reinforce the mechanism at work in the model, we choose to abstract from this to avoid the additional complexity.

\[5\] If upon default the government pays out all of the tax revenue raised to bond holders then \(\tilde{m} = \theta_0 \tilde{V}(K_1)/(N_T + N_D) \).

\[6\] Although \(D \) here is obviously reduced-form, one can think of the deadweight cost in terms of loss of government reputation internationally, loss of domestic government credibility, degradation of the legal system and so forth. If a country’s reputation is already weak, it will have less to lose from default.
P_0 denotes the price of government bonds, which is determined in equilibrium. Hence, we have that the value of financial sector holdings of government bonds is $A_G = k_A P_0 N_D$.

The government’s objective is to maximize the expected utility of the representative consumer, who consumes the combined output of the financial and non-financial sector. Hence, the government faces the following problem:

$$\max_{\theta_0, N_T} E_0 \left[f(K_0, s_0) + \tilde{V}(K_1) - c(s_0) - (K_1 - K_0) - 1_{\text{def}} D + \tilde{A}_1 \right]$$ \hspace{1cm} (3)

where s_0 is the equilibrium provision of financial services. This maximization is subject to the budget constraint: $T_0 = P_0 N_T$ and subject to the choices made by the financial and non-financial sectors. Note that 1_{def} is an indicator function that equals 1 if the government defaults (if $\theta_0 \tilde{V}(K_1) < N_T + N_D$) and 0 otherwise.

Finally, the representative consumer solves a simple consumption and portfolio choice problem by allocating his wealth W between consumption, government bond holdings, and equity in the financial and non-financial sectors. For our purposes this provides the pricing condition for government bonds, which is simple since the representative consumer is assumed to be risk-neutral. Let $P(i)$ and $\tilde{P}(i)$ denote the price and payoff of asset i, respectively. At $t = 0$, the consumer chooses optimal portfolio allocations, $\{n_i\}$, that solve the following problem:

$$\max_{n_i} E_0 \left[\sum_i n_i \tilde{P}(i) + (W - \sum_i n_i P(i)) \right]$$ \hspace{1cm} (4)

Then the consumer’s first order condition and market-clearing give the standard result that for each asset the equilibrium price equals the expected value of the payoff, $P(i) = E_0[\tilde{P}(i)]$.

4 Equilibrium Outcomes

We begin by examining the maximization problem of the financial sector. Let $p(\tilde{A})$ denote the probability density of \tilde{A}. Furthermore, let \tilde{A}_1 be the minimum realization of \tilde{A}_1 for which the financial sector does not default: $\tilde{A}_1 = L_1 - A_G - T_0$. The first order condition of the financial sector can now be written as:

$$\frac{\partial}{\partial s_0^*} \left(\int_{\tilde{A}_1}^{\infty} \left(w_s s_0^* - L_1 + \tilde{A}_1 + A_G + T_0 \right) p(\tilde{A}_1) d\tilde{A}_1 \right) - c'(s_0^*) = 0 .$$

This evaluates to

$$w_s \int_{\tilde{A}_1}^{\infty} p(\tilde{A}_1) d\tilde{A} - c'(s_0^*) = 0 .$$ \hspace{1cm} (5)
We denote the quantity \(\int_{\Delta_{1}}^{\infty} p(\tilde{A}_1)d\tilde{A} \), which is the probability that the financial sector is solvent at \(t = 1 \), by \(p_{\text{solv}} \). We assume that at the optimal \(\hat{s}_0^* \) the first-order condition is satisfied.

The second-order condition of the financial sector’s problem is:

\[-c''(s_0^*) < 0.\]

(6)

The parametric choice we will use below for \(c(s_0) \) is \(c(s_0) = \beta \frac{1}{m} s_0^m \) where \(m > 1 \).\(^7\)

Consider now the problem of the non-financial sector at \(t = 0 \). Its demand for financial services, \(\hat{s}_d^0 \), is determined by its first-order condition:

\[\frac{\partial f(K_0, s_d^0)}{\partial s_d^0} = w_s. \]

(7)

Since \(f \) is concave in its arguments, the second order condition is satisfied:

\[\frac{\partial^2 f(K_0, s_d^0)}{\partial^2 s_d^0} < 0. \]

(8)

Henceforth, we will parametrize \(f \) as Cobb-Douglas with the factor share of financial services given by \(\vartheta \): \(f(K_0, s_0) = \alpha K_0^{1-\vartheta} s_0^\vartheta. \)

In equilibrium the demand and supply of financial services are the same: \(\hat{s}_d^0 = \hat{s}_s^0 \). From here on, we drop the superscripts on \(s_0 \) and denote the equilibrium quantity of financial services by \(s_0 \).

4.1 Transfer Reduces Underprovision of Financial Services

Taken together, the first-order conditions of the financial sector (5) and non-financial sector (7) show how debt-overhang impacts the provision of financial services by the financial sector. The marginal benefit of an extra unit of financial services to the economy is given by \(w_s \), while the marginal cost, \(c'(s_0) \), is less than \(w_s \) if there is a positive probability of insolvency. This implies that the equilibrium allocation is sub-optimal. The reason is that the possibility of liquidation \(p_{\text{solv}} < 1 \) drives a wedge between the marginal benefit that increased provision of financial services provides to economy and the marginal benefit it provides to the financial sector. The result is that as long as \(p_{\text{solv}} < 1 \), there is an under-provision of financial services relative to the first-best case (\(p_{\text{solv}} = 1 \)). By making the transfer \(T_0 \), the government increases \(p_{\text{solv}} \) and reduces this debt-overhang problem.

\(^7\)For this choice, it is the case that \(\hat{s}_0^* \in (0, \frac{w_s}{s_0}^{1/(m-1)}] \). To see this, note that the derivative of the objective function of the financial sector is negative on \((w_s, \infty) \), so the maximum must lie on \([0, w_s] \). Moreover, if there is any probability of solvency, the derivative of the objective at \(s_0 = 0 \) is positive, so the optimal \(s_0 \) lies in the interior, \((0, w_s) \).
Lemma 1. An increase in the transfer T_0 increases the probability that the financial sector is solvent at $t = 1$, leading to an increase in the provision of financial services s_0 in equilibrium (equivalently, a decrease in the under-provision of financial services).

Proof: See Appendix A.1.

4.2 Tax Revenues: A Laffer Curve

Next, to understand the government’s problem, we first look at how expected tax revenue responds to the tax rate, θ_0. Let the expected tax revenue, $\theta_0 V(K_1)$, be denoted by T. Raising taxes has two effects. On the one hand, an increase in the tax rate θ_0 captures a larger proportion of the future value of the non-financial sector, thereby raising tax revenues. On the other hand, this reduces the incentive of the non-financial sector to invest in its future, thereby leading to reduced investment, K_1. At the extreme, when $\theta_0 = 1$, the tax distortion eliminates the incentive for investment and tax revenues are reduced to zero. Hence, tax revenues are non-monotonic in the tax rate and revenues are maximized by a tax rate strictly less than 1.

Formally, the impact on tax revenue of an increase in the tax rate is given by:

$$\frac{\partial T}{\partial \theta_0} = V(K_1) + \theta_0 V'(K_1) \frac{dK_1}{d\theta_0}$$

Note that at $\theta_0 = 0$, an increase in the tax rate increases the tax revenue at a rate equal to $V(K_1)$, the future value of the non-financial sector. It can be shown that since the production function $V(K_1)$ is concave, as taxes are increased, the incentive to invest is decreased by the tax rate, which reduces the marginal revenue of a tax increase. This is given by the second term on the right-hand side of the expression. To see this, consider the first-order condition for investment of the non-financial sector at $t = 1$:

$$(1 - \theta_0)V'(K_1) - 1 = 0$$

(9)

Since $V''(K_1) < 0$, the second-order condition holds. Taking the derivative with respect to θ_0, using the Implicit Function theorem, and solving for $dK_1/d\theta_0$ gives:

$$\frac{dK_1}{d\theta_0} = \frac{V'(K_1)}{(1 - \theta_0)V''(K_1)} < 0$$

which shows that as the tax rate is increased, the non-financial sector reduces investment. In fact, since we know that at $\theta_0 = 1$ the tax revenue is zero, it must be the case that as the tax rate is increased, the marginal tax revenue decreases until it eventually becomes negative.

To summarize, tax revenues satisfy the Laffer curve property as a function of the tax rate:

Lemma 2. The tax revenues, $\theta_0 V(K_1)$, increase in the tax rate, θ_0, as it increases from zero (no taxes), and then eventually decline.
Henceforth, we parameterize \(V \) with the functional form \(V(K_1) = K_1^\gamma \), \(0 < \gamma < 1 \). As Appendix A.3 shows, (9) then implies that \(T = \theta_{t+1} \gamma \frac{1}{1-\gamma} (1-\theta_{t+1}) \frac{1}{1-\gamma} \). It can then be shown that:

Lemma 3. \(T \) is maximized at \(\theta_0^{max} = 1 - \gamma \). Furthermore \(T \) is increasing \((dT/d\theta_0 > 0)\) and concave \((d^2T/d\theta_0^2 < 0)\) on \([0, \theta_0^{max})\), and decreasing \((dT/d\theta_0 < 0)\) on \((\theta_0^{max}, 1)\).

4.3 Optimal Transfer Under Certainty and No Default

Next, we analyze the government’s decision starting first with a simplified version of the general setup. We make two simplifying assumptions: (1) we set to zero the variance of the realized future value of the non-financial sector, so that \(\tilde{V}(K_1) = V(K_1) \), (2) we force the government to remain solvent. In subsequent sections, we remove these assumptions. Since the government must remain solvent, it can only issue a number of bonds \(N_T \) that it can pay off in full, given its tax revenue. By assumption (1), the tax revenue is known exactly (it is equal to \(T \)), and hence by assumption (2), \(N_T + N_D = T \). Moreover, since every bond has a sure payoff of 1, we know that the bond price is \(P_0 = 1 \).

Under the two simplifying assumptions, we have that the transfer is \(T_0 = \theta_0 V(K_1) - N_D \) and there is no probability of default, \(E[1_{def}] = 0 \). Hence, the only choice for the government in this case is the tax rate. Since there is no change in the non-financial sector’s investment opportunities between \(t = 0 \) and \(t = 1 \), the government’s information regarding expected tax revenue is the same at \(t = 0 \) as at \(t = 1 \), and we can consider the problem directly at \(t = 0 \). Appendix A.4 shows that the first-order condition for the government can be written as:

\[
\left[\frac{\partial f(K_0, s_0)}{\partial s_0} - c'(s_0) \right] \frac{ds_0}{dT_0} + \left[V'(K_1) - 1 \right] \frac{dK_1}{dT} = 0
\]

which expresses the first-order condition in terms of the choice of transfer size and expected tax revenue, rather than in terms of the tax rate. As we explain below, this condition is intuitive since it equates the marginal benefit and marginal cost of raising increasing tax revenue.

4.3.1 Gain From Increased Provision of Financial Services

The first term on the left side of (10) is the marginal gain to the economy of increasing expected tax revenue. This gain is due to an increase in the provision of financial services that occurs as the debt-overhang of the financial sector is mitigated by an increase in the transfer. Let \(G \) be the gain from the transfer relative to the no-transfer economy. Then

\(^8\)This functional form is a natural choice for an increasing and concave function of \(K_1 \). Appendix A.2 provides a more structural motivation for this choice based on the calculation of a continuation value under our choice of production function. This calculation suggests that the continuation value implied by a multiperiod model should take a similar functional form.
\[G = (f(K_0, s_0) - c(s_0)) - (f(K_0, s(T_0 = 0)) - c(s(T_0 = 0))), \] where \(s(T_0 = 0) \) is the equilibrium level of financial services provided in the economy if there is no transfer. The marginal gain due to an increase in \(T \) is then given by \(dG/dT = \left[\frac{\partial f(K_0, s_0)}{\partial s_0} - c'(s_0) \right] \frac{ds_0}{dT_0} \), which is the first left-hand side term.

From (5) and (7), we have that \(\frac{\partial f(K_0, s_0)}{\partial s_0} - c'(s_0) = \frac{\partial f(K_0, s_0)}{\partial s_0} (1 - p_{solv}), \) which is greater than zero as long as \(p_{solv} < 1 \). This term represents the wedge created by debt-overhang between the private and social benefit of increasing the provision of financial services. The result of this distortion in incentives is the under-supply of financial services. Since, as shown above, \(ds_0/dT_0 > 0 \), this under-supply is alleviated by the transfer. Thus, the marginal gain from increasing tax revenue (and hence the transfer) will be large when this term is large. This will be the case when \(p_{solv} \) is low – in other words, when the financial sector is at high risk of insolvency and debt-overhang is significant.

4.3.2 Under-Investment Loss Due to Taxes

The second term on the left side of (10) is the marginal underinvestment loss to the economy due to a marginal increase in expected tax revenue. This loss is a direct result of the distortion induced by taxes on the non-financial sector’s incentive to invest. To see this, let \(L \) be the loss due to underinvestment. Then \(L = (V(K_1) - K_1) - (V(K^*_1) - K^*_1) \), where \(K^*_1 \) is the first-best (distortion-free) level of investment. The marginal loss due to an increase in \(T \) is then given by: \(dL/dT = [V'(K_1) - 1] \frac{dK_1}{dT} \), as in (10).

Equation (9) shows that \([V'(K_1) - 1] \) equals \(\theta_0 V'(K_1) \), so the marginal underinvestment loss is greater than zero as long as the tax rate is non-zero. Since \(dK_1/dT < 0 \), then \(dL/dT < 0 \). Furthermore, as shown in Appendix A.5, this marginal loss due to underinvestment worsens as \(T \) is increased, i.e., \(d^2L/dT^2 < 0 \).

4.3.3 The Optimal Tax Rate and Level of Debt under Certainty and No Default

The following proposition, which describes the solution to the government’s problem under assumptions 1 (certainty) and 2 (no default), is proven in Appendix A.6.

Proposition 1. Let \(m \geq 2 \theta \). Then there is a unique optimal tax rate, \(\theta_0 \), which is strictly less than \(\theta_{0,\text{max}} \). Let \(\hat{T} \) represent the associated tax revenues. Then newly issued sovereign debt has face value \(N_T = \hat{T} - N_D \) and a price of \(P_0 = 1 \). Moreover, the following relationships hold:

1. The optimal tax rate and revenue are increasing in \(L_1 \), the financial sector liabilities (the severity of debt-overhang), and in \(N_D \), the outstanding government debt.
2. The face value of newly issued sovereign debt (the transfer) is increasing in the financial sector liabilities \(L_1 \), but decreasing in the amount of existing government debt \(N_D \). Moreover, the gross transfer, \(T_0 + k_A N_D \), is also decreasing in \(N_D \).

3. If also \(m \leq 2 \), then the optimal tax rate, revenue, and newly issued sovereign debt, are increasing in the factor share of the financial sector.

The optimal tax rate is less than \(\theta_0^{\text{max}} \) due to the Laffer-curve property of tax revenues, whereby the marginal underinvestment loss induced by raising revenue becomes infinite as the tax rate rises to \(\theta_0^{\text{max}} \). In addition, if there is any debt-overhang (i.e., \(p_{\text{solv}} < 1 \)), then optimal tax rate will be strictly greater than zero, since at a zero tax rate there is a marginal benefit to having a transfer but no marginal cost.

The Appendix shows that the economic gain \(G(T) \) and loss \(L(T) \) from the transfer are both concave in \(T \). Therefore, the optimal government action is to increase the transfer via an increase in tax revenue and outstanding debt, until the marginal gain from the transfer no longer exceeds the associated marginal loss due to underinvestment.

For any level of transfer, the marginal gain available is greater the more severe is the debt-overhang, since a lower probability of solvency accentuates the distortion in the provision of financial services. This represents a shift upward in the marginal gain curve. Therefore, as (1) and (2) of Proposition 1 state, an increase in \(L_1 \) (more severe debt-overhang) leads to a higher tax rate, more tax revenue, and greater issuance of new sovereign debt to fund a larger transfer.

If the level of pre-existing government debt \((N_D) \) is increased, there is again an upward shift in the marginal gain curve. The reason now is that for any level of tax revenue, the effective transfer \((T_0) \) is smaller, and therefore the probability of solvency is lower. As (1) of Proposition 1 shows, this pushes the government to increase the tax rate and tax revenue to increase the overall amount of sovereign debt. However, as (2) of Proposition 1 shows, the rate of increase in total sovereign debt will be less than the increase in \(N_D \). Hence, under the no-default and certainty assumptions, an increase in pre-existing government debt leads to a decrease in newly issued sovereign debt and the transfer \(T_0 \). The reason for this is that the underinvestment cost of raising additional tax revenues is increasing. Later, we show that introducing the possibility of default and uncertainty alters this result.

Finally, Proposition 1 shows that, ceteris paribus, a larger factor share of the financial sector in aggregate production implies that the government will issue a greater amount of new debt and a larger transfer. As the factor share is the fraction of aggregate output captured by the financial sector, this result says that the greater is the importance of the financial sector for aggregate production, the larger is the optimal transfer. Intuitively, if the financial sector’s output is a more important input into production, then there will be a greater marginal gain from an increase in the provision of financial services due to the transfer. The factor share is given by \(\vartheta \). Note, however, that the comparative static is not
simply to vary ϑ, but to hold total output constant while doing so. Equivalently, we may think about comparing the ratio to total output of our variable of interest while varying the factor share.

4.4 Default Under Certainty

Now we allow the government to deviate from the no-default choice of setting $N_T = \mathcal{T} - N_D$. Recall that the transfer T_0 equals $P_0 N_T$, where $P_0 = \max(1, \mathcal{T}/(N_T + N_D))$ is the price of the government bond. If there is some probability of financial sector insolvency, and hence a positive marginal gain from the transfer, then for any given level of tax revenues \mathcal{T}, the government will choose to issue face value of debt N_T of at least $\mathcal{T} - N_D$. It will not want to issue less than the amount $\mathcal{T} - N_D$ (holding \mathcal{T} constant), because that will decrease the transfer. On the other hand, increasing N_T above this threshold has both an associated cost and benefit. The benefit is that this can increase the transfer to the financial sector. The cost is that when $N_T > \mathcal{T} - N_D$, the government will not be able to fully cover its obligations. In that case, $P_0 < 1$ and the government will default, triggering the default dead-weight loss of D.

Hence, the government’s decision on how many new bonds to issue, N_T, splits the parameter space into two regions, separated by a default boundary:

1. $N_T = \mathcal{T} - N_D$ and $1_{\text{def}} = 0$ (No Default)
2. $N_T > \mathcal{T} - N_D$ and $1_{\text{def}} = 1$ (Default)

Let W_1 denote the maximum value of the government’s objective function conditional on being in Region 1 (no-default), W_2 denote the maximum value conditional on being in Region 2 (default), and $W = \max(W_1, W_2)$ be the unconditional maximum (given by (3)). The government’s optimal policy conditional on being in Region 1 is characterized in Proposition 1. The following lemma uses this result to characterize the optimal choice when default is allowed.

Lemma 4. In the default region, it is optimal to set $N_T \to \infty$ (and hence $P_0 \to 0$). This implies that:

- $W_2 = W_1\big|_{N_D=0} - D$: the maximum value of the government’s objective function in Region 2 is given by subtracting the dead-weight cost of D from the maximum value of the government’s objective attainable in Region 1 when pre-existing debt is set to zero.

- Default is optimal if $W_1\big|_{N_D=0} - D > W_1$. Relative to the no-default optimum, with default the tax rate is lower, $\hat{\vartheta}_{\text{no,def}} > \hat{\vartheta}_{\text{def}}$, while, assuming $k_A N_D < \hat{T}_{\text{def}}$, the gross transfer is bigger, e.g., $\hat{T}_{\text{def}} > \hat{T}_{\text{no,def}} + k_A N_D$, and there is a greater equilibrium provision of financial services, $\hat{s}_{\text{def}} > \hat{s}_{\text{no,def}}$.

16
Appendix A.7 contains the formal proof. The reasoning is straightforward. First, the benefit of increasing N_T beyond the default boundary is that this ‘dilutes’ the pre-existing debt and therefore allows the sovereign to capture a larger share of tax revenue for the transfer. The cost of doing this is the dead-weight loss of D. If $N_D = 0$, then there is no benefit to crossing the default boundary and incurring this default cost, so default is never optimal. On the other hand, if $N_D > 0$ and the choice is made to default, then it is optimal for the government to issue an infinite amount of new debt in order to fully dilute existing debt (P_0 becomes 0) and hence capture all tax revenues towards the transfer. The resulting situation is the same as if pre-existing debt N_D had been set to zero, hence the first bullet point in the lemma. Therefore, to determine whether defaulting is optimal, the government checks the comparison in the second bullet point.

4.4.1 Default Boundary

As Lemma 4 indicates, the tradeoff involved in default is the deadweight cost D versus the larger transfer with reduced taxes made possible by diluting pre-existing debt. The net benefit of this tradeoff can be written as follows:

$$
\int_{T_0}^{T_{\text{def}}} \frac{dG}{dT} dT_0 + \int_{T_{\text{no,def}}}^{T_{\text{def}}} \frac{dL}{dT} dT - D
$$

where the first integral is the gain due to increasing the (gross) transfer, while the second integral is the reduction in underinvestment loss due to reducing tax revenue. Note that dG/dT_0 here is evaluated at the no-default values. If (11) is positive, the sovereign will choose to default. The following proposition characterizes which factors push the sovereign closer to the default boundary.

Proposition 2. The benefit to defaulting (11) is:

1. **Increasing** in the financial sector liabilities L_1 (severity of debt-overhang), the amount of existing government debt N_D, and in the factor share of the financial sector

2. **Decreasing** in the dead-weight default cost D, and in the fraction of existing government debt held by the financial sector k_A

Furthermore, the benefit to defaulting (11) is convex in N_D.

Appendix A.8 provides the proof, which is established using (11). Consider a worsening of the financial sector’s health, leading to a decreased provision of financial services. This increases the marginal gain from further government transfer, as the under-provision of financial services is exacerbated. This then increases the gain to the sovereign from defaulting, since it is then able to achieve a greater optimal transfer. A similar result holds if the factor share of financial services is increased, since the marginal gain of further transfer is higher at
every level of transfer. An increase in existing debt implies a bigger spread between the optimal transfer and optimal tax revenue with and without default. Both the extra transfer and decreased underinvestment represent benefits to defaulting. Moreover, since the marginal loss from funding extra debt is increasing, this benefit is convex in N_D. Finally, it is clear that a increase in the deadweight loss raises the threshold for default. If the sovereign has a lot to lose from defaulting (think a sovereign with strong domestic credibility or international reputation) then the net benefit to default will be relatively lower.

4.4.2 A ‘Crisis Spiral’

Propositions 1 and 2 show that there is a two-way feedback between the solvency situation of the financial sector and the sovereign. Although the introduction of uncertainty is required to truly analyze this ‘crises spiral’, the channels involved are already apparent in the current context. First, by Proposition 1, a severe deterioration in the financial sector’s probability of solvency (e.g., an increase in L_1) leads to a large expansion in debt (N_T) by the sovereign as it acts to mitigate the under-provision of financial services. As the marginal cost of raising the tax revenue (dL/dT) to fund this debt expansion are increasing, this pushes the sovereign closer to the decision to default (Proposition 2), as well as is its maximum debt capacity (lemma 3). Hence, a financial sector crisis pushes the sovereign towards distress and potentially a ‘crisis’.

By Proposition 1, a distressed sovereign, e.g., one with high existing debt (N_D), will have a financial sector with a worse solvency situation, since it is very costly for such a sovereign to fund increased debt to make the transfer to the financial sector. Hence, ceteris paribus, a more distressed sovereign will have a more distressed financial sector (lower p_{solv}). Increasing debt without funding (e.g., default) is an avenue for a distressed sovereign to free debt capacity for additional transfer. However, large holdings of sovereign debt (k) by the financial sector means that taking this avenue simultaneously causes collateral damage to the balance sheet of the financial sector, limiting the benefit from this option (Proposition 2). In this case, a distressed sovereign is further incapacitated in its ability to strengthen the solvency of its financial sector.

We will revisit this analysis below in the presence of uncertainty, which will shed further light on the feedback between financial crisis and sovereign crisis.

4.5 Uncertainty, Default, and Pricing

We now consider the case where the variance of $\tilde{V}(K_1)$ is nonzero. This means there is uncertainty about realized tax revenues, which depend on how well the investment of the non-financial sector performs in the future. An implication of this is that the probability of default is no longer binary, but depends in a continuous fashion on both the stock of outstanding government debt and the tax rate. Rather than making a binary default vs. no-default decision, the government now chooses an optimal probability of default. The cost and benefit of this choice are analogous to those governing the binary default vs. no-default
choice under certainty: the cost of a greater expected deadweight loss of default versus the
benefit of being able to increase the transfer to the financial sector. The degree to which
the optimal decision is to choose greater debt issuance, and therefore higher probability
of default, depends on characteristics of the economy similar to those that were important
under certainty. Hence, this section generalizes the earlier results obtained under certainty.
Moreover, with uncertainty, is mapping of characteristics to default probability, as well as to
the credit spread/price on the sovereign’s bonds, is continuous. The condition characterizing
the sovereign’s optimal choice of default probability shows that the sovereign default prob-
ability (equivalently, credit spread) is increasing in the level of debt-overhang. This implies
a positive relationship between financial sector credit spreads and sovereign credit spreads.

As in (3), \(\theta_0 \) and \(N_T \), are the variables the government directly controls in maximizing its
objective. While these are perhaps the immediate variables that come to mind in formulating
the problem, it will actually be more enlightening to map these one-to-one into two other
control variables. The first is \(\mathcal{T} \), the expected tax revenue, which equals \(\theta_0 V(K_1) \).
The second is given by:

\[
H = \frac{N_T + N_D}{\mathcal{T}}
\]

In words, \(H \) is the ratio of outstanding debt to expected tax revenue. This measures the
ability of the sovereign to cover its outstanding debt obligations at face value. Since \(V(K_1) \)
is the expected future output from investment, \(H \) can also be viewed as \(1/\theta_0 \) times the ratio
of outstanding debt to expected future economic output, or the debt/future-gdp ratio. Since
the mapping from \(\theta_0 \) to \(\mathcal{T} \) is invertible on \([0, \theta_0^{\max}]\) (as before, we can limit our concern to
this region), and since, given \(\mathcal{T} \), the mapping from \(H \) to \(N_T \) is invertible, these alternative
control variables map uniquely to the original ones. We can therefore focus on the choice of
\(\mathcal{T} \) and \(H \) instead without any loss.

Consider the expressions for the price of a government bond, \(P_0 \), and the probability of

\[
P_0 = E_0 \left[\min \left(1, \frac{\theta_0 \bar{V}(K_1)}{N_T + N_D} \right) \right]
\]

\[
p_{def} = \text{prob} \left(\theta_0 \bar{V}(K_1) < N_T + N_D \right)
\]

We can write \(\bar{V}(K_1) = V(K_1) \bar{R}_V \), so that \(\bar{R}_V \geq 0 \) represents the shock to \(\bar{V}(K_1) \). We
assume that the distribution of \(\bar{R}_V \) is independent of the control variables \(K_1 \), \(\theta_0 \), and \(N_T \).
By construction we must also have \(E[\bar{R}_V] = 1 \). Using the definition of \(H \), we can now rewrite
the expressions for \(P_0 \) and \(p_{def} \) as follows:

\[
P_0 = E_0 \left[\min \left(1, \frac{1}{H} \bar{R}_V \right) \right]
\]

\[
p_{def} = \text{prob} \left(\bar{R}_V < H \right)
\]
Since $N_T = (\mathcal{T} - N_D/H)H$, we can also write an expression for $T_0 = N_T P_0$ in terms of \mathcal{T} and H:

$$T_0 = (\mathcal{T} - \frac{N_D}{H})E_0 \left[\min \left(H, \tilde{R}_V \right) \right]$$

(14)

Thus, we have expressed these three quantities in terms of only the new control variables and the exogenous quantities. Moreover, note that the variable H is sufficient for determining P_0 and p_{def}. That is, these quantities do not change with \mathcal{T} when H is held constant.

Using this revised formulation, we derive analytical properties in the Appendix for optimal tax revenue and optimal probability of government default under uncertainty. The following result summarizes the key insights:

Proposition 3. The government’s optimal choices imply that when \mathcal{T} is large (a high tax rate) then so is H (a high ratio of debt to taxes) and hence the probability of sovereign default (p_{def}) is high. \mathcal{T} and H will be large, and in turn the probability of sovereign default high, when

1. financial sector liabilities are high relative to assets (significant debt-overhang), and
2. pre-existing government debt, N_D, is high.

Finally, a low deadweight cost of default (low D) also leads to a higher probability of government default.

The two margins the government has for increasing the transfer are to increase H and increase \mathcal{T}. The government will optimally allocate the cost of the transfer between these. When both of the associated marginal costs (underinvestment and probability of default) are increasing, it is optimal to push up these margins in tandem. As in the certainty case, when financial sector liabilities are high relative to assets, the marginal benefit of the transfer is greater and it is worthwhile to incur the greater costs associated with a larger transfer. This implies that greater debt-overhang will be associated with a greater value of H and hence a greater probability of sovereign default. Thus, the government’s efforts to increase the provision of financial services comes at the cost of greater risk of default in the sovereign’s bonds. When existing debt is high, then the dilution of existing bondholders is greater, and raising H (and the probability of default) is more effective in increasing the transfer. Hence, a high existing government debt also implies a greater probability of sovereign default. Finally, if the cost of default is low, then this will clearly make the dilution channel more attractive to the government as a means of increasing in the transfer, further increasing H and the probability of default.

5 Empirical evidence

In this section, we examine the bank bailouts in Western European countries during the financial crisis of 2007-10. Our main focus is the empirical relationship between sovereign
credit risk and bank credit risk during the crisis. We first analyze the impact of bank bailouts on sovereign credit risk. We then analyze the impact of sovereign credit risk and bank credit risk.

5.1 Impact of bank bailouts on sovereign credit risk

We use several data sources for our analysis. First, we use the database Bankscope to construct a sample of the 150 largest banks by assets in OECD countries as of the end of fiscal year 2006. We then search for bank CDS prices in Datastream. We find CDS prices for 98 banks. We match bank CDS prices to bank characteristics from Bankscope. We then collect sovereign CDS for all Western European countries from Datastream. We merge these data with annual OCED Economic data on fiscal deficits and gross liabilities as percentage of GDP. We then merge the sovereign CDS data to bank CDS data.

To analyze our data, we divide the financial crisis in three periods. We choose the periods based on the announcement dates of bank bailouts. The first bank bailout announcement in Western Europe was on September 30, 2008 in Ireland. We therefore define the first period as the period from March 2007, prior to the start of the financial crisis, until September 29, 2008. We note that this period includes the bankruptcy of Lehman Brothers in mid September 2008 and the period immediately afterwards. Hence, this period captures the immediate effect of Lehman’s bankruptcy on other banks prior to the Ireland announcement. We choose this period to capture the increase in bank credit risk before the bailouts.

We compute the change in sovereign CDS and bank CDS during this period for all countries in our data set. We compute the change in bank CDS as the unweighted average of the banks in our data set. We drop countries for which either sovereign CDS or banks CDS are not available.

Figure 2 presents the results. For each country, the first column depicts the change in sovereign CDS and the second column depicts the change in bank CDS. As shown in the figure, there is a large increase in banks CDS prior to the bank bailouts. For example, the average bank CDS in Ireland increases by 300 basis points over this period. However, there is little effect on sovereign CDS. Overall, the figure suggests that the Lehman bankruptcy (and prior events) negatively affected the credit risk of the financial sector but had little effect on sovereign credit risk.

We note that some investors may have expected bank bailouts even before the first official announcement on September 30, 2008. An expectation of bank bailouts would reduce the observed change in bank CDS by shifting credit risk from the financial sector to the sovereign. Hence, to the extent that investors held such expectations prior to September 30, 2008, they can explain the small rise in sovereign CDS before Lehman’s bankruptcy but the impact seems quantitatively small.

Next, we examine the change in bank CDS and sovereign CDS immediately after the bank bailouts. Almost every Western European country announced a bank support program in October 2008. Most bank support programs consisted of asset purchase programs, debt guarantees, and equity injections or some combination therefore. Several countries made
more than one announcement during this period. As noted above, the first country to make a formal announcement was Ireland on September 30, 2010. Many other countries soon followed Ireland’s example, partly to offset flows from their own financial sectors to newly secured financial sectors. As a result, the bank bailout announcements were not truly independent since sovereigns partly reacted to other sovereigns’ announcements. We therefore define the second period as the period that covers the bank bailout announcements. We choose a four-week period because almost all Western European countries made an announcement of bank bailouts during this period.

Figure 3 plots the average change in bank CDS and sovereign CDS during the period of bank bailout announcements. As shown in the figure, bank CDS significantly decreased over this one-month period. For example, the average bank CDS in Ireland decreased by about 200 basis points. Similarly, most other countries had a significant decrease in bank CDS, especially the ones that had a large increase in the previous period. However, at the same time, there is a significant increase in sovereign CDS. For example, the sovereign CDS of Ireland increased by about 50 basis points. Most other countries exhibit a similar pattern with decreasing bank CDS and increasing sovereign CDS.

This evidence is consistent with our model. In particular, the evidence suggests that the bank bailout announcements shifted credit risk from the financial sector to the sovereign. Hence, this analysis provides empirical support for our model of the relationship between bank bailouts and sovereign credit risk.

We then examine the change in bank CDS and the change in sovereign CDS after the announcement of bank bailouts. We thus define the third period as the period from the end of the bank bailouts until the end of our analysis period (March 2010). Figure 4 plots the results. As shown in the figure, both sovereign CDS and bank CDS increased across all countries. More generally, we see that bank CDS and sovereign CDS move together after the bank bailouts. This result suggests that bank and sovereign CDS are affected by common factors such as common credit risk. However, we acknowledge that the bank bailouts are not the only explanation for co-movement. Other factors, such as changes in economic conditions, can also affect both sovereign and bank CDS.

To analyze the importance of the sovereign’s financial position, we examine the correlation between sovereign CDS and public debt both before and after the bank bailouts. We measure public debt using gross liabilities as a percentage of total GDP.

Figure 5 shows the correlation of sovereign CDS and public debt before the bank bailouts (March 2007). Not surprisingly, there is no discernible relationship between the two variables because almost all sovereign CDS are effectively zero. This figure shows that prior to the financial crisis, sovereigns were considered to a safe investment with almost no credit risk.

For comparison, Figure 6 shows the correlation of sovereign CDS and public debt after the bank bailouts (March 2010). There is a positive and statically significant relationship between the two variables. For example, countries with significant public debt, such as Greece, have significantly higher sovereign CDS than countries with little public debt, such as Norway. Consistent with our interpretation above, this evidence suggests that bank bailouts generated significant credit risk for sovereigns, especially sovereigns with significant
5.2 Impact of sovereign credit risk on bank credit risk

Our model suggests that changes in country CDS affect the value of bank CDS. One possible way to test this hypothesis is to examine whether bank CDS co-move with the bank headquarters’ country CDS. For example, denote ΔB_{it} as the log change in bank CDS of bank i headquartered in country j from day $t-1$ to day t and denote ΔC_{jt} as the log change in the country CDS of country j from day $t-1$ to t. We use can use ordinary least square to estimate:

$$\Delta B_{it} = \alpha + \beta \Delta C_{jt} + \varepsilon_{it}$$

We can interpret the coefficient β as the effect of country CDS on bank CDS. However, there are two problems with this interpretation. First, estimation of equation (15) may suffer from omitted variable bias. For example, a rise in the unemployment rate in country j can increase both the CDS of banks headquartered in country j and the CDS of country j. Hence, changes in economic variables can generate a positive coefficient β even in the absence of a direct effect of the country CDS on bank CDS. Second, estimation of equation (15) may suffer from reserve causality. For example, if banks gain concessions from the government for additional support, a decline in bank CDS may cause an increase in country CDS (similar to Figure 3). Hence, changes in the likelihood of government support can generate a negative coefficient β even in the absence of a direct effect of the country CDS on bank CDS.

We address this empirical challenge by using a novel data set on sovereign bond holdings of European banks. As part of the European bank stress test, European bank regulators released detailed data on sovereign holdings for 91 large European banks as of the end of March 2010. The sovereign holdings are the bank-country level. For example, the bank ABN Amro reports its entire holdings of sovereign bonds of each European country. We collect these data from the websites of national bank regulators. The data set includes almost all the largest 50 banks in Europe.

Panel A of Table 1 reports summary statistics. The mean risk-weighted assets are 126.3 EUR billion. The average Tier 1 ratio is 10.2 percent. The mean gross and net holdings of sovereign bonds of European countries (net of impairment) is 20.7 EUR billion and 19.7 EUR billion, respectively. Hence, sovereign bond holdings are economically significant and account for about 16.7% of risk-weighted assets.

A large share of sovereign holdings are from the country where the bank is headquartered. The mean gross and net holdings of own country sovereign bonds is 11.5 EUR billion and 11 EUR billion, respectively. Hence, sovereign holdings of own country bonds account for more than half of total sovereign holdings of European countries.

Most banks have little exposure Greece, which is the European country with highest credit risk. The median bank has no exposure to Greek bonds. The average holdings are 0.08 EUR billion which are mostly concentrated among Greek banks.
We use these data to construct a bank-specific exposure variable. Let S_{ij} be the sovereign holdings of country j of bank i. We construct the bank exposure E_{it} as follows:

$$E_{it} = \sum_{i \neq j} S_{ij} \times C_{jt}.$$

We note that the exposure variable does not include sovereign holdings from the country where the bank is headquartered. As a result, we can avoid the empirical challenges described above. First, changes in local economic conditions are not captured in E_{it}. Second, changes in the likelihood of government support do not affect the exposure variable. We can use ordinary least square to estimate:

$$\Delta B_{it} = \delta + \gamma \Delta E_{it} + \eta_{it}.$$

One possible concern with equation (16) is that common changes in European economic conditions may affect both changes in bank CDS and changes in the exposure variable. We can address this concern by including time fixed effects. Hence, we can modify the regression equation and estimate

$$\Delta B_{it} = \delta_t + \gamma \Delta E_{it} + \eta_{it}.$$

In equation (17) we identify the coefficient γ from the bank-specific deviation of the change in the exposure variable after controlling for the common change across all banks. Hence, we control for any common shock that affects both the exposure variable and the bank CDS.

We estimate these regression using the period one month before and month after the reporting date of sovereign bond holdings (March 2010). Our regressions therefore implicitly assume that the holdings are known to the marginal investor in CDS market. We compute log changes to minimize the effect of outliers. We note that 51 banks (out of 91 banks) have traded CDS prices available. We note that the error terms may be correlated over time and we cluster standard errors at the bank-level.

We report our results in Table 2. Column (1) shows a positive and statistically significant coefficient of 0.325. This result suggests that a one-standard deviation increase in the change in the exposure variable leads to an increase of about half of a one-standard deviation increase in the change of the bank CDS. Column (2) controls for bank fixed effects and the coefficient remains effectively unchanged. This result suggests that there are no bank-specific trends that may confound the analysis.

Column (3) controls for week fixed effects. The coefficient of interest decreases from 0.325 to 0.261. This result suggests that common shocks affect both the change in bank CDS and the change in exposure variable. Column (4) controls for day fixed effects. This coefficient is therefore identified from the cross-sectional variation in bank holdings only. The coefficient decreases to 0.141 but remains statistically significant at the 1%-level. This result suggests that country CDS have an economically important effect on bank CDS.

To further check for robustness, Column (5) controls for bank fixed effects. The controls have no effect on the coefficient of interest. Column (6) estimates the same regressions as
in Column (5) but excludes the holdings of German bonds from the construction of the exposure variable. The concern is that Germany may bail out countries other than Germany which could generate reverse causality. Again, we find no effect on the coefficient of interest.

Overall, our results suggest an important empirical relationship between sovereign and bank credit risk. The bank bailouts generated sovereign credit risk and, as a result, changes in sovereign credit risk affect bank credit risk. This evidence is consistent with the feedback cycle described in our model.

6 Conclusion
References

Appendix

A Derivations

A.1 Proof of Lemma 1

Use (7) to substitute for \(w_s \) in the financial sector’s first-order condition and then take the derivative with respect to the transfer \(T_0 \):

\[
\frac{d^2 f(K_0, s_0)}{ds_0^2} dT_0 \frac{ds_0}{p_{\text{solv}}} + \frac{dp_{\text{solv}}}{dT_0} - \frac{d^2 f(K_0, s_0)}{ds_0^2} p_{\text{solv}} - c''(s_0) \frac{ds_0}{dT_0} = 0
\]

\[
\frac{ds_0}{dT_0} = -w_s \frac{dp_{\text{solv}}}{dT_0} / \left(\frac{d^2 f(K_0, s_0)}{ds_0^2} p_{\text{solv}} - c''(s_0) \right)
\]

(A.1.1)

Since \(dp_{\text{solv}}/dT_0 = p(A_1) \), this term is positive so long as \(A_1 \) is in the support of \(\tilde{A}_1 \) and the transfer increases the probability of solvency by decreasing the solvency threshold \(A_1 \). Hence the numerator of the right hand side in the second line is negative. That the denominator is also negative follows from the concavity of \(f \) and the convexity of \(c \). This establishes that the right side is positive and hence \(ds_0/dT_0 > 0 \).

A.2 A Candidate for \(V(K) \) based on \(f(K, s) \)

Consider the frictionless counterpart to our setting, with \(p_{\text{solv}} = 1 \). In a dynamic setting, the expression for \(V \) would reflect the value of future production of the non-financial sector as
a function of its future capital, \(K \). For simplicity, consider one extra period of output. The case of more than one future period should be similar as it is the sum of multiple one-period output. The output of the additional period is given by \(\max_s f(K,s) \). It is natural then to let

\[
V(K) = \max_s f(K,s) - w_s s
\]

with \(w_s \) determined by the financial sector’s first-order condition. With \(f(K,s) = \alpha K^{1-\theta} s^\gamma \), this implies that

\[
V(K) = (1-\theta)\alpha K^{1-\theta} s^* \gamma
\]

where \(s^* \) is the optimal choice of \(s \).

Let \(c(s) = \frac{1}{2} s^m \) for \(m \geq 2 \). Then the first-order condition of the financial sector implies that \(w_s = s^{m-1} \) and the first-order condition of the non-financial sector implies that:

\[
\theta \alpha K^{1-\theta} s^{\gamma-1} = w_s = s^{m-1}
\]

Solving for \(s^* \), substituting into the expression above for \(V(K) \), and simplifying gives:

\[
s^* = (\vartheta \alpha)^{\frac{1-\gamma}{m-\gamma}} K^{\frac{1-\gamma}{m-\gamma}}
\]

\[
V(K) = (1-\theta)\alpha \frac{m}{m-\gamma} K^\gamma \quad \text{where} \quad \gamma = \frac{(1-\theta)}{1-\frac{\theta}{m}}
\]

Hence, \(V(K) \) has the power form that is used in the paper. Moreover, for \(m \geq 2 \) (which is assumed), \(\gamma < 1 \).

A.3 Properties of Expected Tax Revenue: \(T \)

For the assumed parametric forms, we obtained the following results:

\[
T = \theta_0^\gamma \frac{1}{1-\gamma} (1-\theta_0)^{\frac{1}{1-\gamma}}
\]

\[
\frac{dT}{d\theta_0} = \gamma \frac{1}{1-\gamma} (1-\theta_0)^{\frac{2}{1-\gamma}} - \theta_0 \frac{\gamma}{1-\gamma} \frac{2}{1-\gamma} (1-\theta_0)^{\frac{2}{1-\gamma}-1} = \frac{T}{\theta} \left(1 - \frac{\gamma}{1-\gamma} \frac{\theta_0}{1-\theta_0} \right)
\]

\[
\frac{d^2T}{d\theta_0^2} = -2 \frac{\gamma}{1-\gamma} \frac{1}{1-\gamma} (1-\theta_0)^{\frac{3}{1-\gamma}} + \frac{\theta_0}{1-\theta_0} \left(\frac{\gamma}{1-\gamma} - 1 \right) \frac{1}{1-\gamma} \frac{\gamma}{1-\gamma} (1-\theta_0)^{\frac{3}{1-\gamma}-1}
\]

The second line shows that \(dT/d\theta_0 > 0 \) on \([0,\theta_0^{max}]\) and \(dT/d\theta_0 < 0 \) on \((\theta_0^{max},1)\) where \(\theta_0^{max} \) solves:

\[
\gamma \frac{\theta_0^{max}}{1-\theta_0^{max}} = 1.
\]

It is zero at \(\theta_0^{max} \) and at 1 (where \(T = 0 \)).

The third line implies that \(d^2T/d\theta_0^2 < 0 \) on \([0,\theta_0^{max}]\) so \(T \) is increasing but concave on this region. To see this, note that the third line can be rewritten as:

\[
\frac{d^2T}{d\theta_0^2} = \left(-2 + \frac{\gamma}{1-\gamma} \frac{\theta_0}{1-\theta_0} - \frac{\theta_0}{1-\theta_0} \right) \frac{\gamma}{1-\gamma} \frac{1}{1-\gamma} (1-\theta_0)^{\frac{3}{1-\gamma}-1}
\]

We know that \(-1 + \frac{\theta_0}{1-\theta_0} < 0 \) on \([0,\theta_0^{max}]\) and so, on this region, the leading term in parenthesis is negative. Since the remaining terms are positive, \(d^2T/d\theta_0^2 < 0 \) in this region.
A.4 The Government’s First-Order Condition

From (3) we obtain the following first order condition of the government for the tax rate, θ_0:

\[
\left[\frac{\partial f(K_0, s_0)}{\partial s_0} - c'(s_0) \right] \frac{ds_0}{dT_0} \frac{dT}{dT_0} \frac{d\theta}{d\theta_0} + [V'(K_1) - 1] \frac{dK_1}{d\theta_0} = 0 \quad (A.4.1)
\]

Note that the derivatives of s_0 and \mathcal{T} here are total derivatives, since the government’s choices are subject to the equilibrium choices of the financial and non-financial sectors.

As shown above, $dT_0/d\theta_0$ is positive and decreasing (towards zero), but remains positive, on $[0, \theta_0^{max}]$. Therefore, the mapping from tax level (θ_0) to the marginal rate of transformation of taxes into tax revenue ($dT_0/d\theta_0$), is invertible on this region. A high tax rate corresponds to a low marginal rate of transformation of taxes into tax revenue and vice versa. Note that the optimal tax rate must be in the region $[0, \theta_0^{max}]$, since any further increase in θ_0 beyond θ_0^{max} reduces tax revenue and investment. Hence, we can limit the consideration of the optimal tax rate to this region. Since $dT_0/d\theta_0$ is positive and the mapping from θ_0 to \mathcal{T} is invertible in this region, we can instead consider the government’s first order condition with respect to \mathcal{T}, which turns out to be more intuitive for analyzing the government’s problem. Dividing (A.4.1) through by $dT_0/d\theta_0$, and rewriting $(dK_1/d\theta_0)/(dT_0/d\theta_0) = dK_1/d\mathcal{T}$ we obtain this alternative first-order condition:

\[
\left[\frac{\partial f(K_0, s_0)}{\partial s_0} - c'(s_0) \right] \frac{ds_0}{dT_0} + [V'(K_1) - 1] \frac{dK_1}{d\mathcal{T}} = 0 \quad (A.4.2)
\]

where the term $dT_0/d\mathcal{T}$, which equals 1 under a no-default government policy, is omitted from the expression.

A.5 Under-Investment Loss Due to Taxes

We want to obtain an expression for the second term in (10), the transfer version of the government’s first-order condition:

\[
\frac{[V'(K_1) - 1]dK_1}{dT_0/d\theta_0}
\]

The first-order condition for investment of the non-financial sector, (9), and the parametric form for V imply that:

\[
V'(K_1) - 1 = \theta_0 V'(K_1) = \theta_0 \gamma K^{\gamma - 1}
\]

Substituting in the parametric form also gives:

\[
\frac{dK_1}{d\theta_0} = \frac{1}{1 - \theta_0 \gamma - 1} K_1
\]
Moreover, from (9) we can solve for the equilibrium K_1 as a function of θ_0:

$$K_1 = \gamma^{1/\gamma} (1 - \theta_0)^{1/\gamma}$$

We can obtain the numerator to our fraction of interest by multiplying the expressions for the two terms together:

$$[V'(K_1) - 1] \frac{dK_1}{d\theta_0} = \frac{\theta_0 \gamma}{(1 - \theta_0)(\gamma - 1)} K^{\gamma - 1}$$

$$= \frac{\theta_0}{1 - \theta_0} \frac{\gamma}{\gamma - 1} \gamma^{1/\gamma - 1} (1 - \theta_0)^{1/\gamma - 1}$$

$$= \frac{T}{\theta_0} \frac{\gamma}{1 - \theta_0}$$

where the second line follows by substituting in the expression for K_0 and the third line follows by substituting in the expression for T. Appendix A.3 derives $dT/d\theta_0$. Dividing the expression for the numerator by the expression for $dT/d\theta_0$ shows that the marginal loss per transfer is given by:

$$\frac{dL}{dT} = \frac{[V'(K_1) - 1] \frac{dK_1}{d\theta_0}}{dT/d\theta_0} = \frac{\theta_0}{1 - \theta_0} \frac{\gamma}{1 - \theta_0} \frac{1}{\gamma - 1}$$

From this it is clear that $dL/dT \to -\infty$ as $\theta_0 \to \theta^{\text{max}}$ (since at θ^{max} the denominator is 0). Additionally, we have:

$$\frac{d^2L}{dT^2} = \frac{d^2L}{d\theta_0 dT} \frac{d\theta_0}{dT} < 0 \quad \text{for} \quad \theta_0 \in [0, \theta^{\text{max}}) .$$

Hence, the marginal loss to the economy is increasing in magnitude (getting worse) as the tax rate increases up to θ^{max} and expected tax revenue rises to T^{max}. In other words, marginal tax revenues becomes increasingly expensive to raise as the marginal loss to the economy from underinvestment rises in the tax rate/level of tax revenues.

A.6 Proof of Proposition 1

We show sufficient conditions which, under certainty and no-default, make the government’s problem (3) concave, so that optimum is given by the unique solution to (10). For $f(K, s)$ and $c(s)$ we use the functional forms given in the main text.

Substituting (7) into (5) and solving, we obtain the equilibrium level of s_0 (note that we refer to the *equilibrium* level of s_0 also as s_0, an abuse of notation intended to reduce clutter):

$$s_0 = \left(\frac{\alpha}{\beta} \right)^{1/m-\varphi} K_0^{1-\varphi/m} p_{solv}^{1/m-\varphi}$$
Now substitute this into the expression for dG/dT to get:

$$
\frac{dG}{dT} = \frac{\partial f(K_0, s_0)}{\partial s} (1 - p_{solv}) \frac{ds_0}{dT_0} = \frac{1}{m - \vartheta} (\vartheta K_0^{1-\vartheta}) \frac{m}{m-\vartheta} \beta^{-\rho \vartheta} p_{solv}^{-\rho \vartheta - 1} (1 - p_{solv}) \frac{dp_{solv}}{dT_0}
$$

Taking derivative again with respect to T shows that:

$$
\frac{d^2G}{dT^2} \propto \left(\frac{\vartheta}{m - \vartheta} - 1 \right) p_{solv}^{\vartheta - 1} (1 - p_{solv}) \frac{dp_{solv}}{dT_0}^2 - p_{solv}^{\vartheta - 1} \left(\frac{dp_{solv}}{dT_0} \right)^2 + p_{solv}^{\vartheta - 1} (1 - p_{solv}) \frac{d^2p_{solv}}{dT_0^2}
$$

where $dT_0/dT = 1$ is omitted. Since the second term in the above expression is always negative, a sufficient condition to ensure that $d^2G/dT^2 < 0$ is to ensure that the first and third terms in the above expression are non-positive. The condition: $m - 2\vartheta > 0$ ensures that the first term is non-positive. The third term is negative if the slope of the probability density of A_1 at A_1 is non-positive. Letting A_1 take a uniform distribution sets this term to zero.\(^{10}\)

Since we have shown that both G and L are concave in T, the government’s problem is concave in T. Furthermore, the optimum tax revenue, \hat{T}, must correspond to a tax rate $\hat{\vartheta} < \vartheta_{\text{max}}$, because the first-order condition is negative at ϑ_{max}. To see that this is the case, note that $dL/dT \to \infty$ as $\vartheta \to \vartheta_{\text{max}}$ while dG/dT is finite for $p_{solv} > 0$.

A.6.1 Impact of L_1 and N_D on T

Let $x = L_1$ or N_D. Rewriting (10) using the gain and loss notation as $dG/dT + dL/dT = 0$ and then taking the derivative with respect to x gives:

$$
\frac{d^2G}{dxdT} + \frac{d^2L}{dxdT} = 0
$$

(A.6.1)

Using the Implicit Function Theorem, the two terms on the right side evaluate to the following:

$$
\frac{d^2G}{dxdT} = \frac{d}{dp_{solv}} \left(\frac{dG}{dT} \right) \left\{ \frac{\partial p_{solv}}{\partial T_0} \left(\frac{\partial T_0}{\partial x} + \frac{\partial T_0}{\partial x} \right) + \frac{\partial p_{solv}}{\partial x} \right\}
$$

$$
\frac{d^2L}{dxdT} = \frac{d^2L}{dT^2} dT/dx \frac{d^2L}{dT^2} dx
$$

Substituting into (A.6.1) and combining the terms multiplying dT/dx yields:

$$
\frac{dT}{dx} \left[\frac{d}{dp_{solv}} \left(\frac{dG}{dT} \right) \frac{\partial p_{solv}}{\partial T_0} \frac{\partial T_0}{\partial x} + \frac{d^2L}{dT^2} \right] = - \frac{d}{dp_{solv}} \left(\frac{dG}{dT} \right) \left\{ \frac{\partial p_{solv}}{\partial T_0} \frac{\partial T_0}{\partial x} + \frac{\partial p_{solv}}{\partial x} \right\}
$$

(A.6.2)

\(^{10}\)Using an exponential distribution would also be sufficient. For the log-normal distribution, this term will be negative for a range of values below a cutoff.
Note for the left-hand side term in parenthesis:

\[
\frac{d}{dp_{solv}} \left(\frac{dG}{dT} \right) \frac{\partial p_{solv}}{\partial T_0} \frac{\partial T_0}{\partial T} + \frac{d^2 L}{dT^2} = \frac{d^2 G}{dT^2} + \frac{d^2 L}{dT^2} < 0
\]

For \(x = N_D \):

\[
\frac{\partial p_{solv}}{\partial T_0} \frac{\partial T_0}{\partial x} + \frac{\partial p_{solv}}{\partial x} = \frac{\partial p_{solv}}{\partial T_0} (k_A - 1) < 0
\]

since \(\partial T_0/\partial N_D = -1 \) and \(\partial p_{solv}/\partial N_D = (\partial p_{solv}/\partial T_0)k_A \).

For \(x = L_1 \):

\[
\frac{\partial p_{solv}}{\partial T_0} \frac{\partial T_0}{\partial x} = 0 \quad \text{and} \quad \frac{\partial p_{solv}}{\partial x} < 0
\]

so for either value of \(x \), the term in braces on the right side is negative. Finally, the intermediate steps in the proof of the concavity of \(G \) in \(T \) show that

\[
\frac{d}{dp_{solv}} \left(\frac{dG}{dT} \right) < 0
\]

Combining these results shows that \(dT/dx > 0 \) for \(x = L_1 \) or \(N_D \).

A.6.2 Impact of \(N_D \) on \(T_0 \)

To show how \(T_0 \) changes with \(N_D \), begin by using the result above for \(T \). In particular, letting \(x = N_D \) in (A.6.2) and simplifying the right-side expression using \(\frac{\partial p_{solv}}{\partial T_0} \frac{\partial T_0}{\partial x} + \frac{\partial p_{solv}}{\partial x} = \frac{\partial p_{solv}}{\partial T_0} (k_A - 1) \) and \(d^2 G/(dT_0dT) = d^2 G/dT^2 \) gives:

\[
\frac{dT}{dN_D} \left[\frac{d^2 G}{dT^2} + \frac{d^2 L}{dT^2} \right] = (1 - k_A) \frac{d^2 G}{dT^2}
\]

\[
\frac{dT}{dN_D} = \frac{(1 - k_A) \frac{d^2 G}{dT^2}}{\frac{d^2 G}{dT^2} + \frac{d^2 L}{dT^2}} \quad \Rightarrow \quad 0 < \frac{dT}{dN_D} < 1 - k_A
\]

Since \(T_0 = T - N_D \),

\[
\frac{dT_0}{dN_D} = \frac{dT}{dN_D} - 1 \quad \Rightarrow \quad -1 < \frac{dT_0}{dN_D} < -k_A
\]

Moreover, this shows that \(T_0 + k_A N_D \), the gross transfer to the financial sector, is decreasing in \(N_D \).
A.6.3 Impact of Factor Share on T

Next we examine the effect of the factor share of financial services on T, while holding constant total output. To that end, we consider the impact of a change in ϑ while simultaneously adjusting α (the level of productivity) to keep output constant. Let $D(\cdot)$ be the following differential with respect to $d\vartheta$ and $d\alpha$

$$Dg = \frac{dg}{d\vartheta} d\vartheta + \frac{dg}{d\alpha} d\alpha$$

where the derivatives are taken holding T constant but include the change caused by $ds_0/d\vartheta$ and $ds_0/d\alpha$. Now let $d\alpha$ be set to keep total output constant, e.g., $Df = 0$, where f is equilibrium output. This implies $d\alpha = - (df/d\vartheta)/(df/d\alpha) d\vartheta$, which gives:

$$\frac{Dg}{d\vartheta} = \frac{dg}{d\vartheta} - \frac{dg}{d\alpha} \left(\frac{df/d\vartheta}{df/d\alpha} \right)$$

Hence, to find the impact of ϑ on T while holding output constant, we analyze $DT/d\vartheta$. Applying this differentiation operator to the first-order condition for T and collecting terms gives:

$$\left(\frac{d^2G}{dT^2} + \frac{d^2L}{dT^2} \right) \frac{DT}{d\vartheta} + \frac{D}{d\vartheta} \frac{dG}{dT} + \frac{D}{d\vartheta} \frac{dL}{dT} = 0 \quad (A.6.3)$$

Note that the application of the D operator is linear as it is simply a sum of two derivatives. Furthermore,

$$\frac{D}{d\vartheta} \left(\frac{dG}{dT} \right) > 0$$

$$\frac{D}{d\vartheta} \left(\frac{dL}{dT} \right) = 0$$

The first line is proved below, while the second line follows directly since dL/dT is not a function of ϑ or α. Using the second-order condition, it follows that $DT/d\vartheta > 0$.

To prove the first line from above, note that the sign of this term in question is equal to the sign of $D(\partial f/\partial s_0 \times ds_0/dT_0)/d\vartheta$. This follows from the expression for dG/dT and that p_{solv} does not depend on ϑ or α. Substituting (7) into (5) and using the functional form of $c(s_0)$ shows that

$$\text{sgn} \left(\frac{D}{d\vartheta} \frac{\partial f}{\partial s_0} \right) = \text{sgn} \left((m-1)s_0^{m-2} \frac{DS_0}{d\vartheta} \right)$$

Since $m > 1$, this last term equals $\text{sgn}(DS_0/d\vartheta)$. To find $\text{sgn}(DS_0/d\vartheta)$, substitute (7) into (5), multiply both sides of the resulting expression by s_0, and substitute in the functional forms of f and $c(s_0)$ to obtain:

$$\vartheta f(K_0, s_0)p_{solv} = \beta s_0^m \ .$$
Applying the D operator to both sides of this expression gives:

$$
\frac{D(\varphi f(K_0, s_0)p_{solv})}{d\varphi} = f(K_0, s_0)p_{solv}
$$

$$
\frac{D(\beta s_0^m)}{d\varphi} = m s_0^{m-1} D s_0
$$

Since the right-hand side of the first line is positive, so must be the right-hand side of the second line, showing that $D s_0 / d\varphi > 0$ and hence, $\text{sgn} \left(\frac{D(\partial f / \partial s_0)}{d\varphi} \right) > 0$.

It remains to find $\text{sgn} \left(\frac{D(ds_0/dT_0)}{d\varphi} \right)$, which can be found using (A.1.1). Using similar steps to those immediately above, it can be shown that if $m \leq 2$ then $\text{sgn} \left(\frac{D(d^2 f / s_0^2)}{d\varphi} \right) \geq 0$. Moreover, direct differentiation and $D s_0 / d\varphi > 0$ show that if $m \leq 2$ then $\text{sgn}(e''(s_0)) < 0$.

It is then straightforward to show that $\text{sgn} \left(\frac{D(ds_0/dT_0)}{d\varphi} \right) > 0$.

A.7 Proof of Lemma 4

The derivative of the government’s objective with respect to N_T is given by:

$$
\frac{dG}{dT_0} \frac{dT_0}{dN_T}
$$

When $N_T + N_D \geq \mathcal{T}$ (Region 2), then $T_0 = N_T P_0 = \frac{N_T}{N_T + N_D} \mathcal{T}$ and

$$
\frac{dT_0}{dN_T} = P_0 + N_T \frac{dP_0}{dN_T} = P_0 \left(\frac{N_D}{N_T + N_D} \right).
$$

Therefore $dT_0 / dN_T > 0$ if $N_D > 0$. Moreover, this implies that $N_T \to \infty$ is optimal in the default region. Alternatively, if $N_D = 0$, then increasing N_T into the default region provides no benefit but does incur the loss of D.

When $N_T \to \infty$, then $T_0 = \mathcal{T}$, as pre-existing bondholders are completely diluted. Note that $T_0 = \mathcal{T}$ is the same situation as if N_D were set to 0. Conditional on this, the government’s problem reduces to the same problem it faces in Region 1. Therefore, to determine if default is optimal, the government needs to compare this optimum-cum-default-loss, $W_1 | N_D = 0 - D$, with the maximum from region 1, W_1. Since the optimum within the default region can be found by setting $N_D = 0$, Appendix A.6.2 shows that the transfer will be bigger conditional on default. By Appendix A.1 this implies the equilibrium provision of financial services is greater.

A.8 Proof of Proposition 2

To prove point (1), take the derivative of (11) with respect to L_1 and simplify the resulting expression to obtain:

$$
\int_{\tilde{T}_0}^{T_0} \frac{dG}{dT_0} \left(\frac{dT_0}{dL_1} \right) > 0
$$
The intermediate steps in Appendix A.4 show that the derivative in the integrand is positive. As shown in Appendix A.6.2, the gross transfer is decreasing in N_D, so $T_{0}^{def} > k_A N_D + T_{0}^{no,def}$ and hence the integral is positive.

To prove the statement for N_D, take the derivative of (11) with respect to N_D. Simplifying the derivative at the upper integration boundary gives $-k_A dG/dT_0|_{T_0^{def} - k_A N_D}$ while from the lower boundary we get we get $dG/dT_0|_{T_0^{no,def}}$. The remaining part of the derivative is:

$$
\int_{T_{0}^{no,def}}^{T_{0}^{def} - k_A N_D} \frac{d}{dN_D} \left(\frac{dG}{dT_0} \right) = k_A \int_{T_{0}^{no,def}}^{T_{0}^{def} - k_A N_D} \frac{d}{dT_0} \left(\frac{dG}{dT_0} \right)
$$

$$
= k_A \left(\frac{dG}{dT_0} \bigg|_{T_0^{def} - k_A N_D} - \frac{dG}{dT_0} \bigg|_{T_0^{no,def}} \right)
$$

Combining the three parts of the derivatives gives: $(1 - k_A)dG/dT_0|_{T_0^{no,def}} > 0$. To show that the benefit of defaulting is convex in N_D, take a second derivative to obtain: $(1 - k_A)^2 d^2G/dT_0^2|_{T_0^{no,def}} dT_{0}^{no,def}/dN_D > 0$.

To prove the statement for factor share, apply the operator $D/d\vartheta$ (defined in Appendix A.6.3) to (11) and again simplify to get:

$$
\int_{T_{0}^{no,def}}^{T_{0}^{def} - k_A N_D} \frac{D}{d\vartheta} \left(\frac{dG}{dT_0} \right) > 0
$$

The integrand is positive as shown in Appendix A.6.3, so again the integral is positive.

Finally, taking the derivative with respect to k, we obtain $-(dG/dT_0|_{T_0^{no,def}})N_D < 0$ at the upper integration boundary and 0 at the lower boundary. In the interior we obtain

$$
\int_{T_{0}^{no,def}}^{T_{0}^{def} - k_A N_D} \frac{d}{dk_A} \left(\frac{dG}{dT_0} \right) = N_D \int_{T_{0}^{no,def}}^{T_{0}^{def} - k_A N_D} \frac{d}{dT_0} \left(\frac{dG}{dT_0} \right) < 0
$$

so the derivative is negative.

A.9 Optimal Tax Revenue Under Uncertainty

The first order condition for the government’s choice of T is given by:

$$
\frac{dG}{dT_0} \frac{dT_0}{dT} + \frac{dL}{dT} = 0
$$

Whereas under certainty $dT_0/dT=1$, this is no longer the case. Taking the derivative of T_0 with respect to T in (14) (while holding H constant) and then using (12) to substitute into the resulting expression gives $dT_0/dT = P_0 H$. Therefore, the first-order condition for T is:

$$
\frac{dG}{dT_0} H P_0 + \frac{dL}{dT} = 0
$$

(A.9.1)
with T_0 given in (14). The loss due to underinvestment, L, is the same as under certainty. Recall that it is concave, with the magnitude of the marginal loss, dL/dT, increasing in T. Similarly, dG/dT_0, the gain to the economy from the increased provision of financial services, remains the same with uncertainty and is decreasing in T_0. However, the rate at which T_0 increases in T is now HP_0 rather than 1. Note that this rate is a constant in T, as P_0 is only a function of H, and is less than 1. Finally, the second-order condition for T holds

$$\frac{d^2G}{dT_0^2}(HP_0)^2 + \frac{d^2L}{dT^2} < 0$$

as G and L are concave and HP_0 is a function only of H.

A.10 Optimal Probability of Default Under Uncertainty

Changing H affects two components of the government’s objective. As can be seen from (14), increasing H changes T_0. Unlike the case with T, however, increasing H does not have any effect on investment. Instead, the cost associated with increasing H is that it increases the probability of default, and so also the expected deadweight cost. The first-order condition for H shows this tradeoff:

$$\frac{dG}{dT_0} \frac{dT_0}{dH} - D \frac{dp_{def}}{dH} = 0$$

From (13), it is clear that $dp_{def}/dH > 0$ and we can think of choosing H exactly as choosing the probability of default. The effect on $T_0 = P_0N_T$ is less immediately clear, since increasing H increases N_T, but decreases P_0. However, (14) shows that $dT_0/dH > 0$. To see this we break up T_0 into two terms based on (14) and consider their derivatives:

$$d(T - \frac{N_D}{H})/dH = \frac{N_D}{H^2} > 0$$ \hspace{1cm} (A.10.1)

$$d \ E_0 \left[\min \left(H, \tilde{R}_V \right) \right] /dH = (1 - p_{def}) > 0$$ \hspace{1cm} (A.10.2)

Demonstrating the equivalence in the second line is straightforward, as shown in Appendix A.11. We refer to (A.10.1) as increasing the *dilution* of existing bondholders’ claim, since the increase in H reduces the share of tax revenues that goes to the holders of the existing debt, N_D. We refer to (A.10.2) as reducing either the *default buffer* or *precautionary taxation*, since by increasing H, it increases the probability that $\tilde{R}_V < H$, in which case the government defaults. Hence, (A.10.1) and (A.10.2) show that increasing H (while holding T constant) increases T_0. It immediately follows that $dG/dH > 0$ and there is a benefit to increasing H. Substituting in for dT_0/dH, the first-order condition becomes:

$$\frac{dG}{dT_0} \left(\frac{N_D}{H^2} E_0 \left[\min \left(H, \tilde{R}_V \right) \right] + (T - \frac{N_D}{H})(1 - p_{def}) \right) - D \frac{dp_{def}}{dH} = 0$$

To see this, note that $HP_0 = E_0 \left[\min \left(H, \tilde{R}_V \right) \right] < E_0[\tilde{R}_V] = 1.$
Appendix A.11 also shows that as H increases, raising it further becomes decreasingly effective at increasing T_0:

$$\frac{d^2 T_0}{dH^2} = \frac{-2N_D}{H^3} \int_0^H xp_{RV}(x)dx - (T - \frac{N_D}{H})p_{RV}(H) < 0$$

where $p_{RV}(x)$ denotes the probability density of RV evaluated at x. In other words, T_0 is concave in H. Together with the concavity of G in T_0, this implies that G is concave in H, e.g., $d^2 G/dH^2$. The implication is that while increasing H provides a benefit to the government by increasing the transfer through dilution and reduction of precautionary taxation, the marginal benefit is decreasing. Meanwhile, the government bears a cost for increasing H; the resulting increased likelihood of default increases the expected deadweight cost of default.

We assume that at the optimal choice of H, $d^2 p_{def}/dH^2 \geq 0$.

A.11 Uncertainty Calculations

To derive $d E_0 \left[\min \left(H, RV \right) \right] /dH$, rewrite the expectation as:

$$E_0 \left[\min \left(H, RV \right) \right] = \int_0^H xp_{RV}(x)dx + H \int_H^\infty p_{RV}(x)dx$$

Now taking the derivative with respect to H, one obtains:

$$d E_0 \left[\min \left(H, RV \right) \right] /dH = H p_{RV}(H) - H p_{RV}(H) + \int_H^\infty p_{RV}(x)dx$$

$$= \int_H^\infty p_{RV}(x)dx$$

$$= (1 - p_{def})$$

The first line is just the derivative, while the last line follows by definition of p_{def}.

Using this result we have that:

$$\frac{dT_0}{dH} = \frac{N_D}{H^2} E_0 \left[\min \left(H, RV \right) \right] + \left(T - \frac{N_D}{H} \right) (1 - p_{def})$$

12 Note that in the first-order conditions, we have assumed that the government takes into account the (negative) impact of higher H on prices. Thus, we have NOT treated the government here as a price-taker. If we instead treat the government as a price-taker, the resulting conditions are simpler: $dT_0/dH = P_0 T$ (as dP_0/dH is omitted due to the price-taking assumption) and the first-order condition is: $dG/dT_0(P_0T)$ - $Ddp_{def}/dH = 0$. In this case, concavity of G in H still holds because G is concave in T_0.

38
Substituting in the expression above for $E_0 \left[\min \left(H, \tilde{R}_V \right) \right]$, taking the derivative with respect to T_0, and simplifying gives:

$$\frac{d^2 T_0}{dH^2} = -\frac{2N_D}{H^3} \left[\int_0^H x p_{\tilde{R}_v}(x)dx + H \int_H^\infty p_{\tilde{R}_v}(x)dx \right] + \frac{N_D}{H^2} (1 - p_{de,f})$$

$$+ \frac{N_D}{H^2} (1 - p_{de,f}) - \left(T - \frac{N_D}{H} \right) p_{\tilde{R}_v}(H)$$

$$= -\frac{2N_D}{H^3} \left[\int_0^H x p_{\tilde{R}_v}(x)dx \right] - \left(T - \frac{N_D}{H} \right) p_{\tilde{R}_v}(H)$$

Since $(T - N_D/H) = N_T/H > 0$, it is clear that $d^2T_0/dH^2 < 0$.

39
Figure 1: Sovereign and Bank CDS of Ireland

This figure shows the sovereign CDS and bank CDS for Ireland in the period from 3/1/2007 to 3/1/2010. The bank CDS is computed as the unweighted average of bank CDS for banks headquartered in Ireland. The data are from Datastream.
Figure 2: Change in Sovereign and Bank CDS before Bank Bailouts

This figure shows the change in average bank CDS and sovereign CDS for Western European countries in the period from 3/1/2007 to 9/26/2008. The bank CDS is computed as the unweighted average of bank CDS for banks headquartered in that country. The data are from Datastream.
Figure 3: Change in Sovereign and Bank CDS as a result of Bank Bailouts

This figure shows the change in average bank CDS and sovereign CDS for Western European countries in the period from 9/26/2008 to 10/22/2008. The bank CDS is computed as the unweighted average of bank CDS for banks headquartered in that country. The data are from Datastream.
Figure 4: Change in Sovereign and Bank CDS after Bank Bailouts

This figure shows the change in average bank CDS and sovereign CDS for Western European countries in the period from 10/22/2008 to 3/1/2010. The bank CDS is computed as the unweighted average of bank CDS for banks headquartered in that country. The data are from Datastream.
Figure 5: Correlation between Sovereign CDS and Public Debt before Bank Bailouts

This figure shows the correlation between sovereign CDS and public debt as a percentage of GDP as of 3/1/2007 for Western European countries. The data are from Datastream and the OECD Economic database, respectively.
Figure 6: Correlation between Sovereign CDS and Public Debt after Bank Bailouts

This figure shows the correlation between sovereign CDS and public debt as a percentage of GDP as of 3/1/2010 for Western European countries. The data are from Datastream and the OECD Economic database, respectively.
Table 1: Summary Statistics of Sovereign Holdings of Large European Banks

The table shows summary statistics for all banks that participated in the EU Bank Stress Tests from July 2010. The data was collected from the website of the Committee of European Banking Regulators and nation websites of the respective bank regulators. The sovereign holdings are computed as the total value of sovereign holdings relative to risk-weighted assets. We report both the gross and net exposure as reported to bank regulators. The share of trading book and banking book are the share of sovereign holdings held in the respective book. The shares are computed based on gross exposure (net exposure was not reported).

<table>
<thead>
<tr>
<th>Panel A: Sovereign Holdings (March 31, 2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Bank Characteristics</td>
</tr>
<tr>
<td>Risk-weighted Assets (EUR million)</td>
</tr>
<tr>
<td>Tier 1 Capital Ratio (%)</td>
</tr>
<tr>
<td>Sovereign Exposure</td>
</tr>
<tr>
<td>Sovereign Holdings (gross, EUR million)</td>
</tr>
<tr>
<td>Sovereign Holdings (net, EUR million)</td>
</tr>
<tr>
<td>Home Sovereign Holdings (gross, EUR million)</td>
</tr>
<tr>
<td>Home Sovereign Holdings (net, EUR million)</td>
</tr>
<tr>
<td>Greek Sovereign Holdings</td>
</tr>
<tr>
<td>Share Banking Book (%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: CDS prices (March 1 – April 30, 2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank CDS (bps)</td>
</tr>
<tr>
<td>Country CDS (bps)</td>
</tr>
<tr>
<td>Log change in Bank CDS</td>
</tr>
<tr>
<td>Log change in Sovereign Exposure</td>
</tr>
</tbody>
</table>
Table 2: Impact of changes in Sovereign CDS on Bank CDS

The table shows regression of change in bank CDS on change in exposure to sovereign bank holdings. The sovereign bond holdings data were collected from the website of the Committee of European Banking Regulators and nation websites of the respective bank regulators. We construct the exposure variable as the weighted average of country CDS with sovereign holdings as weights. Changes are computed as log changes. The data covers the period from 3/1/2010 to 4/30/2010. Columns (2), (5) and (6) include bank fixed effects. Column (3) includes week fixed effects. Column (4) to (6) include day fixed effect. The exposure variable in Column (6) excludes German bonds. Standard errors are clustered at the bank-level (51 banks). *** 1% significant, ** 5% significant, and *10% significant

<table>
<thead>
<tr>
<th>Sample</th>
<th>All</th>
<th>All</th>
<th>All</th>
<th>All</th>
<th>All</th>
<th>Excluding Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Log change in Sovereign Exposure</td>
<td>0.325***</td>
<td>0.326***</td>
<td>0.261***</td>
<td>0.141***</td>
<td>0.135***</td>
<td>0.137***</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.028)</td>
<td>(0.027)</td>
<td>(0.049)</td>
<td>(0.046)</td>
<td>(0.046)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.002***</td>
<td>0.002***</td>
<td>0.002***</td>
<td>0.003***</td>
<td>0.005***</td>
<td>0.005***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Bank FE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Week FE</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Day FE</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Banks</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.173</td>
<td>0.188</td>
<td>0.228</td>
<td>0.342</td>
<td>0.357</td>
<td>0.357</td>
</tr>
<tr>
<td>Adjusted R-Squared</td>
<td>0.173</td>
<td>0.170</td>
<td>0.224</td>
<td>0.329</td>
<td>0.329</td>
<td>0.329</td>
</tr>
</tbody>
</table>