The Race of Unicorns:
A Signaling Story of Private Acquisitions

Xuelin Li*

September 2019

Abstract

Assets are reallocated less efficiently through mergers and acquisitions (M&As) between private firms compared to the public ones. I develop a theoretical framework to explain how information imperfections inhibit efficiency gains through private acquisitions. Two startups of different qualities are seeking initial public offerings (IPOs) for costly real options and can acquire each other before IPO. Investors initially cannot distinguish their qualities but can observe whether an acquisition occurred. I show that efficiency loss in private acquisitions is not generated by the quality of the acquirer, but rather due to a lower probability of completing deals. Furthermore, undertaking acquisitions before IPO generates a positive signal about firm quality during stock issuance. Lastly, I document empirical evidence in support of this signaling effect.

Keywords: Real Options, Startups, Merger and Acquisitions, Initial Public Offering, Information Asymmetry.

JEL Classification: G14, G32, G34, D81, D82

*Li is at the Carlson School of Management, University of Minnesota. Email: lixx3811@umn.edu. I thank my advisors Andrew Winton and Martin Szydlowski and my committee members Raj Singh and Richard T. Thakor for numerous discussions, feedback and support. I would also like to thank Onur Bayar (Discussant), Frederico Belo, Arnoud W. A. Boot, Murray Frank, Simon Gervais, Tong Liu, David Rahman, Aldo Rustichini, Merih Sevilir (Discussant), Fabian Trottner (Discussant), Tracy Yue Wang, Zhe Wang, Ming Yang, Hongda Zhong and participants in the 2019 Financial Intermediation Research Society conference, 2019 Econometric Society Asia annual conference, 2019 Econometric Society North America Summer Conference, 2018 Northern Finance Association conference, 2018 Wharton Innovation Doctoral Symposium and UMN finance brownbag. Any errors are mine.
1. Introduction

Assets are reallocated less efficiently through mergers and acquisitions (M&As) between private firms compared to the public ones. Individually, a productive public company is over 10 times more likely to acquire than a private company with identical productivities. Aggregately, public acquisitions are responsive to economy growths and cluster in booms, whereas private acquisitions are substantially less procyclical (Maksimovic et al., 2013). The efficiency loss is a serious concern given that the majority of M&A transactions occur between non-public firms. What inhibits efficient gains in the market of private corporate assets?

In this paper, I develop a theoretical framework to answer this question with information imperfections. Furthermore, the model generates a novel prediction that private acquisitions are positive signals to investors during initial public offerings (IPOs). Lastly, I document empirical evidence in support of this signaling effect. In the model, two strategic startups are seeking IPO financing for implementing a real option to expand physical assets. These assets stochastically evolve before IPO. Firms differ in their managerial qualities. The high-quality firm has a higher expected growth rate of assets and a larger marginal rate of return in expansion. Prior to going public, one firm can acquire the other’s physical assets. IPO investors initially cannot distinguish firm qualities but can observe whether acquisitions occurred.

The first main result is that the efficiency loss in private acquisitions is not generated by the quality of the acquirer, but rather due to a lower probability of completing deals. In line with the neoclassical view of M&As, when a private acquisition occurs in equilibrium, assets flow from the less productive type to the firm with better technologies, but not vice versa. However, the occurrence of acquisitions is delayed or even prevented by information imperfections. In the extreme case, when investors have an optimistic prior about the low-quality firm, it will reject takeover offers and force the more productive firm to give up acquiring. Then both startups go public at the same time, which results in IPOs consisting
Second, since only the high-quality startup will acquire in equilibrium, private acquisition is a selecting mechanism that only keeps the more productive type. On the contrary, when acquisition fails, startups of different qualities are mixed together in IPOs. Therefore, undertaking acquisitions before IPO generates a positive signal during stock issuance. This result has two testable hypotheses as implications: IPOs preceded by acquisitions will have significantly less underpricing and better long-term growth compared to non-acquiring IPOs.

Lastly, I empirically test these hypotheses by merging stock issuance data with private M&A data. The supporting evidence is both statistically and economically significant. For underpricing, a typical IPO with private acquisitions has a 2.5% lower first-day return compared to a non-acquiring IPO. For long-term performance, a typical IPO with private acquisitions has a 5% higher three-year buy-and-hold adjusted return and an 18% larger return of assets three years after its IPO. With these two findings, the signaling effect is validated through the positive productivity–acquisition relationship.¹

The above results hinge on how investors learn about firm qualities when observing an acquisition or not. Suppose the high-quality firm chooses a stand-alone IPO, the low-quality firm will always follow this decision at no cost. Then the investors have to learn by assets sizes, and rationally believe that the realized larger firm is more likely to have high productivities. They will price both IPOs. So the high-quality firm “loses” with an underpricing cost, but the low-quality firm “wins” with being overpriced. On the contrary, acquisitions are too costly for the low-quality firm to imitate. This is because managerial talent cannot be transferred.² A low-quality acquirer generates substantially fewer profits after mergers, and a high-quality target will charge a hefty price for being acquired. Therefore, when acquisitions do occur,

¹Rational investors will not reward private acquisitions if they merely reduce competitions. In fact, IPOs that make acquisitions simultaneously or soon afterward significantly underperform in the long run (Brau et al., 2012, Brown et al., 2005, Ritter, 2015). This distinguishes the quality of a private acquirer from that of a new public acquirer.

²Interpreting productivity as managerial and organizational talent can be dated at least back to Lucas (1978). It is commonly assumed as non-transferable in the neoclassical view of M&As (Jovanovic and Rousseau, 2002, Maksimovic and Phillips, 2002). However, the opposite assumption of technology complementarity as in Rhodes-Kropf and Robinson (2008) can also be accommodated and discussed in the model section.
investors rationally believe that the acquiring startup is more productive with certainty. The high-quality firm “wins” with being priced correctly, but the low-quality firm “loses” without overpricing benefit.

Firms are making trade-offs between accepting the losing payoff right away and waiting for winning in the future. When investors are optimistic about the low-quality firm after observing assets, the more productive type will give up acquisitions and go public, anticipating the underpricing cost. The reason is that a mistaken belief takes a prolonged amount of time to revert. The high-quality firm bears with the cost of delaying growth opportunities while waiting. This long-term cost ultimately outweighs the short-term underpricing loss. On the contrary, when investors are almost correctly distinguishing firm qualities through assets, the low-quality firm will accept the takeover offer since the possibility of mixing in IPOs is too low. Lastly, when the difference between assets sizes is moderate, no firm is willing to give up. So the game falls into a region of delaying.

Information imperfections inhibit efficient assets reallocations. If investors are perfectly informed, the low-quality firm cannot be overpriced in a stand-alone IPO. It is Pareto-optimal for the more productive type to acquire and transfer part of the synergies to the other. Therefore, acquisitions will happen immediately in the first-best case.

Related Literature. This paper adds to the literature on M&As as follows. First, I offer a theoretical framework that generates empirical predictions closely related to the patterns of private acquisitions (Maksimovic et al., 2013, Netter et al., 2011). The model result implies that private acquisitions still represent the efficient reallocation of assets, which is in line with models under perfect information (Jovanovic and Rousseau, 2002, Maksimovic and Phillips, 2002). However, the results do not merely echo previous findings. The existence of information imperfection significantly delays and prevents assets transactions, which is the economic rationale that drives the distinct patterns of private deals.

3The empirical evidence in support of this view include, but are not limited to, plant-level productivity (Li, 2013, Maksimovic and Phillips, 2001, Maksimovic et al., 2011), product quality (Sheen, 2014) and investment expenditure (Devos et al., 2008).
Second, this paper adds to the literature on the role of growth opportunities or generally intangible assets in M&A. Closely related is Lambrecht (2004), which analyzes how the profit-sharing terms impact the timing of mergers in a two-player real options model. In his model, mergers can generate economies of scale, but firms have no differences in their qualities. Therefore, Lambrecht (2004) does not allow the possibility of signaling. Instead, his model focuses on endogenously solving a profit-sharing rule to rationalize when mergers occur. On the contrary, my model focuses on how investors’ learning process affects the occurrence of M&As. Conditional on an acquisition, profit division method is exogenously assumed. Therefore, our papers complement each other. Alternatively, Levine (2017) models growth opportunities as “seeds” to constrain capital investment.\(^4\)

This paper generates a new perspective to the extensive literature on M&A motives, including but not limited to managerial hubris and empire building (Jensen, 1986, Roll, 1986), stock misvaluation (Shleifer and Vishny, 2003), market power (Kim and Singal, 1993) and complementarity (Rhodes-Kropf and Robinson, 2008). I show that private acquisitions generate valid signals in IPOs, and startups are motivated to resolve the adverse selection problem through acquiring. I also add to the literature of the relationships between IPOs and M&As. Going public and being acquired are typically assumed to be substitutes as exit choices for startups. For example, in Bayar and Chemmanur (2012), these two choices have different costs and benefits. In this paper, I do not assume they are mutually exclusive. As an equilibrium result, the high-quality firm will sometimes both acquire and go public. The implications are also consistent with the empirical evidence on the timing when IPO exits are relatively more frequent (Ball et al., 2011), and firm-level characteristics that predict higher chances of IPO compared to being acquired (Brau et al., 2003, Poulsen and Stegemoller, 2008).\(^5\)

\(^4\)Empirically acquisitions of intangible assets, especially in innovative industries, are frequent and important to firm growth, e.g., Bena and Li (2014), Cunningham et al. (2018), Higgins and Rodriguez (2006), Krieger et al. (2018).

\(^5\)Some IPOs are motivated by a desire to acquire, for example either in a roll-up IPO (Brown et al., 2005, Ritter, 2015), or soon afterwards (Brau et al., 2012, Celikyurt et al., 2010).
Theoretically, this paper belongs to the literature of real options models with information imperfection. As in Grenadier and Malenko (2011), the option’s payoff has two parts: a direct project payoff and an indirect belief component depending on a third party’s assessment of types. Gorbenko and Malenko (2017) consider a model where two acquirers with different marginal costs of using cash, privately knowing their synergy, decide when to approach the target and the method of payment. High-valuation player signals by paying costly cash. This paper differs from Gorbenko and Malenko (2017) in two ways. First, in their model, players have one common state variable, which is orthogonal to the target’s belief. In my model, both startups have their assets sizes evolving with different drifts. These two state variables are informative and exogenously move the investors’ prior. Second, in Gorbenko and Malenko (2017), there are no direct interactions between players. For example, one bidder cannot pay the other to give up acquiring and signal its high valuation of M&As. Instead, my paper reveals the signaling effect of interactions, i.e., acquisitions.

This paper also relates to the dynamic adverse selection models (Daley and Green, 2012) in the sense that, the investors’ belief stochastically moves and serves as the key state variable to influence the decision makers. The literature help explain, for example, liquidity dry-up (Daley and Green, 2016), misallocation (Fuchs et al., 2016), entry decision (Zryumov, 2015), market freezes (Fishman and Parker, 2015) and the recovery of them (Chiu and Koepppl, 2016). In Strebulaev et al. (2016), cash flow plays a dual role in signaling and loosening financial constraint, which both benefit the high type. In my model, assets sizes also send signals and impact the synergy in M&As. The difference is that the dual roles work in the opposite direction for the high type. When the low type’s asset is larger, it generates a higher synergy, but investors are more optimistic about the less efficient firm, which makes it reluctant to accept takeover offers.

Though my model generates a two-threshold equilibrium as in Daley and Green (2012), the fact that it has two strategic players changes how separation works. In Daley and

6This makes the timing of acquisition initiation have no signaling ability.
Green (2012), there is a partial-separating threshold where the low type drops with some probability to make belief reflect to the boundary. Yet in my model, the high type will initiate acquisition with certainty below this boundary since this is its dominant strategy motivated by the efficiency gain, and low type will accept. Therefore I have full separations due to the possibility of interactions between players. This also distinguishes the paper from Gul and Pesendorfer (2012).

The paper is organized as follows. Section 2 develops the full model. Section 3 analyzes the model and characterizes. Section 4 extends the model in several ways. Section 5 tests and discusses the model’s implications empirically. Section 6 concludes.

2. Model

Assets. The game has two strategic players. They are startups, \(h \) (the high type) and \(l \) (the low type), operating in time \(t \in [0, +\infty) \). Both firms are risk-neutral and have the identical discount rate \(r \). Each firm \(i \) has assets under management, whose size \(x_{it} \) follows a geometric Brownian motion,

\[
\frac{dx_{it}}{x_{it}} = \mu_i dt + \frac{1}{\sqrt{2}} \sigma dB_{it}.
\]

(1)

\(B_{ht} \) and \(B_{lt} \) are two independent standard Brownian motions on the canonical probability space \(\{ \Omega, \mathcal{F}, \mathbb{Q} \} \). \(\mu_i \) is the expected growth rate. Firm \(h \) has a higher expected growth rate of assets. Following Dixit and Pindyck (1994), I assume \(r > \mu_h > \mu_l \). This implies delaying is costly for both types and regulates finite solutions.\(^7\)

Asset sizes are included for two reasons. First, they serve as the base value for the firm’s real options. Second, size growth provides an exogenous channel of learning. The idea follows real life examples when an investor wants to identify the better stock out of two similar ones. The beginning step is to download financial data and calculate realized growth rates. A firm

\(^7\)The assumption captures in reality delaying IPO and positive NPV projects are costly for startups. For VC-backed startups, VC funds have predetermined investment horizon around 10 years (Gompers, 1996, Barrot, 2016). Delaying exit beyond that scope is generally not feasible.
growing rapidly in realization is considered as the high type with higher probability.

Real Options. Both firms have a costly real options to speed up growth, modeled as a linear expansion technology. The stand-alone NPV when exercising is \((H - \alpha) x_{ht}\) for firm \(h\) and \((L - \alpha) x_{lt}\) for firm \(l\). The return satisfies (i) \(H - \alpha > 0\) and (ii) \(H > L\). The first restriction implies after exercising, NPV for the high type strictly increases. The second implies the high type generates strictly higher return than the low type. I interchangeably call firm \(h\) as the more efficient type, motivated by the fact that it has better expansion technology and asset growth.

\(\alpha x_{it}\) is the upfront cost of expansion. Since startups in general lack internal cash and rely heavily on external financing, firms will raise fundings through IPOs to cover the cost. They endogenously choose the timing of IPO to exercise the real options.

To avoid technical complexities, if a single player exercises option at \(\tau\), firm types become public information at \(\tau^+\) and the remaining firm exercises the option instantaneously soon. Thus, game effectively ends after one execution.

Acquisition. Prior to stand-alone IPOs, each firm \(i\) can make an acquisition offer to the other one \(-i\). If M&A succeeds, a merged firm, indexed by \(m\), will go IPO and exercise the option. Specifically, the merged firm expands the combined assets of size \(x_{mt} = x_{it} + x_{-it}\), using the acquirer \(i\)'s technology, which is not transferable in acquisitions.

If the high type is the acquirer, the NPV is \((H - \alpha) x_{mt}\) and a positive synergy \((H - L) x_{lt}\) is generated. If the low type is the acquirer, the NPV is \((L - \alpha) x_{mt}\) and an efficiency loss \((H - L) x_{ht}\) is generated. Therefore, in an economy with perfect information, only the more efficient type will acquire as in the neoclassical M&A literature. Yet this is not necessarily true with information imperfection as firms may collude to deceive investors and extract information rents to offset the loss.

8I assume after mergers, firm \(m\) has to exercise at once. This setup is a parsimonious way to highlight the signaling effect of acquisition. Alternatively, firm \(m\) can growth its size \(x_{mt}\) following the acquirer’s Brownian motion and optimally choose the exercising time. Notice this would further increase the efficiency advantage of firm \(h\) as it has higher assets growth rate, which makes signaling cheaper.
The acquirer transfers part of the expansion profit to target as acquisition offers. This can be realized in a stock-exchange transaction such that the target receives shares of the merged company.\footnote{This simplifies the acquisition process and avoid alternative signaling concerns through methods of payments. See Hege and Hennessy (2010), Lambrecht (2004) for a similar assumption.} In the baseline model, players have exogenously given reservation value, which is the target’s stand-alone NPV plus an exogenous markup. Specifically, there exist parameters $\gamma_h \geq 0$ and $\gamma_l \geq 0$ such that the offer has to be larger than $(H - \alpha + \gamma_h) x_{ht}$ for firm h as the target and $(L - \alpha + \gamma_l) x_{lt}$ for firm l as the target.\footnote{In Section 4.3, I endogenize offer value through Nash bargaining where the threat point is to go public alone while being regarded as the low type.}

Firms endogenously choose the timing of acquisition, jointly with the decision of a stand-alone IPO, knowing that: (i) an acquisition deal is successful only if both parties are willing to, and (ii) acquisition is observable to investors. (i) implies that the target would reject being acquired if the offer value is below its equilibrium continuation value or the exogenous reservation value. (ii) assumes when there is only one firm going public, the investors could distinguish the merged firm from a stand-alone IPO.\footnote{In equilibrium, a single stand-alone IPO will never happen. This assumption is required for off-equilibrium deviations.}

Timeline and Strategy. The sequence of events during the infinitesimal time interval $[t, t + dt]$ can be heuristically illustrated as follows:

Step 1: Asset sizes x_{ht} and x_{lt} are updated, observable to both firms.

Step 2: Nature flips a coin. If it is head, firm h moves first in Step 3 and 4. Otherwise firm l moves first.

Step 3: Acquisition stage: Sequentially firm i decide whether to acquire $-i$. If $-i$ accepts, i expands total assets by raising $\alpha (x_{ht} + x_{lt})$ from investors. Otherwise game continues to IPO stage.

Step 4: IPO stage: Sequentially firm i decides whether to file for IPO. If i goes public without acquisitions, it raises αx_{it} from investors.

Step 5: Game continues if both firms delay.
Step 2 introduces a randomization device that stipulates the moving order of players in Step 3 and 4. At each stage, the second mover can observe decision of the first one. The order is indistinguishable in investor’s perspective in a pooling IPO.

Following the real options literature, I consider Markov stopping strategies, which is a 3-tuple $\sigma_{it} = (\sigma_{it}^A (x_{ht}, x_{lt}), \sigma_{it}^T (x_{ht}, x_{lt}), \sigma_{it}^I (x_{ht}, x_{lt}))$. $\sigma_{it}^A : X_{ht} \times X_{lt} \rightarrow [0,1]$ is the probability of firm i making an acquisition offer at Step 3. $\sigma_{it}^T : X^h_t \times X^l_t \rightarrow [0,1]$ is the probability of firm i accepting an offer, conditional on it receives one. $\sigma_{ht}^I : X^h_t \times X^l_t \rightarrow [0,1]$ is the probability of firm h’s stand-alone IPO when it moves first in the IPO stage. $\sigma_{lt}^I : X^h_t \times X^l_t \rightarrow [0,1]$ is the probability of firm l’s stand-alone IPO when it moves secondly.

Important interpretations of the strategies are in order. First, I do not need to consider the strategy when firm l moves first in the IPO stage. This is because then the low type will never go public. If it did, the high type had a dominant strategy to wait an infinitesimal amount of time and let its quality revealed. Investors can then update that a single stand-alone IPO is the low type with probability one. Second, the low type has a dominant strategy to mimic in the IPO stage when moving secondly since it observes firm h’s decision. Therefore I can equivalently focus on σ_{it}^I as a mapping from the size space, rather than make it a function of the realized action of firm h, with the restriction that $\sigma_{ht}^I (x_{ht}, x_{lt}) = \sigma_{lt}^I (x_{ht}, x_{lt})$. Lastly, I will focus on the equilibria that acquisition offer equals to the reservation value of the target in equilibrium.\footnote{It does not rule out off-equilibrium deviations with offers higher than the reservation value. A full-fledged model with endogenous offer value can be pinned down by a commonly preferred stopping threshold of both types. See page 50 in Lambrecht (2004).} Hence offer value is not in the strategy space.

Investors. Investors provide the rationale for pricing. They are non-strategic and assumed to be short-term players who earn zero profit in expectation. The types of firms are unknown by investors, who initially believe both firms have equal chance to be the high type.\footnote{The investors know there is exactly one high type and one low type, but they do not know “who is who”.} When IPO market opens, they observe all IPO candidates and their assets sizes. The information set is therefore $I_t = \{x_{kt}\}_{k \in C_t}$. C_t is the index set IPO candidates. $C_t = \{h, l\}$ in a pooling IPO.
and \(C_t = \{m\} \) if merger happens. Besides, they are aware of the data generating process of sizes and are able to apply Bayes’ rule when updating beliefs. When IPO happens, investors make pricing decisions based on

\[
s_{kt} (HP_{kt} + L (1 - P_{kt})) = \alpha. \tag{2}
\]

\(s_{kt} \) are the shares issued to investors. \(1 - s_{kt} \) remains for original owners of IPO candidate \(k \). The price of issuing shares is a function of \(P_{kt} \), which is candidate \(k \)’s probability of being a high type conditional on \(I_t \). \((HP_{kt} + L (1 - P_{kt})) \) is also the expected gross return of expansion in investors’ belief. Equation (2) is a zero-profit condition. To motivate this, one could assume that there are at least two investors in the IPO market who compete in a Bertrand fashion. Let \(Z_i \in \{H, L\} \) denote the return rate of firm \(i \). A stand-alone IPO has payoff functions for firm \(i \)

\[
R^I_i (x_{it}, x_{-it}) = (1 - s_{it}) Z_i x_{it}.
\]

A merged IPO, when \(i \) is the acquirer has payoff functions

\[
R^m_i (x_{it}, x_{-it}) = (1 - s_{mt}) Z_i x_{mt} - (Z_{-i} - \alpha + \gamma_{-i}) x_{-it},
\]

\[
R^{-i}_m (x_{it}, x_{-it}) = (Z_{-i} - \alpha + \gamma_{-i}) x_{-it},
\]

for the acquirer and target respectively.

Equilibrium Concept. Firm \(i \)’s strategy \(\sigma^i \) maximizes its continuation \(V_i (x_{it}, x_{-it}) \) given its opponent strategy \(\sigma^{-i} \). Formally, it solves (FP) given \(\sigma^{-i} \):

\[
V_i (x_{it}, x_{-it}) = \sup_{\sigma^i} E^i \left(\int_t^\tau e^{-rt} \left(R^I_i (x_{i\tau}, x_{-i\tau}) 1^I_{i\tau} + R^m_i (x_{i\tau}, x_{-i\tau}) 1^m_{i\tau} \right) | x_{it}, x_{-it} \right). \tag{FP}
\]

In (FP), \(\tau \) is the random stopping time. \(1^I_{i\tau} \) is the indicating function of a stand-alone IPO and \(1^m_{i\tau} \) is the indicating function of mergers. \(\sigma^i \) and \(\sigma^{-i} \) together decide the expected probability
of these events and whether the player is an acquirer or a target in acquisitions. A Markov Perfect Bayesian Equilibrium is a pair of \(\left(\sigma^h, \sigma^l \right) \) that solves (FP) for both firms. Investors use Bayes’ rule whenever possible. Off-equilibrium belief is restricted by D1 refinement following Cho and Sobel (1990).

Discussion I now discuss a few assumptions embedded in the model setup. First, the strategies are Markovian. I do not consider a strategy in which today’s action depends on past initiated but failed acquisitions. This is without loss of generality because investors are short-term players who will not observe historical acquisition attempts. Since past offers cannot be verified, restricting Markovian strategies help me rule out cheap-talk equilibria. In reality, most acquisition initiations are private before announcements. Even public companies will only file a proxy statement for their investors once terms are successfully negotiated.

Second, technology is non-transferable through acquisition. Though this is commonly assumed in neoclassical models of M&As, my model can also work with the complementarity assumption in Rhodes-Kropf and Robinson (2008). Especially, a merged firm can have a fixed return \(Z_m \) regardless of the identity of the acquirer. The equilibrium structure will not change because the low type would still reject takeovers when pooling IPO is highly likely. This alternative case is also easier to solve, since the merged firm’s efficiency is not random, which automatically “signals”, and the belief of investors when seeing M&As is degenerate.

Lastly, I assume sequential moves in each stage at time \(t \). This is because a pooling IPO is not sustainable in equilibrium if the IPO stage has simultaneous moves. When the high type expects the low type to go public with non-zero probability, it will always delay by an infinitesimal time. However, in a discrete time model, each stage can be assumed as a simultaneous subgame and pooling IPO is sustainable. The limit of such a model when the time interval goes to 0 matches the current setup. The sequence is not observable to investors. In reality, it is hard to distinguish the initiation time of IPO, which usually starts with negotiating with investment banks. After the JOBS Act, emerging growth companies (companies with less than $1 billion in annual revenue) can hide their prospectus until 15
3. Equilibrium

3.1. Belief

Consider the first case when merger happens. Investors only observe one firm m with size x_{mt}. The probability that the acquirer is firm i follows

$$q_i(x_{mt}) = \int_{x_1 + x_2 = x_{mt}} \sigma^A_{it}(x_1, x_2) \sigma^T_{-it}(x_1, x_2) f^i_t(x_1) f^{-i}_t(x_2) \, dx_1,$$

where f^i_t is the size distribution of firm i at time t, derived from Equation (1). To understand this equation, given that the acquiring firm i has size x_1, the target must have size x_2 equal to $x_{mt} - x_1$. Conditional on the realization of (x_1, x_2), the probability of a successful deal is the probability that firm i will make the offer ($\sigma^A_{it}(x_1, x_2)$) times the probability that firm $-i$ will accept the offer ($\sigma^T_{-it}(x_1, x_2)$). And lastly the expectation is taken over the size distributions. Using Bayes’ rule, the probability that the acquirer is the high type is

$$P^m(x_{mt}) = \frac{q_h(x_{mt})}{q_h(x_{mt}) + q_l(x_{mt})}.$$

Lemma 1 implies I can focus on equilibria in which only firm h acquires. In other words, it is sufficient to consider equilibria with $P^m(x_{mt}) \equiv 1$. The intuition is that given a pair of (x_1, x_2), there exist no equilibria in which both types can be acquirers with non-zero probability. If so, in such a mixed strategy both players must be indifferent between being an acquirer or a target. Otherwise they will only participate the deal that they strictly prefer. However, the high type generates strictly higher synergy than the low type, which means the total profit of players must be different when the identity of acquirer changes. This is contradictory.
Lemma 1. There exist no equilibria in which firm l is acquirer with strictly positive probability, i.e., $q_l(x_{mt}) = 0$ for all x_{mt}.

Proof. All proofs are omitted and shown separately in Appendix C.

The fact that $P^m(x_{mt})$ is a constant function also implies the combined assets size x_{mt} has no impact on investors’ belief. The action of being an acquirer itself is fully informative and makes belief degenerate.

Next we consider the case of pooling IPOs. In this case investors meet both firms and observe their sizes x_{ht} and x_{lt}. Since in equilibrium the low type will adopt a mimicking strategy, $\sigma'_h(x_{ht}, x_{lt}) = \sigma'_l(x_{ht}, x_{lt})$ and thus stand-alone IPO strategies have no impact on belief updating. In fact, asset sizes are the sufficient statistics. Firm i’s probability of being the high type is

$$P^I_i(x_{it}, x_{-it}) = \frac{f^h_l(x_{it})f^l_l(x_{-it})}{f^h_l(x_{it})f^l_l(x_{-it}) + f^h_l(x_{it})f^l_h(x_{-it})},$$

If firm i is the high type, then its assets size follows distribution f^h_l and its opponent $-i$, by exclusivity, must be the low type and therefore follows distribution f^l_l. It is of particular importance to explicitly derive investors’ “mistaken belief”, which is firm l’s log likelihood ratio of being the high type, $\rho_{lt} = \log(\frac{P^I_{lt}}{1-P^I_{lt}})$:

$$\rho_{lt} = \log\left(\frac{f^h_l(x_{lt})f^l_l(x_{ht})}{f^h_l(x_{ht})f^l_l(x_{lt})}\right) = \log\left(\frac{x_{lt}}{x_{ht}}\right)^{\mu_h - \mu_l} \frac{\mu_h - \mu_l}{\sigma^2}. \quad (3)$$
\(\rho_{lt} \) measures how optimistic that the investors are about the low type through observing asset sizes in a pooling IPO. A large value of \(\rho_{lt} \) implies an extremely wrong belief deviating from the truth. By equation (1),

\[
d\rho_{lt} = -\left(\frac{\mu_h - \mu_l}{\sigma^2}\right)dt + \frac{\mu_h - \mu_l}{\sigma}dB_l, \quad \text{where} \quad dB_l = \frac{1}{\sqrt{2}}dB_{lt} - \frac{1}{\sqrt{2}}dB_{ht}.
\]

The mistaken belief is expected to decrease strictly over time. If players are sufficiently patient, asset sizes will truthfully reveal types as \(\lim_{t \to \infty} E(\rho_{lt}) = -\infty \). The first part is \(\log\left(\frac{x_{lt}}{x_{ht}}\right) \).

Intuitively, a larger realized size of the low type will induce a more optimistic belief by investors. The second part measure how precise asset sizes are for discerning companies. Firm \(h \)'s log-likelihood would just be the opposite of \(\rho_{lt} \) and henceforth neglected for saving the notation.\(^{15}\) Initial sizes are \(x_{h0} = x_{l0} = 1 \) so that \(\rho_{lo} = 0 \), which matches the fact that both firms are equally likely to be the high type in prior.

\(\rho_{lt} \) is a key state variable. Because it essentially quantifies the mispricing of shares through Equation (2). Therefore, firm strategies will be naturally impacted by \(\rho_{lt} \). As in common real options model, this is reflected as threshold strategies, which require that \(\sigma^i \) can be determined by verifying whether \(\rho_{lt} \) is above or below certain thresholds. More importantly, since firm returns are linear in its own size and \(\rho_{lt} \) only changes the marginal rate of return, these thresholds must be constant. The equilibrium strategy is stationary in belief and unrelated with the current stand-alone size of firm \(i \). This is summarized in Lemma 2.

Lemma 2 The equilibrium thresholds are constants, independent of \(x_{ht} \) and \(x_{lt} \).

Lastly, I do not need to consider the equilibrium strategy of a single stand-alone IPO.

\(^{14}\)This is because:

\[
\log\left[\frac{f^i_{ht}(x_{lt})f^i_{lt}(x_{ht})}{f^i_{ht}(x_{ht})f^i_{lt}(x_{lt})}\right] = \log\frac{\exp\left(-\left(\frac{\log x_{lt} - (\mu_h - \sigma^2 t)\sigma}{\sigma^2}\right)^2\right)}{\exp\left(-\left(\frac{\log x_{ht} - (\mu_h - \sigma^2 t)\sigma}{\sigma^2}\right)^2\right)} - \frac{(\log x_{ht} - (\mu_l - \sigma^2 t)\sigma)^2}{\sigma^2} = \log\left(\frac{x_{lt}}{x_{ht}}\right)\frac{\mu_h - \mu_l}{\sigma^2}.
\]

\(^{15}\)By addition rule for mutually exclusive events, \(P_{ht}^I + P_{lt}^I = 1 \). Therefore \(\rho_{ht} = \log\left(\frac{P_{ht}^I}{1 - P_{ht}^I}\right) = \log\left(\frac{1 - P_{lt}^I}{P_{lt}^I}\right) = -\rho_{lt} \).
Figure 1: Characterizations of Equilibrium Outcomes in Three Regions

This figure plots the simulated equilibrium solution. Horizontal axis indicates assets size of firm l. Vertical axis indicates assets size of firm h. In top-left shaded area, the high type acquires the low type and goes IPO alone. In bottom-right shaded area, both firms go IPO without acquisition. In light area, both firms delay financial options.

Given that the low type has a dominant strategy of mimicking, there exists no equilibria in which $\sigma^I_h(x_{ht}, x_{lt}) > \sigma^I_l(x_{ht}, x_{lt})$ with positive measures. The flip side also implies the possible stand-alone IPO, which is not followed, is initiated by the low type for certainty. But then investors will offer a fair price, which makes the low type worse-off than just accepting takeover.

To summarize, I can focus on pooling IPOs and mergers. The procedure of solving the equilibrium is as follows. First, I guess that there are two constant thresholds β and η, $\eta > 0 > \beta$ such that if $\rho_{lt} \geq \eta$, both firms go IPO together and pooling IPO happens. If $\rho_{lt} \leq \beta$, the high type acquires the low type. Otherwise both firms delay expansions. Second, I solve this optimal stopping problem of the two firms using Bellman equations and boundary conditions. In this step, I show the existence and uniqueness of such threshold pair (β, η). Lastly, I verify that the guessed strategy is indeed an equilibrium by showing there exists no profitable deviations.
3.2. Two-threshold Equilibrium

Figure 1 illustrates how the constructed two-threshold equilibrium works. The horizontal axis is the size of the low type x_{lt} and the vertical axis is the size of the high type x_{ht}. Recall that ρ_{lt} is a function of $\log\left(\frac{x_{lt}}{x_{ht}}\right)$. Thus a constant ρ-threshold maps to a straight line from the original point. The top-left shaded area maps to the case $\rho_{lt} \leq \beta$. When the more efficient firm has a sufficiently larger size relative to the less efficient one in realization, investors almost perfectly identify the true types correctly. The low type has no incentives to wait as the overpricing in pooling IPOs is low. So it accepts the takeover offer from firm h. On the contrary, $\rho_{lt} \geq \eta$ happens in the bottom-right area. Firm l has good luck with large realized assets size and investors mistakenly hold an optimistic belief about the truly less efficient firm. If so, the high type will file for IPO, knowing that it would be mimicked by the low type and suffer underpricing in pooling IPO. In the light area between them, belief is in the intermediate region so both types postpone exercising the option.

Given the equilibrium strategy, the next step is to quantify firm returns in different ending outcomes. The payoffs when firm h makes acquisitions are

$$R_h^m(x_{ht}, x_{lt}) = (H - \alpha) x_{ht} + (H - L - \gamma_l) x_{lt},$$

$$R_l^m(x_{ht}, x_{lt}) = (L - \alpha + \gamma_l) x_{lt}.$$

M&A is a “winning” scenario for the high type. By acquisition, it successfully signals its better quality to investors and receives a fair offer price. Besides, when the reservation value of low type is small, it enjoys additional net synergy through expanding larger total assets. The low type receives a fixed positive wedge above its NPV. However, this payoff may be
smaller than being overpriced by optimistic investors. The payoffs in a pooling IPO are

\[R^I_h(x_{ht}, x_{lu}) = \left(H - \alpha - \frac{\alpha (H - L)}{H + L} \exp(\rho_l) \right) x_{ht} \]

\[R^I_l(x_{ht}, x_{lt}) = \left(L - \alpha + \frac{\alpha (H - L)}{H \exp(\rho_l) + L} \right) x_{lt}. \]

The pooling payoff consists of two parts. The first part is the NPV of expansion and the second part is the discount or premium due to mispricing. As common, the high type is priced at a discount and thus its total payoff is lower than NPV. The low type benefits and earns additional premium. Therefore pooling IPO is a “winning” scenario for the low type.

3.3. Value Function

This section shows the existence and uniqueness of \((\eta, \beta)\). The beginning step is to lay out the Bellman equation of \(V_i(x_{it}, x_{-it})\) and pin down the endogenous thresholds with boundary conditions. The technical difficulty is that first \(V_i\) has two state variables and it requires solving a partial differential equation (PDE). Second, the threshold is characterized by belief \(\rho_l\) but \(V_i\) is a function of asset sizes. Thus the smooth pasting conditions are not clear.

However, the linearity of model setup generates great tractability, which implies \(V_i\) is homogeneous of degree one in its own assets size \(x_{it}\). Therefore the value function satisfies \(V_i(x_{it}, x_{-it}) = x_{it} V_i(1, x_{-it}/x_{it})\). Since \(\rho_l\) is a function of \(\log(x_{lt}/x_{ht})\), \(V_i(1, x_{-lt}/x_{lt})\) is essentially a function of belief and denote it as \(J_i(\rho_l)\). \(J_i(\rho_l) = V_i/x_{it}\) has concrete meanings in corporate finance. Recall that \(V_i(x_{it}, x_{-it})\) is the valuation of firm \(i\) before IPO. When \(x_{it}\) is referred as assets size, \(J_i\) mirrors the market-to-book ratio for public companies. Alternatively, when \(x_{it}\) is referred as total sales, then \(J_i\) mirrors the price-to-sales ratio for public companies. Both ratios are commonly used for valuing stocks and IPOs.

Since \(V_i(x_{it}, x_{-it}) = x_{it} J_i(\rho_l)\), I can now generate the smooth pasting conditions through partial derivatives \(\partial V_i/\partial \rho_l\). I omit the Bellman equations of \(V_i\) and show them in (B.1) and (B.2) at Appendix B. While these equations are tedious and intensive in algebra, the
sources of waiting value can be divided into three parts. The first part is a size effect. Since the ending payoffs are linear in firm sizes, increasing x_{it} will provide larger benefit in both exit scenarios. The second part is belief effect. Fluctuations of ρ_{lt} affect underpricing and overpricing in pooling IPO. Besides if belief ρ_{lt} is close to thresholds (η, β), the probability that the game ends will increase. The last source is the cross effect between size and belief. A larger realized size x_{it} will induce a more optimistic belief by investors on firm i. Then it becomes more likely to realize its winning scenario.

The ending scenarios generate four value matching conditions by equations (B.3) to (B.6). There are two smooth pasting conditions representing the optimality of thresholds. It is important to distinguish the “decision maker” in different cases. First consider the pooling IPO case. If firm h moves first, it must be indifferent between waiting and initiating for IPO, knowing that it would be followed by the low type. Firm l has a dominant strategy by mimicking and therefore has no indifferent conditions binding at this case. Thus the “decision maker” in pooling IPO is the high type. Second, the low type optimally chooses to accept the offer when the high type acquires, at the cost of giving up potential pooling opportunities. Acquisition is a winning scenario for the high type since its true quality is perfectly revealed. Therefore making an acquisition offer is its dominant strategy. By applying the first order condition for the respective decision makers, the two smooth pasting conditions follow as equations (B.7) and (B.8).

The next step is to characterize the thresholds with functions J_i. The problem reduces to solving a second-order ordinary differential equation system for $J_h(\rho_{lt})$ and $J_l(\rho_{lt})$:

\[
(\mu_h - r) J_h(\rho_{lt}) - \left(\frac{\mu_h - \mu_l}{2} + \frac{(\mu_h - \mu_l)^2}{\sigma^2} \right) J'_h(\rho_{lt}) + \frac{1}{2} \frac{(\mu_h - \mu_l)^2}{\sigma^2} J''_h(\rho_{lt}) = 0 \\
(\mu_l - r) J_l(\rho_{lt}) - \left(-\frac{\mu_h - \mu_l}{2} + \frac{(\mu_h - \mu_l)^2}{\sigma^2} \right) J'_l(\rho_{lt}) + \frac{1}{2} \frac{(\mu_h - \mu_l)^2}{\sigma^2} J''_l(\rho_{lt}) = 0
\]

It is straightforward to show $J_h(\rho_{lt}) = C_{1h} \exp(\theta_{1h} \rho_{lt}) + C_{2h} \exp(\theta_{2h} \rho_{lt})$ and $J_l(\rho_{lt}) = C_{1l} \exp(\theta_{1l} \rho_{lt}) + C_{2l} \exp(\theta_{2l} \rho_{lt})$. θ_{ij}s are known constants as the roots of the characteristic
functions in equations (4) and (5). The four constants C_{ij}s are the coefficients that will be pinned down together with the two free-boundaries η and β by the six boundary conditions.

The following assumptions are sufficient conditions for characterizing the solution as a two threshold equilibrium. Assumption 2 is a single-crossing condition. Both
\[
\frac{L - \alpha + \frac{a(L - L)}{H - L}}{L - \alpha + \gamma} \quad \text{and} \quad \frac{H - \alpha + H - L - \gamma}{H - \alpha - \frac{a(H - L)}{H + L}}
\]
represent the ratio of player’s winning payoff to its losing one if h’s stopping strategy is $\eta \to 0$\(^\text{16}\). The assumption guarantees that l is sufficiently more resistant in waiting than h at the extreme case $\eta \to 0$. Without this assumption, the solved thresholds can possibly be degenerate as acquisition always happens right away. Assumption 2 restricts the learning precision to be smaller than 1, meaning that investors belief is slowly moving. This is a sufficient condition for monotonicity in proof.

Assumption 1
\[
\frac{L - \alpha + \frac{a(L - L)}{H - L}}{L - \alpha + \gamma} \gg \frac{H - \alpha + H - L - \gamma}{H - \alpha - \frac{a(H - L)}{H + L}} > 1.
\]

Assumption 2
\[
k = \left(\frac{\mu_h - \mu_l}{\sigma^2}\right)^{-1} > 1
\]

3.4. Existence and Uniqueness

Figure 2 illustrates the main idea of the two-threshold strategy. In both figures, the horizontal axis is the mistaken belief ρ_t and the vertical axis is payoff value. The dashed lines plot the payoffs if firm h acquires. The dotted lines plot the payoffs if both firms go public. The solid lines plot the waiting value J_i. The left picture represents the payoffs of the high type. The right picture represents the payoffs of the low type. For both players, their waiting value is lower than the payoff in their preferred scenarios. Besides, there is a “war” between players. The scenario that makes one player strictly better than waiting must simultaneously make the other strictly worse off. A player cannot realize its winning outcome unless its opponent becomes indifferent between giving up for the lower payoff or waiting. This happens only if belief becomes extremely unfavorable.

\(^{16}\)The boundary value 0 is mechanically selected as initial belief at $t = 0$ is $\rho_l = 0$. Technically a negative threshold η can exist with other assumptions. But then initial condition must be adjusted. Otherwise the game ends into pooling IPO immediately at $t = 0$.

19
Consider acquisitions first. Suppose the high type wants to acquire the low type before ρ_{lt} falls below β, firm l finds it optimal to wait because its continuation value is higher than the payoff of being acquired. In this case the low type will reject. The waiting value for firm l is strictly reducing as ρ_{lt} decreases, the case when investors become more pessimistic about the low type. This is because the belief is farther away from the threshold that triggers pooling, meaning the chances that the low type could deceive investors reduces. At the point when ρ_{lt} is equal to β, the discounted payoff of waiting for pooling equals to the current acquisition offer. As now firm l becomes indifferent, it accepts acquisition by firm h.

The logic of pooling IPO follows similarly. Before belief ρ_{lt} crosses η, high type’s waiting value is strictly higher than its payoff in pooling IPO. Thus it has no incentive to go standalone IPO first and let the low type imitate. So why does h becomes indifferent at η? At any moment firm h is balancing between two types of costs. At one hand, it could always go public without acquisition and suffer a short-term underpricing cost in pooling. At the other hand, it could choose to wait the mistaken belief to adjust. This will take additional time and waiting generates delaying cost. If the current belief is extremely mistaken and far away from β, adjustment takes so long that cost in postponing expansion outweighs the cost.
of underpricing. This explains why the high type will give up if ρ_{lt} is greater or equal to η. Theorem 3 lays out the uniqueness and existence of (β, η).

Theorem 3 There exists a unique pair of $\eta > 0 > \beta$ that solves the optimal stopping problem. Define $P = \{(x_{ht}, x_{lt}) | \rho_{lt} \geq \eta\}$ and $M = \{(x_{ht}, x_{lt}) | \rho_{lt} \leq \beta\}$. Firm strategies are as follows:

(i) When $\rho_{lt} \leq \beta$, the high type acquires the low type: If $(x_{ht}, x_{lt}) \in M$, $\sigma^{A}_{ht}(x_{ht}, x_{lt}) = \sigma^{T}_{lt}(x_{ht}, x_{lt}) = 1$. Otherwise $\sigma^{A}_{ht}(x_{ht}, x_{lt}) = \sigma^{T}_{lt}(x_{ht}, x_{lt}) = 0$.

(ii) When $\rho_{lt} \geq \eta$, both firms go public: If $(x_{ht}, x_{lt}) \in P$, $\sigma^{I}_{ht}(x_{ht}, x_{lt}) = \sigma^{I}_{lt}(x_{ht}, x_{lt}) = 1$. Otherwise $\sigma^{I}_{ht}(x_{ht}, x_{lt}) = \sigma^{I}_{lt}(x_{ht}, x_{lt}) = 0$.

(iii) When $\beta < \rho_{lt} < \eta$, both firms delay: For all (x_{ht}, x_{lt}), $\sigma^{A}_{lt}(x_{ht}, x_{lt}) = \sigma^{T}_{ht}(x_{ht}, x_{lt}) = 0$.

The strategies in Theorem 3 are essentially unique. First, at boundaries of P and M, players are indifferent between waiting and stopping. Therefore, there also exists a continuum of mixed strategies that generate the same level of payoffs for the decision-making type but strictly lower payoffs for the other type at the boundary. However, firms payoffs differ from the strategies in Theorem 3 with zero measure. Second, when acquisition happens with zero conditional probability, it is sufficient to have one type’s strategy stops the deal from happening. For example, the high type could also adopt a strategy with always bidding, $\sigma^{A}_{ht}(x_{ht}, x_{lt}) \equiv 1$. But the low type will reject optimally so these strategies will also not impact the equilibrium payoffs.

To show this is an equilibrium, it remains to verify that no firms will deviate. At boundaries, the decision-making type is indifferent by smooth pasting conditions and the other type’s optimality follows by dominance. Thus it only requires to verify that there is no deviation inside boundaries.

First, in the IPO stage, no firm will deviate for stand-alone IPO alone when $\rho_{lt} \in (\beta, \eta)$. The reason is that conditional on observing a stand-alone single IPO, the refined off-equilibrium belief under D1 is such deviating firm is the low type for certainty. D1 requires that after
a single IPO if there are more actions of investors that improve the equilibrium utility of type t' compared to t, then investors should believe they are facing type t' for certainty. In this model, an action of investor is an equity contract with different share price. This can be pinned down by a pseudo belief $\tilde{\rho}$ as there is a one-to-one mapping function from belief to share price. Suppose the current belief is $\rho' \in (\beta, \eta)$. As shown in Figure 2, firm h’s equilibrium waiting value is higher than the IPO offer defined with ρ' (dotted line). In other words, the lowest acceptable offer for it to deviate is pinned down by $\tilde{\rho}_h > \rho'$. On the contrary firm l’s continuation value is strictly smaller than current IPO offer and therefore the lowest deviating offer has a belief $\tilde{\rho}_l < \rho'$. This implies the offers, i.e. actions, that improve the high type’s equilibrium payoff is a strict subset of those improving the low type’s. Since the latter benefits more in this sense by such a deviation, investors will believe the deviating firm is the low type for sure.

Second, firm l could not benefit by deviating as an acquirer. The gross profit after firm l deviates is $(L - \alpha L/H)(x_{ht} + x_{lt})$. This is because investors regard the acquirer as a high type with probability one and therefore the effective marginal cost reduces to L/H. A deviation is possible only if (i) firm l transfers sufficient payment to cover firm h’s continuation value in the original equilibrium and (ii) the net profit for firm l after transfer payment is higher than its waiting value in equilibrium. In the proof of Theorem 4, I show that the gross profit is smaller than the total continuation payoffs:

$$V_h(x_{ht}, \rho_{lt}) + V_l(x_{lt}, \rho_{lt}) > \left(L - \alpha \frac{L}{H} \right) (x_{ht} + x_{lt}).$$

This implies it is impossible to find a transfer payment that satisfies both (i) and (ii) at the same time. The economics behind is that in expectation ρ_{lt} drifts down strictly. Thus the exogenous learning process works towards the acquisition outcome and this is in favor of the high type. In other words, the high type has a strong motive to wait and $V_h(x_{ht}, \rho_{lt})$ is too large. Persuading firm h into deviation is so costly that the left profit is insufficient to
motivate firm l's deviation.

Theorem 4 The strategies characterized in Theorem 3 is a Markov Perfect Bayesian Equilibrium.

Theorem 4 implies that acquisition is a good signal of company quality in IPO. It is a selection process that only keeps the high type afterwards. On the contrary, when pooling IPO happens, both firms are not acquiring and appear indistinguishable. In this case both the high and low types are mixing in the composition of IPOs. The average quality of non-acquiring IPOs is strictly lower than the acquiring ones. There are two testable implications of the model. First, conditional on observing private acquisitions, investors should be more confident and offer better share price. This reduces IPO underpricing. Second, acquiring IPOs should have better long-run performance since they are all high types. The average performance of non-acquiring IPOs is decreased by the existence of low types.

My result emphasizes on connecting the underlying quality of firms with their acquisition roles. M&A happens when high type’s assets size is sufficiently larger than the low type’s. This sounds like a trivial story as we share the common prior that large firms acquire smaller ones. But the emphasis goes beyond this observation. In fact, M&A deals will not happen if on the contrary low type has sufficiently large size. Instead both types would file for IPO. “Big-acquirer” and “small-target” situation superficially coincides with the timing that the low type finds resistance unprofitable.

A sideline implication is that valuation of a single startup alone does not fully determine the timing of IPO. ρ_{lt} is a function of assets size ratios. Recently many startups with gigantic market valuations keep postponing their IPO timelines. The model argues that this is because these hefty valuations must be adjusted relatively to industry benchmarks. Investors are confident about a company’s future growth only if it outperforms its competitors by a large degree. Today our economy has almost 400 unicorns17, which implicitly raises the bar of

17The number was documented when the draft was written at August 2019. See the updated full list of
valuation. Because these startups are hard to be differentiated from each other, they end up in the zone like $\rho_l \in (\beta, \eta)$.

3.5. First Best Comparison

It is important to compare with the first-best solution. Without information asymmetry, investors observe the types of both firms. So if firm l goes public in a stand-alone IPO, its payoff will be the net benefit in expansion, $(L - \alpha)x_{lt}$. This is strictly lower than the acquisition offer $(L - \alpha + \gamma_l)x_{lt}$. As a result, the low type will only exit in takeover by the high type. Thus, this game becomes a standard real options model in which firm h decides when to acquire.

While h is balancing between waiting or making an acquisition offer right away, ρ_{lt} is surprisingly still a relevant state variable. However, it now purely quantifies the ratio of asset sizes, which in turn affects firm h’s acquisition payoff because larger x_{lt} generates larger synergy. The question is whether h will delay its acquisition as in the two-threshold equilibrium. The following proposition shows that, information asymmetry is the only reason that deters efficiency reallocation.

Proposition 5 *(No Delay)* In the first-best solution, the high type will acquire the low type at the beginning of the game.

This is because adverse selection in IPO markets creates an outside option for firm l as pooling becomes possible. The resistance of the low type generates a waiting zone. On the contrary, when there is no information asymmetry, firm l will accept the acquisition offer regardlessly. In this case, firm h would delay only if waiting expects to generate larger synergy. In other words, firm h would prefer a relatively larger size of firm l. However at any moment it waits, in expectation the synergy would decrease as the size ratio has a negative drift. Thus, it prefers to exercise acquisition immediately. This difference highlights the startups valued at one billion or more: https://www.cbinsights.com/research-unicorn-companies
fundamental influence from adverse selection in the second-best case.

4. Extensions

4.1. Endogenous Growth Rate

In the baseline model, the growth rates of firms are exogenously fixed. Suppose now at $t = 0^-$ (before the assets start to grow), both firms can make an one-time investment and increase the growth rate μ_i in a simultaneous subgame. In this section, I show that making those investments will hurt individual firm itself. The result serves as a caveat for startups and their sponsoring VCs. It is a fallacy that speeding up growth by high burning rate will facilitate IPOs and receive better deals in exits.

The reason is that investors are rational and would adjust their belief process accordingly. In the model, growth rates chosen by firms are perfectly observed by the investors. Similarly, lavish burning rates and exorbitant investment speeds are observed and taken into account in reality. Investors would reasonably doubt that the current solid assets size is driven by capital injections rather than underlying quality. Then investors will update belief more conservatively given the same realization of sizes.

To see it in the model, recall that the belief process follows $d\rho_t = -\frac{(\mu_h - \mu_l)^2}{\sigma^2}dt + \frac{\mu_h - \mu_l}{\sigma}dB_t$. Imagine that firm h increases its growth rate μ_h. This generates two effects on the belief process. First, the absolute value of drift increases (drift effect). This implies that in expectation, mistaken beliefs are corrected at a faster speed. Second, the volatility of belief is also increased (volatility effect). This implies the belief fluctuates at a larger degree. The effect of increasing μ_l is just the opposite.

Decreasing the mistaken belief ρ_{lt} at a faster speed will make firm l’s resistance less valuable. Oppositely, as the volatility rises, firm l benefits in waiting in the sense of an option value. At any moment, the mistaken belief could bounce up by a larger degree, which
legitimizes rejecting acquisition. Therefore when μ_h increases, firm h benefits from the drift effect and but suffers from the volatility effect. The high type must judge whether the drift dominates the volatility effect. The problem for for l is similar. A larger μ_l decreases the drift (beneficial for firm l) and volatility (costly for firm l) simultaneously.

Proposition 6
(i) The two thresholds shift downward simultaneously as μ_h increases, i.e.,
\[
d\eta/d\mu_h, d\beta/d\mu_h < 0. \text{ As a result, firm } h \text{ is worse off initially, } \partial V_h(x_{h0}, x_{l0})/\partial \mu_h < 0.
\]

(ii) The two thresholds shift upward simultaneously as μ_l increases, i.e., $d\eta/d\mu_h, d\beta/d\mu_h > 0$.
As a result, firm l is worse off initially, $\partial V_l(x_{h0}, x_{l0})/\partial \mu_l < 0$.

The first statement indicates that as μ_h increases, the threshold for pooling IPO, η, is closer to the initial belief but the threshold for acquisition, β, is further. This indicates the game is more likely to end in the pooling IPO case. Therefore the expected payoff for firm h is lower. The second statement implies that as μ_l grows, changes in the thresholds are in the opposite direction. Thus firm l is more likely to be acquired. Even though both startups have the opportunities to boost their growth rates, they should choose to forsake the increments.

The volatility effect always dominates the drift effect. This can be illustrated by investigating firm l’s decision at the boundary β. By equation (5), l’s waiting value can be decomposed by the drift component related with $J_l'(\rho_{lt})$ and volatility component $J_l''(\rho_{lt})$. The smooth pasting condition indicates $J_l'(\beta)$ is 0. In other words, drift effect is minimal at the timing when the low type chooses to accept acquisition offer. The waiting value is solely determined by $J_l''(\beta)$. If the volatility of belief is larger, firm l’s waiting value increases and becomes greater than its payoff as being acquired. Thus, it would choose to accept the takeover later, which explains why $d\beta/d\mu_h < 0$.

Notice the decision of firm h and l are mutually influenced. When firm l postpones its decision in accepting takeover, firm h is anywhere worse off while waiting. It will take longer for acquisition to happen. This suggests the new waiting value for firm h decreases and is
strictly smaller than the payoff of pooling IPO at original η. Firm h would have been better off if he went public earlier than η, which explains why $d\beta/d\mu_h < 0$.

One related question is about increasing growth rates of the industry as a whole. There are anecdotal evidence that recently all startups are inclined to premature scaling, which soon exhausts the innovation ability and burns the cash flow at an unsustainable speed.18 The previous result highlights that individually scaling up too quickly is detrimental to startups. Here a step further is taken by assuming that both firm h and l simultaneously increase their growth rates while keeping the wedge $\mu_h - \mu_l$ fixed. This mirrors the cash burning race where both firms are taking actions to enlarge their sizes, such as advertisements and price wars. Which type of firm benefits from such growth fights? How the social welfare changes in response?

Proposition 7 Suppose $\mu_h = \mu_l + \delta$. Fixing δ and increasing μ_h and μ_l by the same degree will lower both η and β. The game ends more likely in the pooling IPO case.

The consequence of growth fights is that the threshold for pooling IPO η is closer initially but the threshold for acquisition β is further. Therefore, pooling IPO is more likely to happen after both growth rates are increased. Efficient reallocation is blocked and this is a deadweight loss in social welfare. This analysis suggests that investment arms race will in the end let more poor startups become public. The funds are misallocated from the good companies to the bad ones.

If the wedge is fixed, increases in growth rates will not affect learning by investors. Therefore in Daley and Green (2012), such an increase will not affect equilibrium thresholds. This model is different. In equation (4) and (5), the effective discount rates are $r - \mu_h$ for firm h and $r - \mu_l$ for firm l. This is because as company grows, they gain in additional waiting value J_i at rate of μ_i (size effect), which offsets discounting. Due to the fact that firm l is

18https://www.forbes.com/sites/nathanfurr/2011/09/02/1-cause-of-startup-death-premature-scaling/#571e23571f9
expected to wait longer for winning in equilibrium, the low type benefits relatively more with lower effective discount rates.

4.2. Market Volatility

Startups in an emerging industry often face huge uncertainty associated with growth. In the model, this is reflected by more volatile assets size and larger σ^2. How will startups response if the uncertainty increases? Increased market volatility has mathematically the same effect as reducing the wedge between $\mu_h - \mu_l$. Size difference becomes a less precise signal and investors tend to be more conservative in updating their belief.

Just as Section 4.1 shows, lowering the drift value benefits firm l but hurts firm h. Yet reduced volatility of belief makes firm l more likely to accept the offer. As shown before, the volatility effect dominates the drift effect. Thus as firm size becomes more volatile, firm l is worse off as the acquisition threshold is closer to the initial belief but pooling IPO threshold is further.

Proposition 8 The two thresholds shift upward simultaneously as σ increases, i.e., $d\eta/d\sigma^2$, $d\beta/d\sigma^2 > 0$. Acquisition becomes more likely. As a result, ex ante firm h is better off while firm l is worse off, $\partial V_h(x_{l0}, \rho_{l0})/\partial \sigma^2 > 0$ and $\partial V_l(x_{l0}, \rho_{l0})/\partial \sigma^2 < 0$.

It may seem surprising that the high type is better off when the exogenous learning channel becomes less precise. However, in the model there are two groups of asset takers, the passive uninformed buyers and the (possible) acquirer firm h. As firm h perfectly knows the type of firm l, it is not affected by the reduced precision of signals. In other words, increased volatility actually increases the information advantage by firm h to IPO investors. What indeed happens is a shift of trading opportunity from the uninformed buyers to informed buyers. With increased information asymmetry, IPO investors would rationally trade less aggressively. This makes firm l’s outside option decreases in value. So now the high type can take over the low type more easily.
Figure 3: The Effect of Increased Volatility

This figure plots the simulated value functions J_i before and after σ^2 increases. Left figure plots for h and right figure plots for l. Dashed lines are payoffs when h acquires l and dotted lines are payoffs in pooling IPO. Solid line are equilibrium waiting functions before increase. Dash-dot lines are equilibrium waiting functions after increase.

The proposition states that when investors are less informative about startup quality, it is less likely that the game ends in a pooling IPO wave. Empirically this corresponds to a decrease in number of IPOs at time when information asymmetry is huge, consistent with findings in Lowry (2003).

4.3. Nash Bargaining

In this section I endogenize the acquisition offer in a Nash Bargaining way. The total surplus to divide is $(H - \alpha) (x_{ht} + x_{lt})$ when firm h acquires. The threat that both players can make is to go a stand-alone IPO while being regarded as the low type. Thus the disagreement payoff is $(H - \alpha H/L) x_{ht}$ for firm h and $(L - \alpha) x_{lt}$ for firm l. Notice firm h suffers maximal underpricing cost below its NPV. Denote Δ as the markup that firm l gets after bargaining, which is determined through

$$\max_{\Delta} \Delta^{1-\xi} \left((H - \alpha) (x_{ht} + x_{lt}) - \Delta - (L - \alpha) x_{lt} - \left(H - \frac{H}{L} \alpha\right) x_{ht} \right)^\xi$$

$$= \max_{\Delta} \Delta^{1-\xi} \left((H - L) x_{lt} + \frac{H}{L} - x_{ht} - \Delta \right)^\xi. \quad (6)$$
\(\xi \geq 0 \) is the bargaining power of \(h \). The Nash Bargaining solution \(\Delta^* \) that solves equation (6) is
\[
(1 - \xi) \left((H - L) x_{lt} + \alpha \frac{H - L}{L} x_{ht} \right).
\]
First, players share the synergy created by letting \(h \) expand. Second, \(l \) is in stronger position to bargain as it suffers no informational cost from its NPV when making a threat. Unlike the baseline model, the fact that firm \(h \) will suffer from underpricing now endogenously transfers into the acquisition offer. The net payoffs for firms are
\[
R_{h}^{NB}(x_{ht}, x_{lt}) = \left(H - \alpha - (1 - \xi) \alpha \frac{H - L}{L} \right) x_{ht} + \xi (H - L) x_{lt}, \quad (7)
\]
\[
R_{l}^{NB}(x_{ht}, x_{lt}) = (L - \alpha + (1 - \xi) (H - L)) x_{lt} + (1 - \xi) \alpha \frac{H - L}{L} x_{ht}. \quad (8)
\]
In equation (7), the high type still suffers from “underpricing cost” due to the stronger threats of the low type. Firm \(h \) is balancing this cost with the distributed synergy \(\xi (H - L) x_{lt} \). Its willingness to acquire depends on its bargaining power. At the extreme case when \(\xi = 0 \), firm \(h \) earns no synergy and suffers an extreme underpricing cost as if it is regarded as the low type for sure. Therefore it will never initiate a takeover on firm \(l \). In effect, when firm \(h \) has a small bargaining power, the only possible equilibrium outcome is pooling IPO. The high type optimally chooses stopping time \(\tau \) to go public first and let the low type mimic.

Theorem 9 There exists \(\xi \) such that if \(\xi \leq \xi_2 \), firm \(h \) never acquires and goes for stand-alone IPO when it moves first with belief \(\rho_{lt} \leq \eta_{NB} \leq 0 \). Then firm \(l \) imitates firm \(h \)’s IPO. This is a one-threshold equilibrium that only pooling IPO happens.

Intuitively, acquisition becomes too costly when firm \(l \) has huge bargaining power. Though firm \(h \) can perfectly signal itself, the value left on the table is even smaller than the net profit in pooling IPO. On the contrary, when the high type dominates the negotiation and successfully restricts the markup that low type receives, the equilibrium strategies in the baseline model still holds.\(^{19}\)

\(^{19}\)The requirement \(\frac{L - \alpha + \tilde{g}(1)}{L - \alpha} \gg \frac{H - \alpha + H - L}{H - \alpha + f(1)} \) follows the same as Assumption 2 to rule out acquisition
Theorem 10: There exists \(\tilde{\xi} \) such that if \(\xi \geq \tilde{\xi} \) and \(\frac{L-\alpha+g(1)}{L-\alpha} \gg \frac{H-\alpha+H-L}{H-\alpha-f(t)} \), the two-threshold equilibrium with a unique pair \(\eta > 0 > \beta \) exists. Firm strategies are defined in the same way as Theorem 3.

5. Empirical Implications

In this section I test the empirical implications of baseline model. Section 5.1 explains the construction of sample and discusses model implications in line with existing literature. Section 5.2 tests that IPOs with private acquisitions have lower first day return and Section 5.3 shows they also have better long run performance. Section 5.4 simulates a marketing timing framework where investors are fully rational.

5.1. Data

The stock issuance data are from SDC Platinum database. Following previous literature, I exclude ADRs, closed-end funds, REITs, financial companies (SIC code 6000—6799), firms not covered by CRSP within six months of offering and IPOs with offer price below $5.00 per share. I collect data on offer price, proceeds, total assets before issuance, number of bookrunners and whether company is backed by venture capitalists.
Figure 4: Acquisitions Categorized by Private Acquirers and Industry Description

Data source is Thomson Reuters SDC Mergers and Acquisitions. All deals are selected if target company is private and belongs to high tech industry following definition of Loughran and Ritter (2004). In Panel (a), deals are categorized by whether acquirer company is public or private. In Panel (b), all deals with private acquirers are categorized by whether involved companies operate in the same industry. Industry definition follows SDC’s mid-level industry definition.

Private M&A data are from SDC Merger and Acquisition database, covering deals from 2000—2017. Following Netter et al. (2011), I focus on U.S. acquirers and require the acquirer owned less than 50% of the target prior to the purchase and acquired 50% or more of the target. Acquirers not on CRSP are defined as private and those on CRSP are public. There are substantial amount of acquisitions made by private companies. For example, Figure 4 plots the yearly distribution of acquisitions of private targets in high tech industries categorized by whether the acquirer is public. The portion of private acquisition is trending up in recent years. The average portion of private acquirers is 50.50%, which is comparable to both Maksimovic et al. (2013) and Netter et al. (2011).20 Among these private deals, around one-third of them happens where the involved companies were competitors in the same industry. Given the M&A sample, I select IPO sample period to be from 2004 to 2017 because companies that went public during 2000 to 2003 might have M&A deals before 2000 but are not covered. In total I have 1,537 IPOs.

20Maksimovic et al. (2013) shows 42% of asset buyers are public in a sample of U.S. manufacturing firms over the 1977 to 2004 period. Netter et al. (2011) shows only 52% of the U.S. acquirers has CRSP price data with sample of completed mergers and acquisitions announced between 1992 and 2009.
The next step is to merge IPO data with M&A deals. Though both SDC Platinum and SDC Merger and Acquisition provide CUSIP for issuers and acquirers, I cannot directly use it as the identifiers. This is because both CUSIP and company name documented in Merger and Acquisition database are historical upon the deal time. It is very likely that by the IPO time, the company was assigned a new CUSIP and possibly changed its firm name. For example, Snap Inc has CUSIP id “83304A” in issuance database whereas it has the following name and CUSIP combinations in M&A deals: “Snapchat Inc, 7A2488”, “Snap Inc, 7A2488”, “Snap Inc, 83304A”, “Snap Inc, 9E4450”.

I take the following procedures to potentially match cases such as “Snapchat Inc, 7A2488” to “Snap Inc, 83304A”. First I standardize both issuer’s and acquirer’s company name using NBER Patent Data Project’s file. Then I put each standardized company name in a separate name set NS_j indexed by new “key” j and assign this key backwards to each firm. To illustrate, suppose now “Snap” is indexed by key “1” ($NS_1 = \{ \text{Snap} \}$) and “Snapchat” is indexed by “2” ($NS_2 = \{ \text{Snapchat} \}$). Secondly, for each key j, I document all CUSIPs belonged to j in a temporary set C_j. Using the previous example, this generates $C_1 = \{ 83304A, 7A2488, 9E4450 \}$ and $C_2 = \{ 7A2488 \}$. Thirdly, I update j in the following way. For any pair (j, j') such that $C_j \cap C_{j'} \neq \emptyset$ and $j' > j$, update NS_j to $NS_j \cup NS_{j'}$ and update all companies with key j' to key j. In other words, the higher key is dropped. In Snap Inc’s example, both C_1 and C_2 contain “7A2488”. All “Snapchat” companies will change their key to 1 and now $NS_1 = \{ \text{Snap, Snapchat} \}$. Lastly I repeat the second and third steps until no keys are dropped. In each loop, C_j are recreated based on updated keys from previous step. The initial standardization step is very important so I manually verify it.

Issuers and acquirers are matched based on the final converged key. I drop all acquisitions if either acquirer has a public company status or the deal announcement date is weakly later than the issuance date.21 Lastly, a deal is defined as competitor M&A if the acquirer and target operate in the same industry according to SDC’s mid-level industry description.

21I drop acquisition deals that happen on the IPO issue date to distinguish from rollup IPOs.
Figure 5 plots number of IPOs in different categories. In general there are more IPOs without private M&As. The ratio between acquiring IPOs to non-acquiring is approximately from 1:1 to 1:2. The number of acquiring IPOs is quite stable, around 50 per year, except the recent depression in 2008 and 2009. In each year, more than half of the acquiring IPOs have made acquisitions on their competitors in the same industry.

Before I move to the empirical tests, I discuss two implications of the model related with private acquisition patterns. First, the volume of IPOs without acquisitions fluctuates dramatically and is highly procyclical. For example, its correlation with consumer sentiment is huge. Acquiring IPOs are smoother. This is consistent with the fact that private acquisitions respond less business cycles and less wavelike. In fact, my model predicts less private acquisitions in booming periods. This is because the less efficient firms are more likely to have
optimistic beliefs then. First, when the economy growth is strong, startups can ride the tide with aggregate positive shocks so their financial performance is usually good. Second, investors have more confidence in future growth and are optimistic about new technologies. Optimistic beliefs drive up the waiting value of bad companies since they believe IPOs opportunities are near future. This forces the more efficient firms to withdraw their acquisition offer. In the end, we observe less private acquisitions and more non-acquiring IPOs.

The second implication is that due to information imperfections, efficient reallocations are blocked. Therefore, a firm with higher productivity may not be able to acquire the less efficient companies due to the existence of pooling IPOs. Recall that Proposition 5 implies the high type will acquire with probability one in the first-best case. In other words, firm-level productivity is a more powerful predictor of acquisition with perfect information. Compared to private companies, public firms have more obligations in disclosure and therefore have less information asymmetry. This is why in Maksimovic et al. (2013), the estimated marginal effect of productivity is 10 times larger in assets purchase decisions for public firms, compared to private companies.

5.2. IPO Underpricing

The main implication of the model is that private acquisitions send positive signals to investors and therefore the high type is fairly priced. If so, we should observe that IPOs with acquisitions have higher offer price and less underpricing. To test this hypothesis, I calculate the first-day returns using company’s closing price in the first trading day. Besides univariate comparison, I also estimate the following linear multivariate regression model:

\[
Firstret_{i,t} = \beta MA + \gamma Controls + \eta_t + \mu_j + \epsilon_{i,t} \tag{9}
\]

In Equation (9), \(Firstret_{i,t}\) is the first-day return of IPO \(i\) at issuing year \(t\). \(MA\) is an indicating dummy, equal 1 if \(i\) has made private acquisitions before IPO and 0 otherwise. Alternatively, I replace \(MA\) with \(MA^{comp}\), a dummy variable indicating whether \(i\) has acquired
a competitor before IPO. I include two types of specifications to show that the result is insensitive to the definition of competitors. In SDC, mid-level industry is classified into 85 markets such as E-commerce/B2B, Internet Software & Services and Software. These markets might be too broad or too granular in different cases, which makes MA^{comp} a noisy measure of competitor acquisition. On the contrary, the specification with MA provides a conservative estimates that are biased downwards by all non-competing acquisitions.

Following literature I include a few control variables. $ln(1 + TA)$ is logarithm of one plus total assets of IPO company before issuance. $ln(1 + age)$ is logarithm of one plus company age, defined as the years between IPO year and founding year. VC is an indicating dummy that takes 1 if company is VC-funded. $Hightech$ indicates whether the company belongs to high tech industry following Loughran and Ritter (2004). $Bookrunners$ is the number of lead managers. $Nasdaq$ indicates whether the firm is listed at the Nasdaq Stock Market. I also consider including IPO year fixed effects η_t and industry fixed effects μ_j. If μ_j is specified, then $Hightech$ is dropped due to multilinearity.

Table 1 summarizes the statistics of main variables of the full sample as well as IPOs with private acquisitions. Acquiring IPOs tend to have higher offer price and generate more proceeds in offering. However, they are also generally larger in firm sizes and senior in firm ages. Since those variables also potentially help investors discern company qualities, it is possible that the lower underpricing is driven by those signals rather than previous acquisitions. The two groups are similar in other dimensions.

Table 2 shows the average first-day return for IPOs categorized by private acquisitions. In Panel A, I focus on IPOs in all industries. An IPO company has 1.646% lower first day return if it has ever made an acquisition before. Additionally, for
companies that have taken over their competitors, there is 2.538% less underpricing. In Panel B, I focus on high tech IPOs. The first-day returns are consistently higher and only competitor acquisition group has less underpricing (0.683%).

Table 3 provides the regression results. Having acquisitions significantly reduces underpricing in all specifications except Column (1) in Panel A. These results are robust to adding controls and different fixed effects. Notice that for each specification, replacing MA with MA^{comp} increases the magnitude of first-day return reduction. This confirms the earlier conjecture that MA is biased downwards by non-competitor M&As. In the full-fledged specification, IPOs with acquisitions have 3.136% lower first day return. The effect increases to 3.725% if competitor have been acquired.

To cut the clutter I omitted estimations on control variables but they largely conform with previous literature. As in Loughran and Ritter (2004), firm age significantly reduces, and operation in high tech industry increases first-day return. Total assets is insignificant due to its common component with firm age and becomes negatively significant if age variable is dropped. In line with recent literature (Loughran and McDonald, 2013, for eg.), I document significant increase in underpricing if IPO is VC backed. Lastly, though insignificant, having more bookrunners slightly reduces but listing in Nasdaq increases underpricing.

To summarize, I find having acquisitions before IPO indeed significantly reduces first-day return and increases proceeds for the issuing company. Consistent with model implication, private acquisition is a positive signal even after controlling for correlation with firm size, age and VC fundings.

5.3. Longterm Stock Return

The model highlights that private acquisition is related with the better fundamental quality of startups. The fact that having acquisitions is viewed as a good signal and boosts offer price is due to the underlying efficiency of future growth. In other words, investors expect
these companies to have better performance in the long run. In this section I provide empirical support for this argument. The evidence distinguishes from the alternative mechanism that investors offer better price because they believe acquisitions reduce market competition.

In fact, investors should believe the opposite. As mentioned in the introduction, companies that have acquisitions along with or soon after IPO generally underperform compared to those that are not doing acquisitions (Brown et al., 2005, Brau et al., 2012). Their results indicate that consolidation of markets alone is not sufficient to sustain long term growth. Rational investor should also not reward private acquisitions if they purely help acquirers of random qualities with more monopoly power.

On the contrary, Table 2 documents consistently better performance in terms of three-year or four-year buy-and-hold return for IPOs with private acquisitions. IPOs that had acquired a competitor have even larger premium. The concern of comparing raw returns is that they reflect different loadings on the underlying risk factors and IPOs with private acquisitions are more risky. I address this concern by two methods. First, for each IPO, I sort it into one of 2×3 size and book-to-market portfolios using. I then use the corresponding portfolio’s buy-and-hold return during the same period as benchmark to adjust for risks. My results show that IPOs with private acquisitions still have better long-term net returns. Second, I compare their returns of assets (ROA) three or four years after their IPO time and acquiring IPOs’ ROA is significantly larger.

5.4. Pseudo Market Timing

It is well documented that after IPO new public firms underperform to their senior counterparts (Ritter, 1991). In an aggregate level, Baker and Wurgler (2000) find IPOs concentrate before periods of low market performance. These evidence seem to imply that managers take advantage of investor’s overoptimism and issue stocks when they know their performance in the subsequent periods is worse. In this model, firms evaluate market beliefs, which is formed rationally, when they decide whether or not to file for IPO. In a pooling IPO,
less efficient firms raise fundings and rational investors forecast this. The expected loss in the
low types is compensated by the underpayment of the high types. Investors are break-even
given their belief as in Schultz (2003) with zero expected profit.

But realized performance of the new public firms varies with the quantity of new IPO
firms. In an IPO wave, there are more pooling IPOs. Thus, the post-wave return rates
would be mixed by two types. Off the wave, there are more private acquisitions and the
more efficient firms are self-selected. The variation of performance is due to the different
characteristics of firms that enter into the primary on or off the wave, i.e. a composition
effect, which coincides with the quantity of firms going public. So the pattern that IPO waves
concentrate before periods of low market performance mechanically appears. However, this is
not because the low types forecast any downturns and try to take advantage prior to that.

To illustrate this idea, I simulate the model in the following way.\footnote{This simulation is a qualitative exercise intended to illustrate the pattern of pseudo market timing.} Recall that the gross
return rate of investing in the high type is \((H - \alpha)/\alpha\) and investing in the low type generates
\((L - \alpha)/\alpha\). Consider amortizing those total returns in a perpetuity fashion. The per period
return for good firm is \(r_h = r(H - \alpha)/\alpha\) and for bad firm is \(r_l = r(L - \alpha)/\alpha\). The simulation
starts with 500 pairs of startups evolving independently as in the baseline model. At any
moment \(t = k \cdot \Delta t\), \((dB_{ht}^n, dB_{lt}^n)\) is drawn independently for the \(n^{th}\) pair of startups. If \(\rho_{lt}^n\) hits
the thresholds \(\beta\) or \(\eta\), then the pairs take strategies in Theorem 3. Meanwhile, a new pair of
startups will fill in the vacancy left by the newly public firms. At \(k^{th}\) step of simulation, I
document the number of new public firms and the average per period returns of all IPOs in
that step.

The parameters are \(\mu_h = 0.05, \mu_l = -0.05, r = 0.15, \sigma^2 = 0.19, H = 2.55, L = 0.65,\)
\(\alpha = 0.85\) and \(\gamma_l = 0.25\). As a result, \(r_h = 30\%\) and \(r_l = -3.53\%\). The two boundaries \(\eta\) and
\(\beta\) are solved to be 0.2280 and -0.6920. \(\Delta t = 0.05\) and the maximal number of simulation
steps is 5000. I select results from the steps 200\(^{th}\) to 5000\(^{th}\) since the distribution of \(\{\rho_{lt}^{k}\}_{k=1}^{500}\)
among the potential pairs is stationary at then. Figure 6 illustrates the result of simulation.
Figure 6: Simulated IPO Numbers and Mean Returns

This figure plots the simulated data on number of IPOs and mean returns of new firms in each period. The horizontal axis is number of IPOs in a given period. The vertical axis is the mean return of all IPOs in that period. Solid line is the fitted linear regression.

The x-axis is the number of IPOs in a given period. The y-axis is the mean return of all IPOs in that period. For example, point $(30, 17.54)$ indicates a period where 30 firms go public, the mean return of new firms is 17.54%. The decreasing pattern implies as more and more firms go public, the mean return afterwards is lower. I then sort the sample into deciles based on the number of IPOs in each period n. The return difference between the top and bottom decile is -2.49% with a p-value less than 1%. Without referring to the model, this pattern indeed seems like poor firms take advantage of investors optimism in hot IPO markets.

What if the belief of investors is biased for the less efficient types? The last part of this section revisits the overoptimism of investors by assuming that the belief process follows

$$d\rho_{lt} = -\left(\frac{(\mu_h - \mu_l)}{\sigma^2} - \delta\right) dt + \frac{\mu_h - \mu_l}{\sigma} dB_t.$$

Investors are no longer purely Bayesian learners. At any moment, they first update ρ_{lt} by observing size differences. However, they are mistakenly more confident about the quality of
firm l. So they adjust the belief upwards by $\delta > 0$. The correction δ could be due to inherent misconception of investors or firm l’s marketing strategies. Given the new belief, the Bellman Equation of waiting functions J_i follows:

$$
(\mu_h - r) J_h(\rho_{lt}) - \left(\frac{\mu_h - \mu_l}{2} + \frac{(\mu_h - \mu_l)^2}{\sigma^2} - \delta \right) J_h'(\rho_{lt}) + \frac{1}{2} \frac{(\mu_h - \mu_l)^2}{\sigma^2} J_h''(\rho_{lt}) = 0 \quad (10)
$$

$$
(\mu_l - r) J_l(\rho_{lt}) - \left(-\frac{\mu_h - \mu_l}{2} + \frac{(\mu_h - \mu_l)^2}{\sigma^2} - \delta \right) J_l'(\rho_{lt}) + \frac{1}{2} \frac{(\mu_h - \mu_l)^2}{\sigma^2} J_l''(\rho_{lt}) = 0 \quad (11)
$$

Unlike changing σ^2 and μ_l, a biased belief by δ only creates drift effect. The mistaken ρ_{lt} now becomes more persistent and decreases at a slower speed. Firm h expects to spend a longer time on reaching the acquisition threshold. Because delaying is costly, firm h’s waiting value is anywhere strictly lower and it is now willing to give up for a pooling IPO earlier at $\eta' < \eta$. Compare this result with Section 4.1 and 4.2. Irrationality generates more opportunities for the less efficient types to join in IPO waves. On the contrary, rational investors will account for manipulation of beliefs and adjust their way of learning.

Proposition 11 The two thresholds shift downward simultaneously as overoptimism δ is imposed, i.e., $d\eta/d\delta, d\beta/d\delta < 0$. Pooling IPO becomes more likely. As a result, ex ante firm l is better off and firm h is worse off $\partial V_l(x_{l0}, \rho_{lo})/\partial \delta > 0$ and $\partial V_l(x_{l0}, \rho_{lo})/\partial \delta < 0$.

The main takeaway of this section is that realized poor performance of new public companies may not be necessarily due to irrationality of investors. Instead, it could be due to a composition effect. However, investor overoptimism indeed generates market timing opportunities for the less efficient startups. The empirical documents of market timing may be a mix of the above two channels.
6. Conclusion

Acquisitions by private companies are understudied in literature. This paper fills the gap by linking private acquisitions with signaling in IPOs. The mechanism is different from common arguments such as acquisitions reduce competition and creates monopoly power. Instead, the logic is rooted in the neoclassical view of M&As: Assets flow from the less productive firms to the ones with better technologies but not vice versa. I validate that, both theoretically and empirically, private acquisitions are determined by the quality of startups. In a real options model with information imperfections, the more efficient firm can initiate takeovers and therefore signal its quality. However, asset reallocations are blocked with certain probability. Low types may resist to sell because they could possibly pool in IPOs. Resistance level varies with the “mistaken” belief of outside investors. Especially when asset sizes are close, investors belief can be extremely wrong. Then the high type will give up waiting because it takes prolonged expected time for the belief to self-correct.

In terms of efficiency, private acquisitions help eliminate financing uncertainty and make fundings allocated to better technology. Thus, it is of importance to understand how to increase the frequency of private acquisitions. I show that for the more efficient startups, they should not try to overscale and boost financial performance in order to impress investors. The reason is that rational investors would take the expenditure into consideration and consider that assets growth are driven by high investment rates rather than underlying technology. This in turn gives poor quality firms opportunities to imitate. Especially, private acquisitions become less possible in an cash burning arm-race.

In contrast to IPOs with acquisitions simultaneously or soon afterwards, I document that the issuing firms which have acquired their competitors previously perform better over the long term. This confirms the theoretical result that private acquisitions indicate better growth opportunities. Investors rationally take the deals as good signals so that these companies have less underpricing and more proceeds in IPO.
References

Dynamic Adverse Selection: Time-Varying Market Conditions and Endogenous Entry. *Available at SSRN*.

46
Appendix A. Tables

Table 1: Summary Statistics

This table provides a summary statistics of main variables. *Offer price* is the dollar price per share at IPO. *Proceeds* is the total proceeds from IPO. *Total Assets* is total assets of IPO company before issuance. *Age* is the year time between IPO year and founding year. *VC* is an indicating dummy that takes 1 if company is VC-funded. *Hightech* indicates whether the company belongs to high tech industry following *Loughran and Ritter (2004)*. *Bookrunners* is the number of lead managers. *Nasdaq* indicates whether the firm is listed at the Nasdaq Stock Market.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std</td>
<td>Min</td>
<td>Max</td>
<td>N</td>
</tr>
<tr>
<td>Panel A: Full Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offer Price</td>
<td>14.11</td>
<td>6.02</td>
<td>5.00</td>
<td>85.00</td>
<td>1537.00</td>
</tr>
<tr>
<td>Proceeds (Mil.)</td>
<td>207.05</td>
<td>634.08</td>
<td>3.50</td>
<td>16006.90</td>
<td>1537.00</td>
</tr>
<tr>
<td>Total Assets (Mil.)</td>
<td>854.04</td>
<td>4744.24</td>
<td>0.20</td>
<td>137238.00</td>
<td>1475.00</td>
</tr>
<tr>
<td>Age</td>
<td>19.44</td>
<td>23.41</td>
<td>1.00</td>
<td>166.00</td>
<td>1530.00</td>
</tr>
<tr>
<td>VC</td>
<td>0.48</td>
<td>0.50</td>
<td>0.00</td>
<td>1.00</td>
<td>1537.00</td>
</tr>
<tr>
<td>High Tech (dummy)</td>
<td>0.31</td>
<td>0.46</td>
<td>0.00</td>
<td>1.00</td>
<td>1537.00</td>
</tr>
<tr>
<td>Bookrunners</td>
<td>2.68</td>
<td>1.73</td>
<td>1.00</td>
<td>13.00</td>
<td>1537.00</td>
</tr>
<tr>
<td>Nasdaq (dummy)</td>
<td>0.66</td>
<td>0.47</td>
<td>0.00</td>
<td>1.00</td>
<td>1537.00</td>
</tr>
<tr>
<td>Panel B: MA = 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offer Price</td>
<td>14.93</td>
<td>6.93</td>
<td>5.00</td>
<td>85.00</td>
<td>524.00</td>
</tr>
<tr>
<td>Proceeds (Mil.)</td>
<td>297.28</td>
<td>1033.66</td>
<td>7.00</td>
<td>16006.90</td>
<td>524.00</td>
</tr>
<tr>
<td>Total Assets (Mil.)</td>
<td>1508.97</td>
<td>7803.03</td>
<td>0.20</td>
<td>137238.00</td>
<td>503.00</td>
</tr>
<tr>
<td>Age</td>
<td>22.27</td>
<td>25.47</td>
<td>1.00</td>
<td>166.00</td>
<td>522.00</td>
</tr>
<tr>
<td>VC</td>
<td>0.45</td>
<td>0.50</td>
<td>0.00</td>
<td>1.00</td>
<td>524.00</td>
</tr>
<tr>
<td>High Tech (dummy)</td>
<td>0.38</td>
<td>0.49</td>
<td>0.00</td>
<td>1.00</td>
<td>524.00</td>
</tr>
<tr>
<td>Bookrunners</td>
<td>2.97</td>
<td>1.87</td>
<td>1.00</td>
<td>13.00</td>
<td>524.00</td>
</tr>
<tr>
<td>Nasdaq (dummy)</td>
<td>0.54</td>
<td>0.50</td>
<td>0.00</td>
<td>1.00</td>
<td>524.00</td>
</tr>
</tbody>
</table>
Table 2: First-day and Long-run Returns on IPOs Categorized by M&A Before

This table provides results on average first-day return, buy-and-hold returns and return of assets categorized by whether the IPO firm has acquisitions before. First-Day Return is defined as the return of closing price in the first trading day over offer price. 3yr Return is the cumulative return of holding this IPO from its first trading day for three years, excluding first-day return. 3yr Adj. Return adjusts 3yr Return by subtracting the cumulative return, during the same holding period, of a corresponding Fama–French Size and Book-to-Market (2 × 3) portfolios from it. 3yr ROA is the ROA three years after the IPO time. 4yr Return, 4yr Adj. Return and 4yr ROA are defined similarly with a 4-year window. The first three columns are results of the full sample and the last three columns are results of the IPOs in high technology industries. Except IPO Num, all numbers are percentage points. Columns (1) and (4) show the result of IPOs without private acquisitions. Columns (2) and (5) show the results of IPOs with private acquisitions. Columns (3) and (6) show the results of IPOs with private acquisitions of a competitor. Standard errors are displayed in the parentheses.

<table>
<thead>
<tr>
<th></th>
<th>(1) All Industry</th>
<th>(2) w/o Acq</th>
<th>(3) w/ acqcom</th>
<th>(4) w/o Acq</th>
<th>(5) High Tech w/ acq</th>
<th>(6) High Tech w/ acqcom</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPO Num</td>
<td>1,012</td>
<td>524</td>
<td>339</td>
<td>282</td>
<td>198</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>(27.277)</td>
<td>(22.351)</td>
<td>(20.582)</td>
<td>(29.208)</td>
<td>(24.971)</td>
<td>(23.198)</td>
</tr>
<tr>
<td>3yr Return</td>
<td>13.988</td>
<td>22.360</td>
<td>25.267</td>
<td>17.549</td>
<td>30.744</td>
<td>30.584</td>
</tr>
<tr>
<td></td>
<td>(127.094)</td>
<td>(106.288)</td>
<td>(103.045)</td>
<td>(106.435)</td>
<td>(106.289)</td>
<td>(106.635)</td>
</tr>
<tr>
<td>3yr Adj. Return</td>
<td>-9.075</td>
<td>-3.822</td>
<td>-1.750</td>
<td>-1.627</td>
<td>3.779</td>
<td>1.859</td>
</tr>
<tr>
<td></td>
<td>(124.106)</td>
<td>(101.714)</td>
<td>(97.725)</td>
<td>(103.104)</td>
<td>(105.822)</td>
<td>(103.026)</td>
</tr>
<tr>
<td>3yr ROA</td>
<td>-19.441</td>
<td>-1.295</td>
<td>-0.169</td>
<td>-14.783</td>
<td>-1.977</td>
<td>-2.989</td>
</tr>
<tr>
<td></td>
<td>(66.398)</td>
<td>(36.706)</td>
<td>(42.133)</td>
<td>(68.088)</td>
<td>(25.914)</td>
<td>(30.999)</td>
</tr>
<tr>
<td>4yr Return</td>
<td>19.705</td>
<td>28.898</td>
<td>30.135</td>
<td>31.618</td>
<td>42.559</td>
<td>42.840</td>
</tr>
<tr>
<td></td>
<td>(151.080)</td>
<td>(124.681)</td>
<td>(115.217)</td>
<td>(130.829)</td>
<td>(135.817)</td>
<td>(130.947)</td>
</tr>
<tr>
<td>4yr Adj. Return</td>
<td>-11.421</td>
<td>-5.403</td>
<td>-5.480</td>
<td>5.246</td>
<td>7.418</td>
<td>5.360</td>
</tr>
<tr>
<td></td>
<td>(149.439)</td>
<td>(119.558)</td>
<td>(109.804)</td>
<td>(127.753)</td>
<td>(131.201)</td>
<td>(126.868)</td>
</tr>
<tr>
<td>4yr ROA</td>
<td>-25.552</td>
<td>-3.191</td>
<td>-0.651</td>
<td>-16.022</td>
<td>-2.238</td>
<td>-1.002</td>
</tr>
<tr>
<td></td>
<td>(123.423)</td>
<td>(47.949)</td>
<td>(50.678)</td>
<td>(71.555)</td>
<td>(33.167)</td>
<td>(21.682)</td>
</tr>
</tbody>
</table>
Table 3: Regressions of First-day Returns on Private Acquisition Indicators

This table provides estimations on the following equation:

\[\text{Firstret}_{i,t} = \beta MA + \gamma Controls + \eta_t + \mu_j + \epsilon_{i,t} \]

\(\text{Firstret}_{i,t} \) is defined as the return of closing price in the first trading day over offer price. \(MA \) is an indicating dummy, equal 1 if \(i \) has made private acquisitions before IPO and 0 otherwise. \(MA^{comp} \) is a dummy variable indicating whether \(i \) has acquired a competitor before IPO. Control variables include \(\ln(1 + TA) \), \(\ln(1 + age) \), \(VC \), \(Hightech \), \(Bookrunners \) and \(Nasdaq \). Robust standard errors are in parentheses. A constant term is included in all regressions (not reported). *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Private Acquisitions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MA)</td>
<td>-1.646</td>
<td>-2.945*</td>
<td>-2.661**</td>
<td>-3.136*</td>
</tr>
<tr>
<td></td>
<td>(1.299)</td>
<td>(1.614)</td>
<td>(1.292)</td>
<td>(1.612)</td>
</tr>
<tr>
<td>Controls</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Industry Fixed Effects</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>#Obs</td>
<td>1536</td>
<td>1391</td>
<td>1467</td>
<td>1323</td>
</tr>
<tr>
<td>Adj. (R^2)</td>
<td>0.00</td>
<td>0.06</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>Panel B: Private Acquisitions of Competitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MA^{comp})</td>
<td>-2.537*</td>
<td>-3.554**</td>
<td>-3.017**</td>
<td>-3.725**</td>
</tr>
<tr>
<td></td>
<td>(1.362)</td>
<td>(1.655)</td>
<td>(1.348)</td>
<td>(1.660)</td>
</tr>
<tr>
<td>Controls</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Industry Fixed Effects</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>#Obs</td>
<td>1536</td>
<td>1391</td>
<td>1467</td>
<td>1323</td>
</tr>
<tr>
<td>Adj. (R^2)</td>
<td>0.00</td>
<td>0.06</td>
<td>0.04</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Appendix B. Omitted Equations in Section 3.3

Using Ito’s lemma, the Bellman Equation for the two companies are:

\[
\begin{align*}
 rV_h(x_{ht}, \rho_l) &= \mu_h x_{ht} \frac{\partial V_h(x_{ht}, \rho_l)}{\partial x} + \frac{1}{2} \sigma^2 x_{ht}^2 \frac{\partial^2 V_h(x_{ht}, \rho_l)}{\partial x^2} \\
 &+ \frac{-(\mu_h - \mu_l)^2}{\sigma^2} \frac{\partial V_h(x_{ht}, \rho_l)}{\partial \rho} + \frac{1}{2} \frac{(\mu_h - \mu_l)^2}{\sigma^2} \frac{\partial^2 V_h(x_{ht}, \rho_l)}{\partial \rho^2} \\
 &- \frac{1}{2} (\mu_h - \mu_l) x_{ht} \frac{\partial V_h^2(x_{ht}, \rho_l)}{\partial x \partial \rho} \\
 \text{Size Effect} &+ \text{Belief Effect} &+ \text{Cross Effect} \tag{B.1}
\end{align*}
\]

\[
\begin{align*}
 rV_l(x_{lt}, \rho_l) &= \mu_l x_{lt} \frac{\partial V_l(x_{lt}, \rho_l)}{\partial x} + \frac{1}{2} \sigma^2 x_{lt}^2 \frac{\partial^2 V_l(x_{lt}, \rho_l)}{\partial x^2} \\
 &+ \frac{-(\mu_h - \mu_l)^2}{\sigma^2} \frac{\partial V_l(x_{lt}, \rho_l)}{\partial \rho} + \frac{1}{2} \frac{(\mu_h - \mu_l)^2}{\sigma^2} \frac{\partial^2 V_l(x_{lt}, \rho_l)}{\partial \rho^2} \\
 &+ \frac{1}{2} (\mu_h - \mu_l) x_{lt} \frac{\partial V_l^2(x_{lt}, \rho_l)}{\partial x \partial \rho} \\
 \text{Size Effect} &+ \text{Belief Effect} &+ \text{Cross Effect} \tag{B.2}
\end{align*}
\]

When game ends, firms receive their payoffs correspondingly:

\[
\begin{align*}
 V_h(x_{ht}, \eta) &= (H - \alpha - \frac{\alpha(H - L)exp(\eta)}{(H + Lexp(\eta))}) x_{ht} \\
 V_l(x_{lt}, \eta) &= (L - \alpha + \frac{\alpha(H - L)exp(\eta)}{(Hexp(\eta) + L)}) x_{lt} \\
 V_h(x_{ht}, \beta) &= (H - \alpha) x_{ht} + (H - L - \gamma) x_{lt} \\
 V_l(x_{lt}, \beta) &= (L - \alpha + \gamma) x_{lt}. \\
\end{align*}
\]

The two smooth pasting conditions are

\[
\begin{align*}
 \frac{\partial V_l(x_{ht}, \beta)}{\partial \beta} &= 0 \\
 \frac{\partial V_h(x_{ht}, \eta)}{\partial \eta} &= -\frac{\alpha(H - L)Hexp(\eta)}{(H + Lexp(\eta))^2} x_{ht}. \\
\end{align*}
\]

50
The last step is to transform all the boundary conditions in forms of J_i:

$$J_h(\eta) = H - \alpha - \frac{\alpha (H - L) \exp(\eta)}{(H + L \exp(\eta))}$$

$$J_l(\eta) = L - \alpha + \frac{\alpha (H - L) \exp(\eta)}{(H \exp(\eta) + L)}$$

$$J_h(\beta) = H - a + (H - L - \gamma_l) e^{\beta (\mu_h - \mu_l)}^{-1}$$

$$J_l(\beta) = L - a + \gamma_l$$

$$J'_h(\eta) = -\frac{\alpha H (H - L) \exp(\eta)}{(H + L \exp(\eta))^2}$$

$$J'_l(\beta) = 0.$$

Combine the above boundary conditions with equation (4) and (4) and solve (β, η).
Appendix C. Proofs

Proof of Lemma 1

Proof. Fixing a pair \((x_1, x_2)\), there exists no equilibria in which \(\sigma_{ht}^A (x_1, x_2) \sigma_{lt}^T (x_1, x_2) > 0\) and \(\sigma_{lt}^A (x_1, x_2) \sigma_{ht}^T (x_1, x_2) > 0\). If so, both types must be indifferent between being an acquirer or a target, which implies their total payoffs are the same with different acquiring types. This implies,

\[
\frac{H(x_1 + x_2)(1 - s_t)}{h\text{-acquirer total net value}} = \frac{L(x_1 + x_2)(1 - s_t)}{l\text{-acquirer total net value}}.
\]

Since \(H>L\), the above equation is only valid when \(s_t = 1\). But then both players have 0 payoffs, which is contradictory.

Next, fixing \(x_{mt}\), the following type of equilibria cannot exists: there exists two pairs \((x_1, x_2)\) and \((x_1', x_2')\), \(x_1 + x_2 = x_1' + x_2' = x_{mt}\) and \(x_1 \neq x_1'\), such that:

\[
\begin{align*}
\sigma_{ht}^A (x_1, x_2) \sigma_{lt}^T (x_1, x_2) &> 0, & \sigma_{lt}^A (x_1, x_2) \sigma_{ht}^T (x_1, x_2) &= 0, \\
\sigma_{ht}^A (x_1', x_2') \sigma_{lt}^T (x_1', x_2') &> 0, & \sigma_{lt}^A (x_1', x_2') \sigma_{ht}^T (x_1', x_2') &= 0.
\end{align*}
\]

In other words, the high type acquires only if the sizes are \((x_1, x_2)\) and the low type acquires only if the sizes are \((x_1', x_2')\). Firm \(l\)'s payoff at \((x_1', x_2')\) is \((1 - s_t) Lx_{mt} - (H - \alpha + \gamma_h) x_1'\). The following deviation is strictly profitable:

\[
\tilde{\sigma}_{ht}^A (x_1', x_2') \tilde{\sigma}_{lt}^T (x_1', x_2') = 1, \quad \tilde{\sigma}_{lt}^A (x_1', x_2') \tilde{\sigma}_{ht}^T (x_1', x_2') = 0,
\]

while the high type still gets \((H - \alpha + \gamma_h) x_1'\). Notice this deviation will not affect investors belief and therefore \(s_t\). This deviation generates \((1 - s_t) Hx_{mt} - (H - \alpha + \gamma_h) x_1'\) for firm \(l\).

Lastly, it is intuitive that there exits no equilibria in which fixing \(x_{mt}\), for all \((x_1, x_2)\), \(x_1 + x_2 = x_{mt}\),

\[
\begin{align*}
\sigma_{ht}^A (x_1, x_2) \sigma_{lt}^T (x_1, x_2) &> 0, & \sigma_{lt}^A (x_1, x_2) \sigma_{ht}^T (x_1, x_2) &= 0.
\end{align*}
\]

As firm \(l\) is strictly better off by accepting takeovers by firm \(h\).

Proof of Lemma 2

Proof. Here I only illustrate for firm \(h\)'s problem since the same logic applies to firm \(l\)'s. Suppose the initial sizes are \(x_{ht}\) and \(x_{lt}\). Now suppose we change firm \(h\)'s assets size without

\footnote{Off equilibrium acquisition offer does not have to equal exogenous reservation value.}
affecting the investors belief upon pooling. This is done as follows. Given any non-zero $\alpha > 0$, let the new firm sizes to be $x'_{ht} = \alpha x_{ht}$. By equation (3), firm l must be adjusted to $x'_{lt} = \alpha x_{lt}$. Consider the new firm h’s problem:

$$
\sup_{\sigma^i} E^h \left(\int_t^\tau e^{-r(t)} \left(R^l_i \left(x'_{ht}, x'_{lt} \right) 1_{\tau} + R^m_i \left(x'_{ht}, x'_{lt} \right) 1_{\tau} \right) \right) | x'_{ht}, x'_{lt})
$$

$$
= \sup_{\sigma^i} E^h \left(\int_t^\tau e^{-r(t)} \left(R^l_i \left(x_{ht}, x_{lt} \right) 1_{\tau} + R^m_i \left(x_{ht}, x_{lt} \right) 1_{\tau} \right) \right) | x'_{ht}, x'_{lt})
$$

$$
= \sup_{\sigma^i} E^h \left(\int_t^\tau \alpha R^l_i \left(x_{ht}, x_{lt} \right) 1_{\tau} + \alpha R^m_i \left(x_{ht}, x_{lt} \right) 1_{\tau} \right) | x'_{ht}, x'_{lt})
$$

$$
= \sup_{\sigma^i} E^h \left(\int_t^\tau e^{-r(t)} \left(R^l_i \left(x_{ht}, x_{lt} \right) 1_{\tau} + R^m_i \left(x_{ht}, x_{lt} \right) 1_{\tau} \right) \right) | x_{ht}, x_{lt})
$$

The second equality follows from the fact that returns are linear in asset sizes. The last equality follows from the fact that investors belief is decided by assets size ratios (pooling IPO case) or independent of sizes (acquisition case). Therefore the stopping time τ will not be affected.

Proof of Theorem 3

We begin the proof by characterizing certain relationships of $\theta_{1l}, \theta_{2l}, \theta_{1h}$ and θ_{2h}.

Lemma 12 (i) $\theta_{1h} < 0 < 1 < \theta_{2h}$, $\theta_{1l} < 0 < \theta_{2l}$; (ii) $\theta_{1h} + \theta_{2h} = 2 + (\frac{\mu_h - \mu}{\sigma^2})^{-1}$, $\theta_{1l} + \theta_{2l} = 2 - (\frac{\mu_h - \mu}{\sigma^2})^{-1}$; (iii) $\theta_{2h} - \theta_{2l} = \theta_{1h} - \theta_{1l} = (\frac{\mu_h - \mu}{\sigma^2})^{-1}$.

53
Proof. By solving the characteristic function, we have

\[
\theta_{1h} = \frac{\mu_h - \mu_l}{2} + \frac{(\mu_h - \mu_l)^2}{\sigma^2} - \sqrt{(\frac{\mu_h - \mu_l}{2} + \frac{(\mu_h - \mu_l)^2}{\sigma^2})^2 - 2(\mu_h - \mu_l)^2(\mu_h - r)}
\]

\[
\theta_{2h} = \frac{\mu_h - \mu_l}{2} + \frac{(\mu_h - \mu_l)^2}{\sigma^2} + \sqrt{(\frac{\mu_h - \mu_l}{2} + \frac{(\mu_h - \mu_l)^2}{\sigma^2})^2 - 2(\mu_h - \mu_l)^2(\mu_h - r)}
\]

\[
\theta_{1l} = -\frac{\mu_h - \mu_l}{2} + \frac{(\mu_h - \mu_l)^2}{\sigma^2} - \sqrt{(\frac{\mu_h - \mu_l}{2} + \frac{(\mu_h - \mu_l)^2}{\sigma^2})^2 - 2(\mu_h - \mu_l)^2(\mu_l - r)}
\]

\[
\theta_{2l} = -\frac{\mu_h - \mu_l}{2} + \frac{(\mu_h - \mu_l)^2}{\sigma^2} + \sqrt{(\frac{\mu_h - \mu_l}{2} + \frac{(\mu_h - \mu_l)^2}{\sigma^2})^2 - 2(\mu_h - \mu_l)^2(\mu_l - r)}
\]

Notice

\[
\left(\frac{\mu_h - \mu_l}{2}\right)^2 + \frac{(\mu_h - \mu_l)^2}{\sigma^2} - 2\left(\frac{\mu_h - \mu_l}{2}\right)^2(\mu_h - r)
\]

\[
= \left(\frac{\mu_h - \mu_l}{2}\right)^2 + \frac{(\mu_h - \mu_l)^2}{\sigma^2} + 2\frac{\mu_h - \mu_l^2}{2} \frac{(\mu_h - \mu_l)^2}{\sigma^2} - 2\left(\frac{\mu_h - \mu_l}{2}\right)^2(\mu_h - r)
\]

\[
= \left(\frac{\mu_h - \mu_l}{2}\right)^2 + \frac{(\mu_h - \mu_l)^2}{\sigma^2} - 2\frac{\mu_h - \mu_l}{2} \frac{(\mu_h - \mu_l)^2}{\sigma^2} - 2\left(\frac{\mu_h - \mu_l}{2}\right)^2(\mu_h - r)
\]

\[
= \left(\frac{\mu_h - \mu_l}{2}\right)^2 + \frac{(\mu_h - \mu_l)^2}{\sigma^2} - 2\left(\frac{\mu_h - \mu_l}{2}\right)^2(\mu_l - r)
\]

Thus, the part under square root in the above equations are the same. To save space, we define

\[
\left(\frac{\mu_h - \mu_l}{\sigma^2}\right)^{-1} = k
\]

\[
\sqrt{(\frac{\mu_h - \mu_l}{2} + \frac{(\mu_h - \mu_l)^2}{\sigma^2})^2 - 2\left(\frac{\mu_h - \mu_l}{2}\right)^2(\mu_h - r)} = \Delta
\]

and use those notations hereafter.

Thus, \(\theta_{1h} = 1 + \frac{k}{2} - \Delta, \theta_{2h} = 1 + \frac{k}{2} + \Delta, \theta_{1l} = 1 - \frac{k}{2} - \Delta, \theta_{2l} = 1 - \frac{k}{2} + \Delta\). It’s easy to check (ii), (iii) and \(\theta_{2h} > 1\). Lastly \(\theta_{1l}\theta_{2l} = 2(\mu_l - r) < 0, \theta_{1h}\theta_{2h} = 2(\mu_h - r) < 0\).

Proof. To show the main results, we first replace the boundary conditions with explicit expression of \(J_h\) and \(J_l\):
\[C_{1h} \exp(\theta_{1h} \eta) + C_{2h} \exp(\theta_{2h} \eta) = H - \alpha - \frac{\alpha(H - L) \exp(\eta)}{H + L \exp(\eta)} \quad (\text{C.1}) \]

\[C_{1l} \exp(\theta_{1l} \eta) + C_{2l} \exp(\theta_{2l} \eta) = L - \alpha + \frac{\alpha(H - L) \exp(\eta)}{H \exp(\eta) + L} \quad (\text{C.2}) \]

\[C_{1h} \exp(\theta_{1h} \beta) + C_{2h} \exp(\theta_{2h} \beta) = H - \alpha + (H - L - \gamma_l) \exp(k \beta) \quad (\text{C.3}) \]

\[C_{1l} \exp(\theta_{1l} \beta) + C_{2l} \exp(\theta_{2l} \beta) = L - \alpha + \gamma_l \quad (\text{C.4}) \]

\[C_{1h} \theta_{1h} \exp(\theta_{1h} \eta) + C_{2h} \theta_{2h} \exp(\theta_{2h} \eta) = \frac{\alpha H(H - L) \exp(\eta)}{(H + L \exp(\eta))^2} \quad (\text{C.5}) \]

\[C_{1l} \theta_{1l} \exp(\theta_{1l} \beta) + C_{2l} \theta_{2l} \exp(\theta_{2l} \beta) = 0 \quad (\text{C.6}) \]

Define \(x = \exp(\eta) \) and \(y = \exp(\beta) \). Notice since \(\beta \leq 0 \leq \eta, 0 \leq y \leq 1 \leq x \). Replace \(\exp(\eta) \) and \(\exp(\beta) \) with \(x \) and \(y \) and use Lemma 12 (iii) to change \(\theta_{1h} \) and \(\theta_{2h} \) into \(\theta_{1l} \) and \(\theta_{2l} \) into (C.1) to (C.6):

\[C_{1h} x^{\theta_{1l}} + C_{2h} x^{\theta_{2l}} = (H - \alpha - f(x))x^{-k} \quad (\text{C.7}) \]

\[C_{1l} x^{\theta_{1l}} + C_{2l} x^{\theta_{2l}} = L - \alpha + g(x) \quad (\text{C.8}) \]

\[C_{1h} y^{\theta_{1l}} + C_{2h} y^{\theta_{2l}} = (H - \alpha + (H - L - \gamma_l) y^k)y^{-k} \quad (\text{C.9}) \]

\[C_{1l} y^{\theta_{1l}} + C_{2l} y^{\theta_{2l}} = L - \alpha + \gamma_l \quad (\text{C.10}) \]

\[C_{1h} \theta_{1h} x^{\theta_{1l}} + C_{2h} \theta_{2h} x^{\theta_{2l}} = -f'(x)x^{-k} \quad (\text{C.11}) \]

\[C_{1l} \theta_{1l} y^{\theta_{1l}} + C_{2l} \theta_{2l} y^{\theta_{2l}} = 0 \quad (\text{C.12}) \]

where \(f(x) = \frac{\alpha(H - L)x}{H + L x} \), \(f'(x) = \frac{\alpha H(H - L)x}{(H + L x)^2} \) and \(g(x) = \frac{\alpha(H - L)x}{H x + L} \).

We use equation (C.10) and (C.12) to solve \(C_{1l} \) and \(C_{2l} \) and (C.7) and (C.11) to solve \(C_{1h} \) and \(C_{2h} \). Then replace the solved constants in (C.8) and (C.9) respectively.

\[[(H - \alpha - f(x))\theta_{2h} + f'(x)](\frac{x}{y})^{-\theta_{1l}} - [(H - \alpha - f(x))\theta_{1h} + f'(x)](\frac{x}{y})^{-\theta_{2l}} \]

\[= (\theta_{2l} - \theta_{1l})[(H - \alpha) + (H - L - \gamma_l) y^k](\frac{x}{y})^k \quad (\text{C.13}) \]

\[(L - \alpha + \gamma_l)(\theta_{2l}(\frac{x}{y})^{\theta_{1l}} - \theta_{1l}(\frac{x}{y})^{\theta_{2l}}) = (\theta_{2l} - \theta_{1l})(L - \alpha + g(x)) \quad (\text{C.14}) \]

Instead of solving \(y \) directly, we solve \(m = \frac{x}{y} \geq 1 \) instead as it’s easier to deal with.
\[(H - \alpha - f(x))\theta_{2h} + f'(x)m^{-\theta_{1h}} - [(H - \alpha - f(x))\theta_{1h} + f'(x)m^{-\theta_{2h}}] \quad (C.15)\]

\[-(\theta_{2h} - \theta_{1h})(H - \alpha)m^k = (\theta_{2l} - \theta_{1l})(H - L - \gamma_l)x^k \quad (C.16)\]

Step 1. For any \(x \geq 1\), there exists a unique \(m_h(x) \geq 1\) and \(m_l(x) \geq 1\) that solves the equations \((C.15)\) and \((C.16)\) correspondingly.

To show the part of \(m_h(x)\), the LHS of \((C.15)\) is

\[
\min \{ (H - \alpha - f(x))\theta_{2h} + f'(x)m^{-\theta_{1h}} - [(H - \alpha - f(x))\theta_{1h} + f'(x)m^{-\theta_{2h}}] - (\theta_{2h} - \theta_{1h})(H - \alpha) \} m^k
\]

Notice \(\frac{\partial A}{\partial m} = -\theta_{1h}[(H - \alpha - f(x))\theta_{2h} + f'(x)m^{-\theta_{1h}} + \theta_{2h}[(H - \alpha - f(x))\theta_{1h} + f'(x)m^{-\theta_{2h}}] > 0\). When \(m \to \infty\), \(A \to \infty\). When \(m = 1\), \(A = -(\theta_{2h} - \theta_{1h})f(x) < 0\). Thus, by intermediate value theorem, there exists \(m_h(x)\) that solves the equation. To show uniqueness, notice for any \(x\), the solution exists only when \(A > 0\). The derivative of the LHS is \(\frac{\partial A}{\partial m} m^k + kA m^{k-1} > 0\) then, which implies uniqueness.

To show the part of \(m_l(x)\), The derivative of the LHS of \((C.16)\) is

\[(L - \alpha + \gamma_l)\theta_{1l}\theta_{2l}(m^{\theta_{1l}-1} - m^{\theta_{2l}-1})\]

As \(\theta_{1l}\theta_{2l} < 0\) and \(\theta_{1l} < \theta_{2l}\), the LHS is monotonically increasing by \(m\). It’s easy to check when \(m = 1\), the LHS is \(L - \alpha + \gamma < L - \alpha + g(1)\) by **Assumption 2**. The latter is the minimum of RHS. When \(m \to \infty\), \(LHS \to \infty\). Thus there is a unique \(m_l(x)\) solves the equation.

Step 2. \(m'_h(x) > 0\) and \(m'_l(x) > 0\)

To show \(m'_h(x) > 0\), by \((C.15)\)

\[
\frac{\partial A}{\partial m} m^k + kA m^{k-1} \quad dm = (-\frac{\partial A}{\partial x} m^k + (\theta_{2h} - \theta_{1h})(H - L - \gamma_l)k x^{k-1})dx
\]

It remains to check \(\frac{\partial A}{\partial x}\).
\[
\frac{\partial A}{\partial x} = (-f'(x)\theta_{2h} + f''(x))m^{-\theta_{1h}} - (-f'(x)\theta_{1h} + f''(x))m^{-\theta_{2h}}
\]

\[
= (-f'(x)(\frac{k}{2} + \Delta) + f''(x) - f'(x))m^{-\theta_{1h}} - (-f'(x)(\frac{k}{2} - \Delta) + f''(x) - f'(x))m^{-\theta_{2h}}
\]

\[
< (-f'(x)(\frac{k}{2} + \Delta) + f''(x) - f'(x))m^{-\theta_{1h}} - (-f'(x)(\frac{k}{2} + \Delta) + f''(x) - f'(x))m^{-\theta_{2h}}
\]

\[
= (-f'(x)(\frac{k}{2} + \Delta) + f''(x) - f'(x))(m^{-\theta_{1h}} - m^{-\theta_{2h}})
\]

\[
< 0
\]

The second line comes from Lemma 12. The last line comes from \(f''(x) < f'(x)\) for any given \(x \geq 1\) and \(-\theta_{1h} > -\theta_{2h}\). Thus

\[
\frac{dm_h}{dx} = -\frac{\partial A}{\partial x} m^k + (\theta_{2h} - \theta_{1h})(H - L - \gamma_l)x^{k-1} > 0 \tag{C.17}
\]

Similarly,

\[
\frac{dm_l}{dx} = \frac{g'(x)(\theta_{2l} - \theta_{1l})}{(L - \alpha + \gamma_l)\theta_{2l}\theta_{1l}(m^{\theta_{1l}-1} - m^{\theta_{2l}-1})} > 0
\]

Step 3. \(m_h(1) < m_l(1)\) and there exists \(\bar{x}\) such that \(m_h(x) > m_l(x)\) whenever \(x > \bar{x}\).

The second part is easy to check. This is because as \(x \to \infty\), RHS of (C.16) is bounded. Thus, \(m_l\) is bounded as \(x \to \infty\). However, RHS of (C.15) is unbounded as \(x \to \infty\). Therefore it must be the case that \(m_h \to \infty\).

To show the first part, first notice

\[
\{(H - \alpha - f(1))\theta_{2h} + f'(1)m_l(1)^{-\theta_{1h}} - (H - \alpha - f(1))\theta_{1h} + f'(1)m_l(1)^{-\theta_{2h}} - (\theta_{2h} - \theta_{1h})(H - \alpha)\} m_l(1)^k
\]

\[
> (H - \alpha - f(1))\theta_{2h}m_l(1)^{-\theta_{1h}} - (H - \alpha - f(1))\theta_{1h}m_l(1)^{-\theta_{2h}} - (\theta_{2h} - \theta_{1h})(H - \alpha)
\]

\[
= (H - \alpha - f(1))\theta_{2h}m_l(1)^{-\theta_{1h}} - \theta_{1h}m_l(1)^{-\theta_{2h}} - (\theta_{2h} - \theta_{1h})(H - \alpha)
\]

Thus, if we can show \((H - \alpha - f(1))\theta_{2h}m_l(1)^{-\theta_{1h}} - \theta_{1h}m_l(1)^{-\theta_{2h}} > (\theta_{2h} - \theta_{1h})(H - \alpha + H - L - \gamma_l)\), by monotonicity we prove \(m_h(1) < m_l(1)\). This is equivalent to

\[
\frac{L - \alpha + g(1)\theta_{2h}m_l(1)^{-\theta_{1h}} - \theta_{1h}m_l(1)^{-\theta_{2h}}}{L - \alpha + \gamma_l \theta_{2h}m_l(1)^{\theta_{1l}} - \theta_{1h}m_l(1)^{\theta_{2l}}} > \frac{H - \alpha + H - L - \gamma_l}{H - \alpha - f(1)}
\]

which is Assumption 2.

Thus, there exists \(x^*\) such that \(m_h(x^*) = m_l(x^*)\).

Step 4. \(x^*\) is unique.

We prove by showing that \(\frac{d^2m_h}{dx^2} > 0\). The result in Step 3 indicates that there must be
2k+1 intersections between \(m_h(1)\) and \(m_l(1)\), where \(k\) is an integer. Suppose \(k \neq 0\). Then one could find two consecutive intersections where at the first one, \(m_h\) crosses \(m_l\) from below but crosses \(m_l\) from above at the second. It’s easy to verify \(g'(x) < 0\) and \(k^2 \frac{dm_h}{dx} m^{-\theta_{1h}} > 0\). Thus \(\frac{d^2 m_h}{dx^2} < 0\). This implies the \(\frac{dm_h}{dx}\) must be decreasing from the first intersection to the second. Thus there \(k = 0\).

To see \(\frac{d^2 m_h}{dx^2} > 0\). First, \(\frac{\partial^2 A}{\partial_x\partial m} = (-f'(x)(\frac{k}{2} + \Delta) + f''(x) - f'(x)(-\theta_{1h}m^{-\theta_{1h}} + \theta_{2h}m^{-\theta_{2h}}) < 0\). Secondly, applying Lemma 12

\[
\frac{\partial A}{\partial m} m^k + kAm^{k-1} = \theta_{2h}[(H - \alpha - f(x)\theta_{1h} + f'(x)m^{-\theta_{2h}}) - \theta_{1h}((H - \alpha - f(x)\theta_{2h} + f'(x)m^{-\theta_{2h}}) - km^{k-1}(H - \alpha)) - \theta_{2h} - \theta_{1h})
\]

(C.18)

Taking derivative of (C.18) yields \(\frac{\partial \frac{\partial A}{\partial m} m^k + kAm^{k-1}}{\partial x} < 0\). In Step 2 we’ve shown \(\frac{\partial m_h}{\partial x} > 0\), thus

\[
\frac{\partial (\frac{\partial A}{\partial m} m^k + kAm^{k-1})}{\partial x} = \frac{\partial \frac{\partial A}{\partial m} m^k + kAm^{k-1}}{\partial x} + \frac{\partial A}{\partial x} m^k < 0
\]

This implies the denominator is decreasing in \(x\). Similarly, one could show \(\frac{\partial^2 A}{\partial x^2} < 0\) and

\[
\frac{\partial (- \frac{\partial A}{\partial m} m^k + (\theta_{2h} - \theta_{1h})(H - L - \gamma_1)k x^{k-1})}{\partial x} = \left(-\frac{\partial^2 A}{\partial x^2} m^k - k\frac{\partial A}{\partial x} m^{k-1}\right)\frac{\partial m}{\partial x} - \frac{\partial^2 A}{\partial x^2} m^k
\]

\[
> 0 + (\theta_{2h} - \theta_{1h})(H - L - \gamma_1)k(k-1)x^{k-2} > 0
\]

This implies the numerator is increasing in \(x\). This proves \(\frac{d^2 m_h}{dx^2} > 0\).

To summarize, we have shown that \(m_h(x)\) and \(m_l(x)\) are both strictly increasing in \(x\). \(m_h(x)\) is below \(m_l(x)\) when \(x\) is small but above it when \(x\) is large. There is only one crossing because \(\frac{d^2 m_h}{dx^2} > 0\) and \(\frac{d^2 m_l}{dx^2} < 0\). See the figure below for simulated solution of \(m_h(x)\) and \(m_l(x)\).

\[\square\]

Proof of Theorem 4

Proof. It remains to show \(l\) could not benefit by deviating to act as an acquirer. First notice given the two thresholds \((\beta, \eta)\) and the proposed strategy, the sum of waiting value \(V_l(x, \rho_l)\) at \(\rho_l\) can be expressed as

\[
SW(x_h, x_l, \rho_l) = [(H - \alpha)(x_h + x_l)]E(e^{-rT(\beta)})P(\rho_lT = \beta)
\]

\[
+ [(H - \alpha - \frac{\alpha(H - L)exp(\eta)}{(H + L)exp(\eta)})x_h + (L - \alpha + \frac{\alpha(H - L)exp(\eta)}{(H + L)exp(\eta)})x_l]E(e^{-rT(\eta)})P(\rho_lT = \eta)
\]

In the above equation, \(T(\eta)\) and \(T(\beta)\) is the first hitting time of \(\rho_l\) to \(\eta\) and \(\beta\). Given that \(d\rho_l = -\frac{(\mu_h - \mu)}{\sigma}dt + \frac{\mu_h - \mu}{\sigma}dB_t\) follows a Brownian Motion, and define \(\theta_1 < \theta_2\) as the two roots for function \(\frac{1}{2}(\frac{\mu_h - \mu}{\sigma})^2\theta^2 - \frac{(\mu_h - \mu)^2}{\sigma^2}\theta - r = 0\). Then following standard methods we could
generate the analytical form of \(E(e^{-rT(\beta)}|\rho_l)\) and \(E(e^{-rT(\eta)}|\rho_l)\) to be

\[
\psi(\rho_l) = E(e^{-rT(\beta)}|\rho_l) P(\rho_{lT} = \beta) = \frac{e^{\theta_1 \rho_l \beta} e^{\theta_2 \eta} - e^{\theta_2 \rho_l \beta} e^{\theta_1 \eta}}{e^{\theta_1 \beta} e^{\theta_2 \eta} - e^{\theta_2 \beta} e^{\theta_1 \eta}}
\]

\[
\Psi(\rho_l) = E(e^{-rT(\eta)}|\rho_l) P(\rho_{lT} = \eta) = \frac{e^{\theta_1 \beta} e^{\theta_2 \rho_l \eta} - e^{\theta_2 \beta} e^{\theta_1 \rho_l \eta}}{e^{\theta_1 \beta} e^{\theta_2 \eta} - e^{\theta_2 \beta} e^{\theta_1 \eta}}
\]

Also it is easy to verify that \(\frac{\partial \psi(\rho_l)}{\partial \rho_l} < 0\) and \(\frac{\partial \Psi(\rho_l)}{\partial \rho_l} > 0\). Together with the fact that \((H - \alpha)(x_{ht} + x_{lt}) > (H - \alpha - \frac{\alpha(H-L \exp(\eta))}{(H+L \exp(\eta))})x_{ht} + (L - \alpha + \frac{\alpha(H-L \exp(\eta))}{(H \exp(\eta)+L)})x_{lt}\), it’s easy to verify that \(SW(\rho_l)\) is decreasing in \(\rho_l\).

Now suppose a deviation to \(l\) as the acquirer is possible at \(\rho_l' < \eta\), then \(h\) must be willing to accept the offer

\[T_{ht} > V_h(x_{ht}, \rho_l')\]

Similarly, \(l\) must be willing to deviate

\[(L - \alpha \frac{L}{H})(x_{ht} + x_{lt}) - T_{ht} > V_l(x_{lt}, \rho_l')\]

This implies in such deviation, the total profit is

\[D(\rho_l') = (L - \alpha \frac{L}{H})(x_{ht} + x_{lt}) > SW(\rho_l')\]
Thus the problem is a simple optimal stopping problem for equations of the form
\[\alpha \beta J \]
first-best solution. The Bellman Equations of \(V \) are
\[\text{as we have argued in the paper, the only outcome in the game is that } h \text{ acquires } l. \]

\[\text{Thus the problem is a simple optimal stopping problem for } h. \]

The value function of \(l \) is pinned down once the threshold is solved in \(h \)'s problem as \(l \) now is totally passive. Define
\[V^*_h(x_{ht}, \rho_t) = x_{ht} J^*_h(\rho_t) \]
and \(V^*_l(x_{lt}, \rho_t) = x_{lt} J^*_l(\rho_t) \) as the value functions of \(h \) and \(l \) in the first-best solution. The Bellman Equations of \(J^*_l(\rho_t) \) are the same as \(J^*_i(\rho_t) \) so we still have
\[J^*_i(\rho_t) = C^*_1 \exp(\theta_1 t \rho_t) + C^*_2 \exp(\theta_2 t \rho_t). \]

If in equilibrium \(h \) delays its financing decision, there will be two boundaries (potentially infinite) \(\beta^*_1 < 0 < \beta^*_2 \) where \(h \) is waiting in between. The boundary conditions are:
\[
\begin{align*}
J^*_h(\beta^*_1) &= (H - a) + (H - L - \gamma_l) \exp(k \beta^*_1) \\
J^*_h(\beta^*_1) &= k(H - L - \gamma_l) \exp(k \beta^*_1) \\
J^*_h(\beta^*_2) &= (H - a) + (H - L - \gamma_l) \exp(k \beta^*_2) \\
J^*_h(\beta^*_2) &= k(H - L - \gamma_l) \exp(k \beta^*_2)
\end{align*}
\]

Replace \(\exp(\beta^*_1) \) with \(y_1 \) and \(\exp(\beta^*_2) \) with \(y_2 \). We solve \(C^*_1 \) and \(C^*_2 \) from the first two equations
\[
\begin{align*}
(\theta_{2h} - \theta_{1h}) C^*_1 &= \theta_{2h}(H - \alpha) y_1^{-\theta_{1h}} + (\theta_{2h} - k)(H - L - \gamma_l) y_1^{-\theta_{1h} + k} \\
(\theta_{1h} - \theta_{2h}) C^*_2 &= \theta_{1h}(H - \alpha) y_1^{-\theta_{2h}} + (\theta_{1h} - k)(H - L - \gamma_l) y_1^{-\theta_{2h} + k}
\end{align*}
\]
and from the last two equations

and \(D'(\rho'_t) > 0 \). Therefore \(D(\eta) > SW(\eta) \), in other words
\[
\begin{align*}
(L - \alpha \frac{L}{H})(x_{ht} + x_{lt}) > SW(\rho'_t) > (H - \alpha - \frac{\alpha(H - L) \exp(\eta)}{(H + L \exp(\eta))} x_{ht} + (L - \alpha + \frac{\alpha(H - L) \exp(\eta)}{(H \exp(\eta) + L)}) x_{lt}
\end{align*}
\]

Notice the RHS is decreasing in \(\eta \). As \(\eta \to +\infty \), RHS is \(\frac{\alpha(H - L)}{H} \), which is equal to LHS. Since in equilibrium \(\eta \) is finite, it implies the above inequality cannot hold.

Proof of Proposition 5

Proof. As we have argued in the paper, the only outcome in the game is that \(h \) acquires \(l \). Thus the problem is a simple optimal stopping problem for \(h \). The value function of \(l \) is pinned down once the threshold is solved in \(h \)'s problem as \(l \) now is totally passive. Define \(V^*_h(x_{ht}, \rho_t) = x_{ht} J^*_h(\rho_t) \) and \(V^*_l(x_{lt}, \rho_t) = x_{lt} J^*_l(\rho_t) \) as the value functions of \(h \) and \(l \) in the first-best solution. The Bellman Equations of \(J^*_l(\rho_t) \) are the same as \(J^*_i(\rho_t) \) so we still have \(J^*_i(\rho_t) = C^*_1 \exp(\theta_1 t \rho_t) + C^*_2 \exp(\theta_2 t \rho_t). \)

If in equilibrium \(h \) delays its financing decision, there will be two boundaries (potentially infinite) \(\beta^*_1 < 0 < \beta^*_2 \) where \(h \) is waiting in between. The boundary conditions are:
\[
\begin{align*}
J^*_h(\beta^*_1) &= (H - a) + (H - L - \gamma_l) \exp(k \beta^*_1) \\
J^*_h(\beta^*_1) &= k(H - L - \gamma_l) \exp(k \beta^*_1) \\
J^*_h(\beta^*_2) &= (H - a) + (H - L - \gamma_l) \exp(k \beta^*_2) \\
J^*_h(\beta^*_2) &= k(H - L - \gamma_l) \exp(k \beta^*_2)
\end{align*}
\]

Replace \(\exp(\beta^*_1) \) with \(y_1 \) and \(\exp(\beta^*_2) \) with \(y_2 \). We solve \(C^*_1 \) and \(C^*_2 \) from the first two equations
\[
\begin{align*}
(\theta_{2h} - \theta_{1h}) C^*_1 &= \theta_{2h}(H - \alpha) y_1^{-\theta_{1h}} + (\theta_{2h} - k)(H - L - \gamma_l) y_1^{-\theta_{1h} + k} \\
(\theta_{1h} - \theta_{2h}) C^*_2 &= \theta_{1h}(H - \alpha) y_1^{-\theta_{2h}} + (\theta_{1h} - k)(H - L - \gamma_l) y_1^{-\theta_{2h} + k}
\end{align*}
\]
and from the last two equations

60
Thus, it’s only possible that θ

Lemma 13

Proof of Proposition 6

Define $f_1(x) = \theta_2 h (H - \alpha) x^{-\theta_1 h} + (\theta_2 - k)(H - L - \gamma_1) x^{-\theta_1 h+k}$ and $f_2(x) = \theta_1 h (H - \alpha) x^{-\theta_2 h} + (\theta_1 - k)(H - L - \gamma_1) x^{-\theta_2 h+k}$. From the above equations, we have $f_1(y_1) = f_1(y_2)$ and $f_2(y_2) = f_2(y_2)$. But for any $x \in [-\infty, +\infty]$, both $f_1(x)$ and $f_2(x)$ are strictly positive. Thus, it’s only possible that $\beta_1^* = \beta_2^* = \beta^*$, which is contradictory to the assumption of two-threshold equilibrium.

As there is only one threshold, when $\rho_{lt} \to -\infty \ (\frac{x_{lt}}{x_{lt}} \to 0)$, the value function must be bounded so $C_{ii}^- = 0$. Suppose $\exp(k\beta^*) \neq 0$. Then $\exp(k\beta^*) = \frac{\theta_2 h (H - \alpha)}{\theta_2 h (H - \alpha)}$. If $\frac{k}{\theta_2 h} - 1 > 0$, then there exists a β^* that solves the problem. However, $\theta_2 h = 1 + \frac{k}{2} + k \sqrt{\frac{1}{2} + \frac{k}{1}} - 2 \frac{\mu - \mu}{\sigma^2} > 1 + \frac{k}{2} + \frac{k}{2} > k$. This indicates $\exp(k\beta^*) = 0$. In this case acquisition always happen regardless of the value of ρ_{lt}.

Proof of Proposition 6

We start with the following lemma.

Lemma 13

i) $\frac{d\theta_{1h}}{d\mu_h} > 0$, $\frac{d\theta_{1i}}{d\mu_h} > 0$, $\frac{d\theta_{2h}}{d\mu_h} < 0$, $\frac{d\theta_{2l}}{d\mu_h} < 0$.

ii) $\frac{d\theta_{1l}}{d\mu_l} < 0$, $\frac{d\theta_{1i}}{d\mu_l} < 0$, $\frac{d\theta_{2h}}{d\mu_l} > 0$, $\frac{d\theta_{2l}}{d\mu_l} > 0$.

iii) Suppose $\mu_h = \mu_l + \delta$. Fixing δ and increasing μ_h and μ_l simultaneously will increase θ_{1h} and θ_{1l} but decrease θ_{2h} and θ_{2l}.

Proof. i) Let $A = \frac{1}{2} + \frac{\mu - \mu}{\sigma^2} - 2 (\mu - \mu) s$ and $k = (\frac{\mu - \mu}{\sigma^2})^{-1}$. Then $\theta_{1h} = 1 + (\frac{1}{2} - \sqrt{A})k$, $\theta_{1l} = 1 - (\frac{1}{2} + \sqrt{A})k$, $\theta_{2h} = 1 + (\frac{1}{2} + \sqrt{A})k$, $\theta_{2l} = 1 - (\frac{1}{2} - \sqrt{A})k$. Due to symmetry, we only need to check $\frac{d(\frac{1}{2} - \sqrt{A})k}{d\mu_h}$ and $\frac{d(\frac{1}{2} + \sqrt{A})k}{d\mu_h}$.

$$\text{sgn}(\frac{d(\frac{1}{2} - \sqrt{A})k}{d\mu_h})$$

$$= \text{sgn}(\frac{1}{2\sqrt{A}} - \frac{k}{2} + \sqrt{Ak} - \frac{1}{\sqrt{Ak}})$$

$$= \text{sgn}((\sqrt{Ak} - 1)(1 + \frac{1}{\sqrt{Ak}} - \frac{1}{2\sqrt{A}})) > 0$$

Since $\sqrt{Ak} > \sqrt{(\frac{1}{2} + \frac{1}{k})^2 k} = \frac{k}{2} + 1 > 1$ and $\frac{1}{2\sqrt{A}} < \frac{1}{2\sqrt{(\frac{1}{2} + \frac{1}{k})^2}} < 1$. 61
\[
\text{sgn}\left(\frac{d\left(\frac{1}{2} + \sqrt{A}\right)k}{d\mu_h}\right)
= \text{sgn}\left(\frac{1}{\sqrt{Ak}} - \frac{1}{2\sqrt{A}} - \frac{k}{2} - \sqrt{Ak}\right) < 0
\]

Since \(\sqrt{Ak} > 1\), \(\frac{1}{\sqrt{Ak}} - \frac{1}{2\sqrt{A}} - \frac{k}{2} - \sqrt{Ak} < 0\).

ii)
\[
\text{sgn}\left(\frac{d\left(\frac{1}{2} - \sqrt{A}\right)k}{d\mu_l}\right)
= \text{sgn}\left(\frac{1}{2\sqrt{A}} + \frac{k}{2} - \sqrt{Ak} + \frac{1}{\sqrt{Ak}}\right)
= \text{sgn}(\sqrt{Ak} + 1(1 + \frac{1}{2}k - \sqrt{Ak})) < 0
\]

Since \(\sqrt{Ak} > 1 + \frac{1}{2}k\).

iii) Since \(\delta\) is fixed, thus \(k\) is unchanged but \(A\) is smaller. Thus \(\theta_{1h}\) and \(\theta_{1l}\) are larger but decrease \(\theta_{2h}\) and \(\theta_{2l}\) are smaller.

Proof. Rearrange equations (C.15) and (C.16) to be

\[
\{(H - \alpha - f(x))\frac{\theta_{2h}}{\theta_{2h} - \theta_{1h}} + \frac{f'(x)}{\theta_{2h} - \theta_{1h}}m^{-\theta_{1h}} - [(H - \alpha - f(x))\frac{\theta_{1h}}{\theta_{2h} - \theta_{1h}} + \frac{f'(x)}{\theta_{2h} - \theta_{1h}}m^{-\theta_{2h}} - (H - \alpha)]m^k\}_{M_1}
\]

\[
(\theta_{2l} - \theta_{1l})m^{\theta_{1l}} - \theta_{2l} - \theta_{1l}m^{\theta_{2l}} = L - \alpha + g(x)
\]

(C.19)

\[
(L - \alpha + \gamma_l)(\theta_{2l} - \theta_{1l}m^{\theta_{1l}} - \theta_{2l} - \theta_{1l}m^{\theta_{2l}}) = L - \alpha + g(x)
\]

(C.20)
Take the derivative of M_1 w.r.t μ_h

$$\frac{\partial M_1}{\partial \mu_h} = \frac{d\theta_{1h}}{d\mu_h}((H - \alpha - f(x))\theta_{2h} + f'(x))\left(\frac{m^{-\theta_{1h}} - m^{-\theta_{2h}}}{\theta_{2h} - \theta_{1h}} - m^{-\theta_{1h}} \log(m)\right)$$

$$+ \frac{d\theta_{2h}}{d\mu_h}((H - \alpha - f(x))\theta_{1h} + f'(x))\left(\frac{m^{-\theta_{2h}} - m^{-\theta_{1h}}}{\theta_{2h} - \theta_{1h}} + m^{-\theta_{2h}} \log(m)\right)$$

We can show both $\frac{m^{-\theta_{1h}} - m^{-\theta_{2h}}}{\theta_{2h} - \theta_{1h}} - m^{-\theta_{1h}} \log(m)$ and $\frac{m^{-\theta_{2h}} - m^{-\theta_{1h}}}{\theta_{2h} - \theta_{1h}} + m^{-\theta_{2h}} \log(m)$ are negative if $m > 1$. We only list the proof of $\frac{m^{-\theta_{1h}} - m^{-\theta_{2h}}}{\theta_{2h} - \theta_{1h}} - m^{-\theta_{1h}} \log(m)$ as the other is identical. First notice when $m = 1$, $\frac{m^{-\theta_{1h}} - m^{-\theta_{2h}}}{\theta_{2h} - \theta_{1h}} - m^{-\theta_{1h}} \log(m) = 0$. Taking derivative of the function yields

$$\frac{-\theta_{1h}m^{-\theta_{1h} - 1} + \theta_{2h}m^{-\theta_{2h} - 1}}{\theta_{2h} - \theta_{1h}} - m^{-\theta_{1h} - 1} + \theta_{1h}m^{-\theta_{1h} - 1} \log(m)$$

$$< \frac{-\theta_{1h}m^{-\theta_{1h} - 1} + \theta_{2h}m^{-\theta_{2h} - 1}}{\theta_{2h} - \theta_{1h}} - m^{-\theta_{1h} - 1}$$

$$= \frac{\theta_{2h}(m^{-\theta_{2h} - 1} - m^{-\theta_{1h} - 1})}{\theta_{2h} - \theta_{1h}} < 0$$

The second line is due to $\theta_{1h} < 0$ and $\log(m) > 0$. By Lemma 13, $\frac{d\theta_{1h}}{d\mu_h} > 0$ and $\frac{d\theta_{2h}}{d\mu_h} < 0$. Lastly we have $\frac{\partial M_1}{\partial \mu_h} < 0$. One can also easily check $\frac{d m_k}{d \mu_h} < 0$. For any given value of m, the LHS of equation (C.19) is strictly decreasing in μ_h. Therefore $\frac{d m_h(x; \mu_h)}{d \mu_h} > 0$. In other words, $m_h(x)$ shifts towards northwest as μ_h increases. Applying the same kind of trick, we can show

$$\frac{\partial M_2}{\partial \mu_h} = \frac{\theta_{2l}}{\theta_{2l} - \theta_{1l}} \frac{d\theta_{2l}}{d\mu_h} \left(\frac{m^{\theta_{2l} - m^{\theta_{1l}}}}{\theta_{2l} - \theta_{1l}} + \log(m)m^{\theta_{1l}}\right)$$

$$+ \frac{\theta_{1l}}{\theta_{2l} - \theta_{1l}} \frac{d\theta_{2l}}{d\mu_h} \left(\frac{m^{\theta_{2l} - m^{\theta_{1l}}}}{\theta_{2l} - \theta_{1l}} - \log(m)m^{\theta_{1l}}\right) < 0$$

Thus, both $m_h(x)$ and $m_l(x)$ shift towards northwest as μ_h increases. Denote $m^*(\mu_h)$ and $x^*(\mu_h)$ as solution of the equations. By comparing $\frac{\partial M_1}{\partial \mu_h}$ over $\frac{\partial M_1}{\partial m_h}$ and $\frac{\partial M_2}{\partial \mu_h}$ over $\frac{\partial M_2}{\partial m_h}$, one could show the distance the $m_h(x)$ moves upwards is larger than $m_l(x)$ does. This regulates that $\frac{dx^*(\mu_h)}{d\mu_h} < 0$. Notice $y^* = \frac{x^*}{m^*} = \cot(\theta_x)$, where θ_x is the angle between the line $(x^*, m^*) \to (0, 0)$ and $(x^*, 0) \to (0, 0)$. As (x^*, m^*) shifts northwest, θ_x increases and $\cot(\theta_x)$ decreases. Hence $\frac{d y^*(\mu_h)}{d\mu_h} < 0$.

The proof for ii) is similar. Replace all $\frac{d\theta}{d\mu}$ with $\frac{d\theta}{d\mu}$ in the above derivatives. It’s easy to verify all signs of inequality are reversed.
Proof of Proposition 7

Proof. The proof is similar to Proposition 6. Denote θ'_{ij} as the changes of θ when μ_h and μ_l are simultaneously increased without changing the wedge. By Lemma 13, $\theta'_{1h} > 0$, $\theta'_{1l} > 0$, $\theta'_{2h} < 0$, and $\theta'_{2l} < 0$. Using the same notation, $M'_1 < 0$ and $M'_2 < 0$. Thus, both $m_h(x)$ and $m_l(x)$ shift towards northwest as μ_h and μ_l increase. The rest follows argument in Proposition 6.

Proof of Proposition 8

Proof. Using the same notation as Lemma 13, I start with showing $\frac{d\theta_{1h}}{d\sigma^2} > 0$, $\frac{d\theta_{1l}}{d\sigma^2} > 0$, $\frac{d\theta_{2h}}{d\sigma^2} < 0$, $\frac{d\theta_{2l}}{d\sigma^2} < 0$.

$$
\text{sgn} \left(\frac{d(\frac{1}{2} - \sqrt{A})k}{d\sigma^2} \right)
= \text{sgn}(A - \frac{\sqrt{A}}{2} - \frac{12r - \mu_h - \mu_l}{\sigma^2} - \frac{1}{k^2})
= \text{sgn}(\frac{1}{4} + \frac{12r - \mu_h - \mu_l}{\sigma^2} - \frac{\sqrt{A}}{2})
$$

The last line uses the fact that $A = \frac{1}{4} + \frac{2r - \mu_h - \mu_l}{\sigma^2} + \frac{1}{k^2}$. Notice function $\frac{1}{2}(x - \sqrt{\frac{1}{4} + \frac{1}{k^2} + x})$ is increasing in x. As $r > \mu_h > \mu_l$, $\frac{2r - \mu_h - \mu_l}{\sigma^2} > \frac{\mu_h - \mu_l}{\sigma^2} = \frac{1}{k}$. Since $\frac{1}{4} + \frac{11}{2k} - \frac{\sqrt{\frac{1}{4} + \frac{1}{k^2} + 1}}{2} = 0$, $\frac{1}{4} + \frac{1}{2} \frac{2r - \mu_h - \mu_l}{\sigma^2} - \frac{\sqrt{A}}{2} > 0$.

64
\[
\text{sgn}\left(\frac{d\left(\frac{1}{2} + \sqrt{A}\right)k}{d\sigma^2}\right)
= \text{sgn}(\frac{-A - \sqrt{A}}{2} + \frac{1}{\sigma^2} + \frac{1}{k^2})
= \text{sgn}(\frac{-1}{4} - \frac{1}{\sigma^2} - \frac{\sqrt{A}}{2}) < 0
\]

Then it’s easy to check all signs of \(\frac{d\theta_{ij}}{d\sigma^2}\) is just the opposite of \(\frac{d\theta_{ij}}{d\sigma^2}\). Thus \(\frac{d\theta_{ij}}{d\sigma^2} < 0, \frac{d\theta_{ij}}{d\sigma^2} > 0, \frac{d\theta_{ij}}{d\sigma^2} < 0, \frac{d\theta_{ij}}{d\sigma^2} > 0\). Using the same trick as Proposition 6, one could show \(\frac{\partial M_1}{\partial \sigma^2} > 0\) and \(\frac{\partial M_2}{\partial \sigma^2} > 0\). The effect of increasing \(\sigma^2\) is similar to increasing \(\mu_l\) as the changes w.r.t \(\theta_{ij}\)s are the same. Both \(m_h(x)\) and \(m_l(x)\) shift towards southeast as \(\sigma^2\) increases. Then \(\frac{dm^*}{d\sigma^2} < 0\) and \(\frac{dx^*}{d\sigma^2} > 0\). As \(y^* = \frac{x^*}{m^*} = \cot(\theta_x)\) and \(\theta_x\) decreases, \(\frac{dy^*}{d\sigma^2} > 0\).

\[\blacksquare\]

Proof of Theorem 9

Proof. The statement is true if the underpricing cost in pooling IPO is larger than \(h\)’s net benefit in acquisition \(\forall \rho \leq 0\). Combine equations (???) and (7). It is equivalent to:

\[
\begin{align*}
-(1 - \xi)\alpha \frac{H - L}{H + L} \exp(\rho) + \xi(H - L) \frac{x_{ht}}{x_{lt}} &> -(1 - \xi)\alpha \frac{H - L}{H + L} \exp(\rho) + \xi(H - L) \exp(k\rho) \\
\Leftrightarrow &
-(1 - \xi)\alpha \frac{H - L}{H + L} > \frac{\alpha(H - L)\exp(\rho)}{H + L\exp(\rho)} + \xi(H - L)\exp(k\rho)
\end{align*}
\]

The RHS of last line is increasing in \(\rho\). Therefore it is sufficient to verify \((1 - \xi)\alpha \frac{H - L}{L} > \frac{\alpha(H - L)}{H + L} + \xi(H - L)\), which is true if and only if \(\xi \leq \frac{\alpha H - L}{H + L} \frac{\alpha H - L}{1 + \xi} < 1\). The remaining statement comes from solving a standard optimal problem for \(h\).

\[\blacksquare\]
Proof of Theorem 10

Proof. Following the same procedure of proving Theorem 3, I first write down the new boundary conditions under Nash Bargaining:

\[C_{1h} \exp(\theta_{1h}) + C_{2h} \exp(\theta_{2h}) = H - \alpha - \frac{\alpha(H - L)\exp(\eta)}{H + L\exp(\eta)} \] \hspace{1cm} (C.21)

\[C_{1l} \exp(\theta_{1l}) + C_{2l} \exp(\theta_{2l}) = L - \alpha + \frac{\alpha(H - L)\exp(\eta)}{H\exp(\eta) + L} \] \hspace{1cm} (C.22)

\[C_{1h} \exp(\theta_{1h}) + C_{2h} \exp(\theta_{2h}) = H - \alpha - (1 - \xi)\alpha \frac{H - L}{L} + \xi(H - L)\exp(k;\beta) \] \hspace{1cm} (C.23)

\[C_{1l} \exp(\theta_{1l}) + C_{2l} \exp(\theta_{2l}) = L - \alpha + (1 - \xi)(H - L) + (1 - \xi)\alpha \frac{H - L}{L} \exp(-k;\beta) \] \hspace{1cm} (C.24)

\[C_{1h} \theta_{1h} \exp(\theta_{1h}) + C_{2h} \theta_{2h} \exp(\theta_{2h}) = -\frac{\alpha H(H - L)\exp(\eta)}{(H + L\exp(\eta))^2} \] \hspace{1cm} (C.25)

\[C_{1l} \theta_{1l} \exp(\theta_{1l}) + C_{2l} \theta_{2l} \exp(\theta_{2l}) = -k(1 - \xi)\alpha \frac{H - L}{L} \exp(-k;\beta) \] \hspace{1cm} (C.26)

Define \(x = \exp(\eta) \) and \(y = \exp(\beta) \). Notice since \(\beta \leq 0 \leq \eta, 0 \leq y \leq 1 \leq x \). Replace \(\exp(\eta) \) and \(\exp(\beta) \) with \(x \) and \(y \) and use Lemma 12 (iii) to change \(\theta_{1h} \) and \(\theta_{2h} \) into \(\theta_{1l} \) and \(\theta_{2l} \) into (C.21) to (C.26):

\[C_{1h} x^{\theta_{1l}} + C_{2h} x^{\theta_{2l}} = (H - \alpha - f(x))x^{-k} \] \hspace{1cm} (C.27)

\[C_{1l} x^{\theta_{1l}} + C_{2l} x^{\theta_{2l}} = L - \alpha + g(x) \] \hspace{1cm} (C.28)

\[C_{1h} y^{\theta_{1l}} + C_{2h} y^{\theta_{2l}} = (H - \alpha - (1 - \xi)\alpha \frac{H - L}{L} + \xi(H - L)y^{k})y^{-k} \] \hspace{1cm} (C.29)

\[C_{1l} y^{\theta_{1l}} + C_{2l} y^{\theta_{2l}} = L - \alpha + (1 - \xi)(H - L) + (1 - \xi)\alpha \frac{H - L}{L} y^{-k} \] \hspace{1cm} (C.30)

\[C_{1h} \theta_{1h} x^{\theta_{1l}} + C_{2h} \theta_{2h} x^{\theta_{2l}} = -f'(x)x^{-k} \] \hspace{1cm} (C.31)

\[C_{1l} \theta_{1l} y^{\theta_{1l}} + C_{2l} \theta_{2l} y^{\theta_{2l}} = -k(1 - \xi)\alpha \frac{H - L}{L} y^{-k} \] \hspace{1cm} (C.32)

where \(f(x) = \frac{\alpha(H - L)x}{H + Lx}, f'(x) = \frac{\alpha H(H - L)x}{(H + Lx)^2} \) and \(g(x) = \frac{\alpha(H - L)x}{H + Lx} \).

We use equation (C.30) and (C.32) to solve \(C_{1l} \) and \(C_{2l} \) and (C.27) and (C.31) to solve \(C_{1h} \) and \(C_{2h} \). Then replace the solved constants in (C.28) and (C.29) respectively.

Using the same trick, we solve \(m = \frac{x}{y} \geq 1 \) and \(x \):

\[[(H - \alpha - f(x))\theta_{2h} + f'(x)m^{-\theta_{1l}} - [(H - \alpha - f(x))\theta_{1h} + f'(x)]m^{-\theta_{2l}} \]
\[- (\theta_{2h} - \theta_{1h})(H - \alpha - (1 - \xi)\alpha \frac{H - L}{L})m^k = (\theta_{2l} - \theta_{1l})\xi(H - L)x^k \] \hspace{1cm} (C.33)
\begin{align*}
(L - \alpha + (1 - \xi)(H - L))(\theta_{2l}m^{\theta_{1t}} - \theta_{1l}m^{\theta_{2l}}) \\
+ (1 - \xi)\frac{H - L}{L} x^{-k}(\theta_{2h}m^{\theta_{1h}} - \theta_{1h}m^{\theta_{2h}}) = (\theta_{2l} - \theta_{1l})(L - \alpha + g(x)) \quad (C.34)
\end{align*}

I go through the same steps of proofs in Theorem 3. Since most derivations are essentially the same, I only highlight the different parts to avoid repetition.

Step 1. If \(\xi > \frac{1+\frac{\alpha}{L} - \frac{g}{L}}{1+\frac{\alpha}{L}} \), then \(\forall x \geq 1 \) there exists a unique \(m_h(x) \geq 1 \) and \(m_l(x) \geq 1 \) that solves the equations (C.33) and (C.34) correspondingly.

The statement on \(m_h(x) \) can be shown in the same way as before. For \(m_l(x) \), the LHS of (C.34) is monotonically still increasing by \(m \). When \(m \to \infty \), \(LHS \to \infty \). When \(m = 1 \), the LHS is \((L - \alpha + (1 - \xi)(H - L)) + (1 - \xi)\alpha \frac{H - L}{L} x^{-k} \theta_{2h}m^{\theta_{1h}} - \theta_{1h}m^{\theta_{2h}} \). It is smaller than \(L - \alpha + \gamma < L - \alpha + g(1) \) if and only if \(\xi > \frac{1+\frac{\alpha}{L} - \frac{g}{L}}{1+\frac{\alpha}{L}} \). \(L - \alpha + g(1) \) is the minimum of RHS. This proves the statement.

Step 2. \(m'_h(x) > 0 \) and \(m'_l(x) > 0 \).
\(\frac{dm_h}{dx} \) follows the same as before.

\[\frac{dm_l}{dx} = \frac{A(x)}{B(m)} > 0 \]

Where \(A(x) = g'(x)(\theta_{2l} - \theta_{1l}) + k(1 - \xi)\alpha \frac{H - L}{L} x^{-k-1}(\theta_{2h}m^{\theta_{1h}} - \theta_{1h}m^{\theta_{2h}}) > 0 \) and \(B(m) = (L - \alpha + \gamma)\theta_{1l}\theta_{2l}(m^{\theta_{1l}-1} - m^{\theta_{2l}-1}) + (1 - \xi)\alpha \frac{H - L}{L} x^{-k}\theta_{1h}\theta_{2h}(m^{\theta_{1h}-1} - m^{\theta_{2h}-1}) > 0 \).

Step 3. \(m_h(1) < m_l(1) \) and there exists \(\bar{x} \) such that \(m_h(x) > m_h(x) \) whenever \(x > \bar{x} \).

It only remains to check the first part. Consider the solution of \(m_l(1) \) in (C.34), satisfying

\begin{align*}
(L - \alpha + (1 - \xi)(H - L))(\theta_{2l}m_l(1)^{\theta_{1l}} - \theta_{1l}m_l(1)^{\theta_{2l}}) \\
+ (1 - \xi)\alpha \frac{H - L}{L} \theta_{2l}m_l(1)^{\theta_{1h}} - \theta_{1h}m_l(1)^{\theta_{2h}} = (\theta_{2l} - \theta_{1l})(L - \alpha + g(1)) \quad (C.35)
\end{align*}

Notice \(\theta_{2h}m_l(1)^{\theta_{1h}} - \theta_{1h}m_l(1)^{\theta_{2h}} < \theta_{2l}m_l(1)^{\theta_{1l}} - \theta_{1l}m_l(1)^{\theta_{2l}} \). This implies

\[\theta_{2l}m_l(1)^{\theta_{1l}} - \theta_{1l}m_l(1)^{\theta_{2l}} > \frac{(\theta_{2l} - \theta_{1l})(L - \alpha + g(1))}{[L - \alpha + (1 - \xi)(H - L)] + (1 - \xi)\alpha \frac{H - L}{L}} \quad (C.36) \]
Now consider the following equation:

\[
\begin{align*}
\{ & (H - \alpha - f(1))\theta_{2h} + f'(1)m_l(1)^{-\theta_{2h}} - (H - \alpha - f(1))\theta_{1h} + f'(1)m_l(1)^{-\theta_{2h}} \\
& - (\theta_{2h} - \theta_{1h})(H - \alpha - (1 - \xi)\alpha \frac{H - L}{L}) \}m_l(1)^k \\
> & (H - \alpha - f(1))\theta_{2h}m_l(1)^{-\theta_{1h}} - (H - \alpha - f(1))\theta_{1h}m_l(1)^{-\theta_{2h}} \\
& - (\theta_{2h} - \theta_{1h})(H - \alpha - (1 - \xi)\alpha \frac{H - L}{L}) \\
= & (H - \alpha - f(1))(\theta_{2h}m_l(1)^{-\theta_{1h}} - \theta_{1h}m_l(1)^{-\theta_{2h}}) - (\theta_{2h} - \theta_{1h})(H - \alpha - (1 - \xi)\alpha \frac{H - L}{L})
\end{align*}
\]

Thus, if we can show \((H - \alpha - f(1))(\theta_{2h}m_l(1)^{-\theta_{1h}} - \theta_{1h}m_l(1)^{-\theta_{2h}}) > (\theta_{2h} - \theta_{1h})(H - \alpha - (1 - \xi)\alpha \frac{H - L}{L} + \xi(H - L))\), by monotonicity we prove \(m_h(1) < m_l(1)\). By equation (C.36), a sufficient condition is

\[
\frac{L - \alpha + g(1)}{L - \alpha + (1 - \xi)(H - L) + (1 - \xi)\alpha \frac{H - L}{L} + \xi(H - L)} > \frac{\theta_{2h}m_l(1)^{-\theta_{1h}} - \theta_{1h}m_l(1)^{-\theta_{2h}}}{\theta_{2h}m_l(1)^{-\theta_{1h}} - \theta_{1h}m_l(1)^{-\theta_{2h}}}
\]

(C.37)

(C.38)

When \(\xi = 1\), this equation reduces to

\[
\frac{L - \alpha + g(1)}{L - \alpha} \gg \frac{H - \alpha + H - L}{H - \alpha - f(1)}.
\]

(C.39)

By continuity, if this is true, there exists a threshold \(\xi^*\) such that (C.38) is true whenever \(\xi \geq \xi^*\). Denote \(\bar{\xi} = \max\{\xi^*, \frac{1 + \frac{2}{\mu} - \frac{\mu}{\sigma^2} - \frac{\mu - \tau_1}{\sigma^2}}{1 + \frac{2}{\mu}}\}\). The theorem is proved. ■

Proof of Proposition 11

Proof. Rewrite \(A\) as \((\frac{1}{2} + \frac{\mu h - \mu}{\sigma^2} - \delta)^2 - 2(\frac{\mu h - \tau_1}{\sigma^2})\). Obviously \(\frac{dA}{d\delta} < 0\). Therefore \(\frac{d\theta_{1h}}{d\delta} > 0, \frac{d\theta_{2h}}{d\delta} > 0, \frac{d\theta_{1l}}{d\delta} < 0, \frac{d\theta_{2l}}{d\delta} < 0\). The rest follows proof of Proposition 6. ■