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Abstract

Recent empirical evidence suggest that the young update beliefs about macro

outcomes more in response to aggregate shocks than the old. We embed this form

of experiential learning bias in a general equilibrium macro-finance model where

agents have recursive preferences and are unsure about the specification of the

exogenous aggregate stochastic process. The departure from Rational Expec-

tations is small in a statistical sense, but generates a quantitatively significant

increase in risk, substantial and persistent aggregate over- and under-valuation

that tends to be exacerbated in equilibrium as outcomes of the optimal risk-

sharing in the economy. Consistent with the model, we document empirically

that the aggregate price-dividend ratio is more sensitive to macro shocks when

the proportion of young vs. old in the economy is high.
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1 Introduction

The macro-finance literature typically assumes agents have Rational Expectations and

use the entire history of events and Bayes rule to form statistically optimal beliefs.

The psychology literature, however, argues that personal experience is more salient

and therefore exert a greater influence on agents’decision making than summary infor-

mation available in historical records.1 Consistent with the latter view, recent empirical

evidence suggests that individual macroeconomic belief formation is in fact subject to

age-related experiential learning bias. For instance, Nagel and Malmendier (2013)

present direct evidence from survey data that the sensitivity of agents’ inflation be-

liefs to a shock to inflation is decreasing with the age of the agent. In other words,

when learning about the economic environment, the young update more in response

to shocks than the old, consistent with the notion that the young have more dispersed

prior beliefs due to their shorter personal history.2

While intriguing in itself, it is not a priori clear that such cross-sectional evidence

on belief biases has first-order relevance for models of aggregate asset prices and macro-

economic dynamics. Consistent with the view that individual biases wash out in the

aggregate, Ang, Bekaert, and Wei (2007) document, also using survey data on inflation

expectations, that the median inflation forecast outperforms pretty much any other

forecast they construct from available macro and asset price data. Thus, the median

belief across agents appears to be quite ’rational.’ Further, if agents disagree about

states that are particularly important for asset prices and marginal utilities, such as a

Depression state, there are large gains to trade and an optimistic agent may be willing

to provide ample insurance to a ’rational’agent. Chen, Joslin, and Tran (2012) show

in a disaster risk model that only a small fraction of optimistic agents are needed in

order to eliminate most of the risk premium due to disaster risk. Thus, allowing for

belief heterogeneity can affect the asset pricing performance of standard models, but

often in a way that reduces risk and thus makes it harder to fit the stylized facts.

In this paper, we find that generational biases of the form discussed above can

1E.g., Nisbett and Ross (1980), Weber, Boeckenholt, Hilton and Wallace (1993), Hertwig, Barron,
Weber, and Erev (2004).

2In other work, Nagel and Malmendier (2011) argue that investors who experiened the Great De-
pression are more pessismistic about stock returns than (younger) investors who did not. Generational
learning bias also present for investor return expectations over the dot-com boom (Vissing-Jorgenssen,
2003), for mutual fund managers (Greenwood and Nagel, 2009), in Europe (Amphudia and Ehrmann,
2014).
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nevertheless be a key determinant of the joint dynamics of macro aggregates and asset

prices and a significant source of risk that helps account for the stylized facts. We do so

by embedding an experiential learning bias and overlapping generations into otherwise

standard macro-finance models. We consider models with and without severe crisis

events, in order to assess the effects of the bias on aggregate asset prices in a variety

of settings.

To discipline our model, we (i) calibrate the magnitude of the belief bias to the

micro estimates of age effects in macroeconomic expectation formation in Nagel and

Malmendier (2013), and (ii) assume agents are Bayesian when they update beliefs

based on data realized in their lifetime. Together, these restrictions ensure that the

average agent’s beliefs about macro outcomes such as consumption or GDP growth are

very close (in a likelihood ratio sense) to being ’Rational.’ The experiential learning

bias in the model arises as the Young, when born, are endowed with prior beliefs

that are more dispersed than the dying Old’s posterior beliefs. One can think of this

either as an inability to effi ciently process information from before one’s lifetime or

as some information about the economic environment that cannot be communicated

from previous generations to the new Young. Thus, the Young suffers from a ’This

Time is Different’-bias in that they treat their birth effectively as a structural break

in terms of forming expectations about the future. That is, relative to what the full

historical record indicates, the Young will see a sequence of positive shocks as evidence

of a higher average growth rate, they will see the occurence of a severe crisis as a signal

that such crisis are more likely to occur again in the future, and so on.

Specifically, agents have Epstein-Zin preferences and are uncertain about the speci-

fication of the exogenous aggregate stochastic process. There are two generations alive

at each point in time, young and old. Each generation lives for 40 years, so there is a 20

year overlap between generations. When born, agents inherit the mean beliefs about

the model specification from their parent generation (who die and are the previously

Old), but with a prior variance of beliefs that is higher than the posterior variance of

their parent generation’s beliefs. We consider the particular cases where agents are

unsure about the mean growth rate of the economy or the probability of a severe crisis

state. A fully rational, Bayesian agent would eventually learn the true model, but due

to the ’this time is different’OLG feature of the model, parameter learning persists

indefinitely in this economy.

What does this exercise buy us? First, even though agents beliefs are close to ra-
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tional, the generational nature of the bias implies that mistakes are highly persistent.

Of that reason, the aggregate market displays over- and undervaluation of the order of

±30% relative to the rational expectations versions of the models we consider. Aggre-

gate beliefs fluctuate around the true values and so the misvaluation leads to long-run

excess return predictability. Second, this excess volatility helps resolve standard asset

pricing puzzles when agents have Epstein-Zin preferences. Effectively, the persistent

fluctuations in beliefs lead to subjective long-run risks that imply a high ex ante price of

risk even though agents have low risk aversion, as long as the elasticity of substitution

is relatively high (as in Bansal and Yaron (2004); see also Collin-Dufresne, Johannes,

and Lochstoer (2013a)), and the models are able to match the standard asset pricing

moments even though consumption (or technology) growth is in fact i.i.d..

A central prediction of the model is that the aggregate valuations are more sensitive

to macroeconomic shocks when the young control more of the total wealth (including

human capital) in the economy. Consistent with this, we document in the data that the

annual change in the price-dividend ratio is more sensitive to annual contemporaneous

GDP growth when the fraction of young vs. old in the economy is high. Further,

10-year changes in the price-dividend ratio are significantly negatively correlated with

10-year changes in the fraction of young vs. old, again consistent with the model where

the young perceive more risk as they are more unsure about the specification of the

data generating process.

Even though agents in the model are learning only from fundamentals (macroeco-

nomic shocks), past stock market returns can positively impact investors’assessment

of future returns in the model. It is well-documented that investors tend to extrapolate

from recent past stock returns when forming expecations of future stock returns (see

Greenwood and Shleifer (2014) for a survey)– a feature of the data it is hard to match

in a model where agents use only fundamental information when forming beliefs (see

Barberis, Greenwood, Jin, and Shleifer (2014)).

Further, we show, in the case of learning about the probability of a Depression, that

belief uncertainty combined with recursive preferences decreases the impact of optimists

on asset prices. In particular, we find that while the risk premium is decreasing in

the fraction of optimists, the effect is much smaller than in the case where agents

are certain about their beliefs, as is the case in Chen, Joslin, and Tran (2012). In

particular, optimists are less willing to provide disaster state hedges as with Epstein-

Zin preferences the belief uncertainty strongly adversely affects marginal utility. In
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other words, while they think the disaster event is more unlikely than others in the

economy, they still know that they will substantially increase their mean beliefs if a

disaster state is realized and therefore scale back on their speculative activity.

In terms of the dynamics that arise from having heterogeneous agents, the optimal

risk-sharing in the Epstein-Zin model tends to exacerbate the impact of biased beliefs

on asset prices and investment as the more optimistic (pessimistic) agent holds more

(less) stock. A positive (negative) shock is therefore amplified in terms of the wealth-

weighted average belief in this model. This endogenous amplification of shocks is much

stronger when agents have Epstein-Zin preferences as there is a larger difference in the

impact of model risk on utility across the generations when agents are very averse to

model uncertainty (when they have a preference for early resolution of uncertainty).

This means the average difference in portfolio holdings across generations is also large.

This is opposed to the case of power utility where model uncertainty in general has

much less impact on utility.

There are four state-variables in each of the models. Solving the endogenous risk

sharing problem is non-trivial when agents have Epstein-Zin preferences. We solve

the model using a new robust numerical solution methodology developed by Collin-

Dufresne, Johannes, and Lochstoer (2013b) for solving risk-sharing problems in com-

plete markets when agents have recursive preferences. This numerical method does

not rely on approximations to the actual economic problem (e.g., it does not rely on

an expansion around a non-stochastic steady-state) and therefore provides an arbi-

trarily accurate solution (depending of course on the chosen coarseness of grids and

quadratures).3

Related literature. There is a large literature on the effects of differences in beliefs
on asset prices. Harrison and Kreps (1978) and Scheinkman and Xiong (2003) show

how over-valuation can arise when agents have differences in beliefs and there are short

sale constraints. Dumas, Kurshev, and Uppal (2009) consider a general equilibrium,

complete markets model where two agents with identical power utility preferences

disagree about the dynamics of the aggregate endowment. Bhamra and Uppal (2014)

consider two agents with heterogeneous beliefs, different risk aversion and “catching

up with the Joneses’”perferences, Baker, Hollifield, and Osambela (2014) consider a

3Accurate solutions do require effi cient coding in a fast programming language, such as C++
or Fortran, and extensive use of the multiprocessing capability of high-performance desktops. Such
technology is, however, easily available.
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general equilibrium production economy where two agents have heterogeneous beliefs

about the mean productivity growth rate, where the agents agree-to-disagree and do

not update their beliefs (static beliefs). Agents have power utility preferences, and the

authors show that speculation leads to a counter-cyclical risk premium and that the

investment and stock return volatility dynamics are counter-cyclical when agents have

high elasticity of intertemporal substitution. These papers are close to ours along many

dimensions, with the most important exceptions being that our agents have Epstein-Zin

preferences and the overlapping generations feature of our model, which determines the

learning dynamics. A number of the properties of equilibrium are qualitatively similar.

We therefore focus our analysis on the particular implications of agents with recursive

preferences, as compared to the standard time separable CRRA preferences.

A new feature of our model is that agents are not only heterogeneous with respect

to their mean beliefs, but also with respect to the confidence they exhibit in their

beliefs. This is an important feature when agents have recursive preferences as the

level of confidence (the precision of posteriors) determines the magnitude of updates

in beliefs, which are priced with these preferences. Bansal and Shaliastovich (2010)

present an asset pricing model with confidence risk in a representative agent setting.

In our model, the different levels of confidence are strong determinants of the optimal

risk sharing arrangement.

In contemporaneous work, Ehling, Graniero, and Heyerdahl-Larsen (2013) consider

a similar learning bias in an OLG endowment economy framework, but with log utility

preferences. These authors present empirical evidence that the expectations of future

stock returns are more highly correlated with recent past returns for the young than

the old, consistent with the overall evidence given by Malmendier and Nagel (2011,

2013). In other recent work, Choi and Mertens (2013) solve a model with two sets

of infinitely-lived agents with Epstein-Zin preferences, portfolio constraints, where one

set of agents has extrapolative beliefs, in an incomplete markets setting. These authors

estimate the size of the belief bias by backing it out from standard asset price moments,

whereas we calibrate the bias to available micro estimates as given by Malmendier

and Nagel (2011, 2013) and solve an OLG model. Both these authors and Dumas,

Kurshev, and Uppal (2009) have only one set of agents with biased beliefs, while the

generational ’this time is different’-bias leads to multiple agents with biased beliefs.

Thus, the nature of the OLG problem we solve has more state variables as we need to

keep track of the individual beliefs of multiple generations (the young and the old in
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our case). Barberis, Greenwood, Jin, and Shleifer (2014) propose a model where there

are two sets of CARA utility agents—extrapolators and rational—where the former form

beliefs about future asset returns by extrapolating past realized returns, consistent

with survey evidence on investor beliefs. In terms of heterogeneous agent models with

Epstein-Zin preferences, Garleanu and Panageas (2012) solve an OLG model with

Epstein-Zin agents with different preference parameters, while Borovicka (2012) shows

long-run wealth dynamics in a two-agent general equilibrium setting where agents have

Epstein-Zin preferences and differences in beliefs. Finally, Marcet and Sargent (1989),

Sargent (1999), Orphanides and Williams (2005a), and Milani (2007) are prominent

examples of the effects of perpetual, non-Bayesian learning in macro economics.

2 The Model

General equilibrium models with parameter learning and heterogenous beliefs are dif-

ficult to solve as the state space quickly becomes prohibitively large. For that reason,

we focus on settings that are not only simple and tractable, but also quantitatively in-

teresting and which can be easily calibrated to the microeconomic evidence presented

in Malmendier and Nagel (2013).

We assume there are two sets of agents alive at any point in time, young and old.

A generation last for T periods, and each agent lives for 2T periods. Thus, there is

no uncertainty about life expectancy. All young and old agents currently alive were

born at the same time, and agents born at the same time have the same beliefs. These

assumptions imply that (a) there are no hedging demands related to uncertain life span,

and (b) there is a two-agent representation of the economy. The latter is important in

order to minimize the number of state variables. The former is a necessary assumption

for the latter to be true given our learning problem, as shown below.

When an old generation dies, the previously young generation becomes the new old

generation and a new young generation is born. The old leave their wealth for their

offspring. In terms of beliefs, the new young inherit their parent’s mean beliefs in a

manner that will be made precise below.4 The bequest motive is similar to those in a

4The labels ’old’and ’young’ in this model refer to the two generations currently alive. A new
generation could be born, say, every 20 years, which implies the investors in this economy live for 40
years. When the old ’die’they give life to new ’young,’and so ’death’may be thought of as around
age 70 and the new ’young’as around 30 years of age. In other words, the model is stylized in order
to in a transparent manner capture a ’this time is different’-bias related to personal experience in
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Dynasty model, that is, the parents care as much about their offspring as themselves

(with the usual caveat that there is time-discounting in the utility function). Thus,

there are two representative agents from each Dynasty, A and B. Figure 1 provides a

timeline of events related to the cohorts of each dynasty in the model.

Figure 1 - Model timeline

Dynasty A

Dynasty B

t = 0 80q 160q 240q 320q …

Young

Old

Old

Old

OldYoung

Young Young

The “Old” die and leave
their wealth (and mean
beliefs) to the new
“Young.”

Figure 1: The plot shows the timeline of the model over an 80 year period (the model is an
infinite horizon model, so the pattern continues ad infinitum). Model time is in quarters,
and a generation lasts for 20 years (80 quarters), while agent’s "investing lives" are 40 years.
Upon death, represented as an arrowhead in the figure, the Old leave their wealth to their
offspring– the new Young. The Young also inherits their parent generations mean beliefs
about model parameters, but start their lives with a prior variance of beliefs that is higher
than their parents posterior dispersion of beliefs. It is the latter "This Time is Different"
bias that makes experiential learning important for belief formation.

2.1 Aggregate dynamics and cohort belief formation

The agents in the economy are not able to learn the true model specification for ag-

gregate consumption dynamics due to an experiential learning bias. In particular, we

assume agents are Bayesian learners with respect to data they personally observe, e.g.,

aggregate consumption growth realized during their lifetime, but that they downweight

data prior to their lifetime in the following way: the young inherit the mean beliefs

a quantitatively interesting setting. It is not designed to explain all aspects of observed life-cycle
patterns in endowments or consumption-saving decisions.
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about the model of consumption growth from their parents (the dying old), but they

are endowed with more dispersed initial beliefs or uncertainty than their parents had

at the end of their life. This is the source of the ‘This Time is Different’-bias.

We assume aggregate consumption growth is i.i.d., with both standard normal

shocks and ‘disasters,’a small probability of a large negative consumption drop:

∆ct+1 = µ+ σεt+1 + dt+1, (1)

where εt+1
i.i.d.∼ N (0, 1) , and dt+1 = d � 0 with probability p and zero otherwise,

similar to the specification in Barro (2006). We calibrate the size of the consumption

drop to the U.S. Great Depression experience. We assume σ and d are known and that

both ∆ct+1 and dt+1 are observed, but that µ and p are unknown.5

The time t posterior beliefs of agent i about µ are N (mi,t, Ai,tσ
2), where beliefs are

updated according to Bayes rule:

mi,t+1 = mi,t +
Ai,t

1 + Ai,t
(∆ct+1 − dt+1 −mi,t) (2)

and

Ai,t+1 =
Ai,t

1 + Ai,t
. (3)

Agent i’s time t posterior beliefs about p are Beta distributed, with p ∼ β
(
ai,t, A

−1
i,t − ai,t

)
.

The properties of the Beta distribution and Bayes rule then imply that:

Ei
t [p] = ai,tAi,t and V arit [p] =

Ai,t
1 + Ai,t

Ei
t [p]

(
1− Ei

t [p]
)

(4)

and

ai,t+1 =

{
ai,t + 1

ai,t

if dt+1 = d

if dt+1 = 0
, (5)

where the updating equation for Ai,t is as in Equation (3). First, note that if agent i

were to live forever, Ai,∞ = 0 and the variance of her subjective beliefs about both µ and

p would go to zero. Further, mean beliefs would converge to the true parameter values,

5In continuous-time, σ would be learned immediately. The constant d would be known with
certainty after its first realization. Since we consider large jumps, it would be easy for the agent to
assess whether dt+1 = 0 or not. Thus, we lose little by assuming dt+1 is directly oberved, but gain
tractability. It is, however, hard to learn µ and p, which is why we focus on these parameters.
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mi,∞ = µ, and Ei
∞ [p] = p. However, the generational ‘This Time is Different’-bias

implies that learning persists indefinitely. In particular, for a time t that corresponds

to the death of the current old generation, let the posterior beliefs of the old be the

suffi cient statistics mold,t, aold,t and Aold,t. The new young are then assumed to be born

and consume at time t+ 1 with prior beliefs myoung,t = mold,t, Ayoung,t = kAold,t, where

k > 1, and ayoung,t = kaold,t (i.e., Eold
t [p] = Eyoung

t [p]). Thus, the mean parameter

beliefs are inherited by the young, but the prior dispersion of the beliefs of the young is

higher than the posterior dispersion of the old. The constant k determines the amount

of the experiential learning bias, and we set k = A0/
(
A−10 + 2T

)−1
such that the prior

belief dispersion parameter of the young is always 0 < A0 < 1, which ensures that the

beliefs process is stationary. Finally, we assume that the young and old generations

living concurrently do not mutually update, that is, they ‘agree to disagree.’

As should be clear from the preceding discussion, the updating scheme with the

‘This Time is Different’-bias implies that the Young place too much weight on personal

experience relative to a full-information, known parameters benchmark case, consistent

with the micro evidence presented by Malmendier and Nagel (2011, 2013). We compare

the relation to their evidence in more detail in the calibration section.

2.2 Utility and the bequest motive

We assume agents have Epstein and Zin (1989) recursive preferences. In particular,

the value function Vi,t of agent i alive at time t who will ‘die’at time τ > t+ 1 is:

V ρ
i,t = (1− β)Cρ

i,t + βEi
t

[
V α
i,t+1

]ρ/α
. (6)

Here, ρ = 1 − 1/ψ where ψ is the elasticity of intertemporal substitution (EIS) and

α = 1 − γ, where γ is the risk aversion parameter. As shown in Collin-Dufresne,

Johannes, and Lochstoer (2013a), a preference for early resolution of uncertainty, which

the Epstein-Zin preference allow for, greatly magnifies the impact of model learning on

equilibrium asset prices. Thus, to fully evaluate the impact of experiential learning, it is

important to consider preferences more general than the standard CRRA specifications.

In terms of birth and death, an agent’s last consumption date is τ , and at τ + 1

the agent’s offspring, i′, comes to life and starts consuming immediately. The offspring

have different beliefs about the aggregate endowment, as described earlier. We consider
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a bequest function of the form:

Bi (Wi′,τ+1) = φi′ (Xτ+1)Wi′,τ+1, (7)

where Xt is a vector of state variables and Wi,t is the agent i’s wealth at time t. State

variables include all agents’beliefs as well as a measure of the time each class of agent

has been alive (or equivalently, how long until end of life).

With this bequest function, we have that:

V ρ
i,τ = (1− β)Cρ

i,τ + βEi
τ

[
φi′ (Xτ+1)

αWα
i′,τ+1

]ρ/α
. (8)

Substituting in the usual budget constraint, we have:

V ρ
i,τ = (1− β)Cρ

i,τ + β (Wi,τ − Ci,τ )ρEi
τ

[
φi′ (Xτ+1)

αRα
wi,τ+1

]ρ/α
. (9)

The first order condition over consumption implies that

ρ (1− β)Cρ−1
i,τ = ρβ (Wi,τ − Ci,τ )ρ−1 µρi,τ ,

(10)

equivalently,

µi,τ =

(
1− β
β

)1/ρ(
Wi,τ

Ci,τ
− 1

)(1−ρ)/ρ
, (11)

where the certainty equivalent is µi,τ = Ei
τ

[
φi′ (Xτ+1)

αRα
wi,τ+1

]1/α
. Inserting this back

into the value function,

Vi,τ
Wi,τ

= (1− β)1/ρ
(
Wi,τ

Ci,τ

)1/ρ−1
. (12)

The W/C ratio is a function of the state variables Xt. Let:

φi (Xt) = (1− β)1/ρ
(
Wi,τ

Ci,τ

)1/ρ−1
. (13)

Then, Vi,t = φi (Xt)Wi,t for each t during the life of agent i. Since i was a general agent,

it follows that Bi (Wi′,τ+1) = Vi′,τ+1. In this sense, the bequest function is dynastic,
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where the agent cares ‘as much’about their offspring as themselves. Note that the

expectation of the offspring’s indirect utility is taken using the parent generation’s

beliefs. Thus, each dynasty can be represented as an agent that has the dispersion of

beliefs reset every 2T periods as in the generational belief transmission explained in

Section 2.1.

When there is no model/parameter uncertainty (that is, a full-information or the

rational expectations case corresponding to k = 1 and t =∞), the model reduces to an
infinitely-lived Epstein-Zin representative agent with the same preference parameters as

those assumed above (β, γ, ψ). This agent, together with the maintained assumption

of i.i.d. consumption growth, implies that the risk premium, the risk-free rate, the

price-dividend ratio, and the price of risk are all constant in this benchmark economy.

2.3 The consumption sharing rule and model solution

We assume markets are complete, so each agent’s intertemporal marginal rates of

substitution are equal for each state (∆ct, dt) .We index the two agents in the economy

as belonging to Dynasty A or Dynasty B, where as explained above a Dynasty consists

of a lineage of parent-child relations. Given Equations (6), (7), and (13), and the

assumption of complete markets, we have that the two representative agents’ratios

of marginal utilities are equalized in each state (i.e., the stochastic discount factor

is unique and both agents’IMRS price assets given the respective agent’s subjective

beliefs):

πA (∆ct+1, dt+1|Xt)

(
cA,t+1
cA,t

)ρ−1(
vA,t+1

µA,t (vA,t+1Ct+1/Ct)

)α−ρ
= ...

πB (∆ct+1, dt+1|Xt)

(
1− cA,t+1
1− cA,t

)ρ−1(
vB,t+1

µB,t (vB,t+1Ct+1/Ct)

)α−ρ
. (14)

Here, Xt, which will be defined below, holds the total set of state variables in the econ-

omy, including the suffi cient statistics for each agent’s beliefs. The conditional beliefs

about the joint state (∆ct+1, dt+1) can be further decomposed as πi (∆ct+1, dt+1|Xt) =

πi (∆ct+1 − dt+1|mi,t, Ai,t) π
i (dt+1|ai,t, Ai,t) given the independence between εt+1 and

dt+1 and the assumption that agents agree-to-disagree. Further, we in Equation (14)

set ci,t ≡ Ci,t/Ct, vi,t ≡ Vi,t/Ct and impose the goods market clearing condition

cA,t + cB,t = 1⇐⇒ CA,t + CB,t = Ct for all t.
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With recursive preferences the value functions appear in the intertemporal marginal

rates of substitution. Thus, unlike in the special case of power utility, Equation (14)

does not provide us with an analytical solution for the evolution of the endogenous

state variable– the relative consumption (or equivalently, wealth) of agent A. This

complicates significantly the model solution. We solve the model using the numerical

solution technique given in Collin-Dufresne, Johannes, and Lochstoer (2013b) using

a backwards recursion algorithm that solves numerically for the consumption sharing

rule starting at a distant terminal date for the economy, T̃ . The solution corresponds

to the infinite horizon economy when the transversality condition is satisfied and T̃ is

chosen suffi ciently far into the future (e.g., 500+ years). The solution technique does

not approximate the objective function and thus, with the caveat that it is numerical,

provides an exact solution to the model. See the Appendix for further details.

The state variables in this model are mA,t, mB,t, aA,t, aB,t, cA,t, and t. Time t is

a suffi cient statistic for A(i=A,B),t as Ai,t is deterministic. We note that for general ρ

and α, the prior distributions for the mean growth rate µ and the jump probability p

must be truncated in order to have existence of equilibrium. The truncation bounds

do not affect the updating equations, but mi,t and ai,tAi,t no longer in general exactly

correspond to the conditional mean beliefs about µ and p.

2.4 Model Discussion

With Epstein-Zin preferences and a preference for early resolution of uncertainty (γ >

1/ψ) the agents are averse to long-run risks (see Bansal and Yaron (2004)). Parameter

learning induces subjective long-run consumption risks as the conditional distribution

of future consumption growth varies in a very persistent manner as agents’update their

beliefs (see Equations (2), (3), and (5)). Collin-Dufresne, Johannes, and Lochstoer

(2013a) show in the case of a representative agent that parameter and model learning

can be a tremendous amplifier of macro shocks in terms of their impact on marginal

utility with such preferences.

The same amplification mechanism is at work in the model at hand, but, impor-

tantly, there is (a) speculation and risk-sharing across generations related to the model

uncertainty and (b) learning persists indefinitely. The former arises as agents that differ

in their assessment of probabilities of future states will trade with each other to take

advantage of what they perceive to be the erroneous beliefs of other agents. That is,
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bad states that are perceived as less likely from the perspective of agent A relative

to that of agent B will be states for which agent B will buy insurance from agent A

and vice versa, thus making each agent better off given their beliefs. These effects will

serve to decrease the risk premium and undo some of the asset pricing effects of the

long-run risks that arise endogenously from parameter learning. However, the latter

element of the ’this time is different’-bias works in the opposite direction in that the

magnitude of belief updates from parameter learning remains high indefinitely and so

agents are permanently faced with a substantial degree of long-run risk induced by

model uncertainty.

2.5 Model Calibration

2.5.1 The belief process

The belief process of the stationary equilibrium in the model is governed by A0– the

parameter that controls the severity of the ’This Time is Different’-bias. We calibrate

this parameter to be consistent with the micro-evidence documented by Malmendier

and Nagel (2013). In particular, Malmendier and Nagel (2013) estimate the sensitivity

of the young (at age 30) to updates in beliefs from model learning to be about 2.5% of

the size of the macro shock (in their case, quarterly inflation). Towards the end of their

life (at age 70), the old have a sensitivity of about 1%. The estimates provided are based

on inflation data and survey forecasts using available data in the post-WW2 period,

and so these do not correspond to more extreme periods like the Great Depression.

We therefore calibrate the value of A0 to be 0.025, such that the updates in beliefs

of the young from a ’regular’quarterly macro shock (ε in our model) is about 2.5%

of the size of the macro shock, consistent with the estimate of Malmendier and Nagel

(2013).6 This implies that k = 0.025/(1/0.025 + 160)−1 = 5, when T = 80.

6This calculation is based on the following. With a prior µ ∼ N
(
m0, A0σ

2
)
, the subjective

consumption dynamics for the next period are:

∆c1 = m0 +
√
A0 + 1σε̃t+1,

and the update in belief can be written:

m1 = m0 +
A0√
A0 + 1

σε̃t+1.

Thus, the sensitivity of the update in mean beliefs to the macro shock when A0 = 0.025 is 0.025√
0.025+1

≈
0.025. The old then have a posterior sensitivity to shocks of 0.5% of the size of the shock, somewhat
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Figure 2 - Belief formation:

Weights on lagged data
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Figure 2: The top plot shows the weights the agent puts in increasingly lagged data when
forming beliefs, as estimated by Malmendier and Nagel (2013). The solid line shows the
weights corresponding to a 35-year old agent, the dashed line a 50-year old agent, and the
dashed-dotted line a 65-year old agent. The weights are in this case zero for observations
before the agent was born. The lower plot shows the corresponding weights for the Baysian
agents in the "This Time is Different"-model. The kink corresponds to a generational shift,
assuming the agent is born as ’Young’at age 30. The weights for the preceding years are
calculated using Bayes rule with the assumed increase in prior variance at each generational
shift. The belief-weights are in this case flat within a generation due to Bayesian within-
generation learning.

lower than that estimated by Malmendier and Nagel. Note that a different learning problem, for
instance learning about a persistence parameter, would lead to slower learning relative to the simple
learning about the mean case that we consider here. The micro estimates from Malmendier and
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Figure 2 plots the weights lagged consumption data are given when forming beliefs,

as implied by the Bayesian-based learning scheme and the estimates of Malmendier

and Nagel (2013). The two learning schemes are quite close, though the Bayesian

learning has longer memory and is more effi cient in that the agent more quickly puts

a lower weight on recent evidence. We chose Bayesian within-generation learning as

a parsimonious way of ensuring that learning is consistent across different dimensions

of uncertainty. We find this particularly useful since we, in addition to learning from

quarterly data about the mean growth rate, also consider rare disasters. Malmendier

and Nagel’s estimates imply a zero weight on data from before one is born. This

seems extreme when considering rare events. For instance, the Great Depression is

a data point that it is reasonable to assume that agents alive today (and that did

not personally experience this event) still consider a possibility, however remote, when

pricing assets. The Bayesian agent does not forget, though an absence of Depression

observations over a couple of generations clearly would lead these agents to assign a

lower probability to the event.

So, how irrational are our representative agents? Consider the following experiment.

Record the beliefs about consumption dynamics from a particular Dynasty over time

and then ask how long it on average takes to at the 5% level to reject the average of the

agents’subjective model, as given by Equations (2)—(5)), relative to the true model, as

given in Equation (1). We answer this by comparing the sequential model probabilities

over time, averaged across 100,000 simulations, given an initial model probability of

50/50 where the initial mean beliefs of the agent is centered around truth.7 Figure 3

gives the average evolution of the model probability of the agents’model over time.

When agents are learning both about µ (upper plot), it takes on average about 400

years before the ’This Time is Different’-bias is detected at the 5% level, while if the

agent is learning about p it takes about 350 years (lower plot) Thus, it is very hard to

Nagel do not correspond directly to the learning problem we consider, both since they allow for a
non-Bayesian learning scheme and because they consider a different model (not just learning about a
mean parameter). A more general learning model leads to many more state variables and is left for
future research.

7The sequential updating of the probability of the ’This Time is Different’learning model versus
the true iid model, pM,t+1, is:

pM,t+1 =
L (∆ct+1, dt+1|MTTiD, at,mt, At) pM,t

L (∆ct+1, dt+1|MTTiD, at,mt, At) pM,t + L (∆ct+1, dt+1|Miid) (1− pM,t)
.
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learn, using only time series data, that the belief formation process of a representative

agent is not correct. On the other hand, it is immediate to find this in the cross-

section of agents as the Young update beliefs differently from the Old, even though

they observe the same shock.

Figure 3 - Model Probability: Agent Beliefs vs. Truth
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Figure 3: The top plot shows the probability of the subjective consumption dynamics as
perceived by each agent, averaged across agents, versus the true model specification. The
probabilities are in each case the mean outcomes across 20,000 simulations. The upper plot
shows the case of "Learning about the Mean" and the lower plot shows the case of "Learning
about a Depression Probability." The initial model probability is set at 50% and the x-axis
is the observed sample length in quarters.
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2.5.2 Preference and consumption parameters

We assume a generations lasts for 20 years, and so T = 80. We separately consider

models with learning about the mean parameter µ or the jump probability p. First,

this makes it easier to understand what is driving what in terms of asset pricing and

risk-sharing implications. Second, considering the two cases separately reduces the

state space by two variables, which means the model can be solved very accurately

overnight, whereas the full model takes a full month to solve with reasonable accuracy

given our current computing capabilities.

In the ’Uncertain mean’-calibration, we let the preference parameters be γ = 10,

ψ = 1.5 and β = 0.994, the true mean µ = 0.45% and σ = 1.35%, while d = 0. I.e.,

there are no Depressions in this calibration. In the ’Uncertain probability’-calibration,

we let γ = 5, ψ = 1.5 and β = 0.994. Thus, the risk-aversion is half of that in the former

case, but otherwise the preference parameters are the same. We set the risk aversion

parameter in both models so that the Sharpe ratio on the equity claim is similar to

that in the data. The true quarterly probability of a Depression, p = 1.7%/4, is set

consistent with the estimate used in Barro (2006), while the consumption drop in a

Depression, d, is -18%. Finally, we let µ = 0.53% and σ = 0.8% in this calibration so

as to match the mean and volatility of time-averaged consumption growth also in this

case.

In the Great Depression, per capita real log consumption dropped by 18% from 1929

through 1933 (using data from the National Income and Product Accounts data from

the Bureau of Economic Analysis). Of course, this four-year decline is quite different

from a quarterly drop of 18%. However, since agents have Epstein-Zin preferences with

γ > 1/ψ, the risk-pricing is related to the overall drop in consumption, so unlike for

the power utility case, this distinction is not as important. Modeling true consumption

as i.i.d. significantly simplifies the learning problem (in particular, the number of

state variables as opposed to a more realistic, persistent Depression state), and has

the nice property that the benchmark model without the ’This Time is Different’-bias

has no interesting dynamics and so it will be easy to see what additional asset pricing

implications this particular bias buys us. We also consider power utility versions of the

economies to assess the role of the EIS, ψ. Table 1 shows all relevant model parameters.

In order to ensure existence of equilibrium, we truncate the priors for the mean
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Table 1 - Parameter values for Exchange Economy

Table 1: The top half of this table gives the preference parameters used in the two calibrations
of the model. ’Uncertain Mean’refers to the calibration where log consumption growth is
Normally distributed and agents are uncertain about the mean growth rate, while ’Uncertain
Probability’refers to the case where log consumption growth also has a ’Depression’shock
and where agents are uncertain about the probability of such a shock. The bottom half of
the table gives the value for the parameters govern the consumption dynamics and agents
beliefs. The numbers correspond to the quarterly frequency of the model calibration.

Preference parameters: Uncertain Mean Uncertain Probability

γ (risk aversion parameter) 10 5
ψ (elasticity of intertemporal substitution) 1.5 1.5
β (quarterly time discounting) 0.994 0.994

Priors and consumption parameters: Uncertain Mean Uncertain Probability

A0 (’This Time is Different’-parameter) 0.025 0.025
T (length of a generation in quarters) 80 80
σ (volatility of Normal shocks) 1.35% 0.80%

µ (true mean in ’normal times’) 0.45% 0.53%
m (upper truncation point of µ prior) 1.35% n/a
m (lower truncation point of µ prior) −0.45% n/a

p (upper truncation point of p prior) n/a 0.04000
p (lower truncation point of p prior) n/a 0.00001

p (true probability of Depression) n/a 0.00425
d (consumption shock in Depression) n/a -18%

growth rate and the Depression probability for the respective models. In particular,

the upper (lower) bound for the prior over µ are 1.35% (-0.45%), while the upper

(lower) bound for the prior over p are 0.04 (0.00001). Given that the prior standard

deviations of beliefs when born are 0.21% for the mean and 0.01 for the probability,

the truncation bounds are quite wide and therefore typically will not strongly affect

the update in mean beliefs relative to the untruncated prior cases.

The equity claim is a claim to an exogenous dividend stream specified as in Camp-

bell and Cochrane (1999):

∆dt+1 = λ∆ct+1 + σdηt+1, (15)
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where λ = 3 is a leverage parameter and σd = 5% is the volatility of idiosyncratic

dividend growth.

3 Results from the Exchange Economy Model

We first describe the dynamic portfolio allocations and implied risk-sharing of the two

agents and thereafter focus on the asset pricing implications of the model.

3.1 Portfolio allocation and risk-sharing

An unsurprising outcome of having two agents with differences in beliefs is that the

more optimistic (pessimistic) agent will tend to hold a larger (smaller) portfolio share

in assets that pay off in good states. While this is true in the model at hand as

well, we focus on the novel implications of our model, which also features (a) agents

with differences in the confidence of, or uncertainty over, their mean beliefs (AA,t vs

AB,t) and (b) recursive utility and therefore high perceived risk (and benefits from

risk-sharing) arising from model uncertainty and learning.

Before we describe the portfolio allocations a couple of definitions are in order.

First, total wealth in the economy is the value of the claim to aggregate consumption.

Second, since we solve a discrete-time, complete markets problem where one of the

shocks has a continuous support (ε), the complete portfolio choice decisions of agents

involve positions in principle in an infinite set of Arrow-Debreu securities. To convey

the portfolio decisions of the agents in a simple (first-order) manner, we define the

weight implicit in the total wealth portfolio of agent i as the local sensitivity of the

return to agent i’s wealth to a small shock to total wealth (as arising from an aggregate ε

shock close to zero). In the continuous-time limit for the ’Uncertain Mean’-calibration,

this local sensitivity is exactly the current portfolio allocation of agent i in the total

wealth portfolio (because in this case, markets would be dynamically complete with two

assets). When evaluating the ’Uncertain Probability’-calibration, we evaluate changes

in relative wealth resulting from whether a Depression shock occurred or not.

3.1.1 ’Uncertain Mean’-case

Figure 4 shows how risk-sharing operates in the ’Uncertain Mean’-economy. In partic-

ular, the change in the relative wealth share of the Young is plotted against realizations
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of the aggregate shock (log aggregate consumption growth).8 The current wealth of the

two agents is assumed equal and both agents are in the middle age of their respective

generations (age 10yr and 30yr). In addition, the current mean beliefs of the Old are

assumed to be unbiased, mOld,t = µ.

Two features of the model stand out. First, in the upper left plot, the case where

the beliefs of the Young also are unbiased (the solid line) shows that the Old are in

fact insuring the Young against bad states even when the mean beliefs coincide. This

happens also when agents have Power utility preferences (ψ = 0.1; see the lower left

plot) and is because the Young perceive the world to be more risky than the Old as

they are more uncertain about their mean beliefs about µ than the Old are. Second,

it is clear in the unbiased case that when γ > 1/ψ the Old are insuring the Young to

a larger extent than in the power utility case. This is because a preference for early

resolution of uncertainty leads to model uncertainty being perceived as much more

risky than in when agents are indifferent to the timing of resolution of uncertainty

as in the power utility case (see Collin-Dufresne, Johannes, and Lochstoer (2013a)).

Therefore, the difference in confidence leads to the Young perceiving the world as a

more risky place, unconditionally. If the Young are suffi ciently optimistic (here, about

2 standard deviations above the mean over a life time), the Young are in fact insuring

the Old who are more pessimistic, and vice versa for the case where the Young are

pessimistic (about 2-standard deviations below the mean over a life time).

The right-hand plots of Figure 4 show the portfolio weight of the Old versus the

Young over the span of a generation (80 quarters). The wealth is held equal across

the two agents and the beliefs of both agents are assumed to be unbiased over time.

With recursive utility, the Old start with a portfolio allocation of 1.45 (145%) to the

total wealth portfolio, while the Young starts with 0.55. Subsequently both are pulled

towards 1 as the difference in the dispersion of beliefs decreases over time. This is

an artifact of Bayesian learning in this case, as can be seen from Equation (3), where

the variance of beliefs decreases more rapidly when prior uncertainty is high than low.

Right before the generational shift, there is still a substantial difference, about 1.15

versus 0.85.
8To be precise, the plot shows the log return on the wealth of the Young minus the log return to

total wealth.
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Figure 4 - "Uncertain Mean"-case: Risk-sharing and portfolio allocations
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Figure 4: The left plots show the change in the wealth share of the Young for different
realizations of the aggregate shock (consumption growth). The current wealth of the agents
is set equal, the current age of the Young and the Old are in the middle of their generations
(at 10 and 30 years, respectively), and the current beliefs of the Old are unbiased. The solid
line shows the change in the relative wealth share when the current beliefs of the Young are
also unbiased, whereas the red dashed line shows the case where the Young are pessimistic
(the belief of the mean growth rate 2 standard deviations below the true mean), and the
dash-dotted line shows the case where the Young are optimistic (2 standard deviations above
the true mean)). The right plots show the portfolio allocation of the Young and the Old
agent over time (from 1 to 80 quarters), where beliefs are held unbiased and the wealth-share
is held equal across agents. The top plots show the result from the ’EZ’case whereas the
bottom plots show the result from the ’Power’case.
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With power utility preferences, however, the portfolio choice is markedly differ-

ent. First, portfolio weights barely budge over time and they are quite close, about

1.05 versus 0.95. Second, it is the Young who are more exposed to the total wealth

fluctuations and thus has a higher portfolio weight. This somewhat counter-intuitive

result is due to the fact that total wealth covaries positively with marginal utility in

this case due to the low level of the elasticity of substitution. For instance, an up-

ward update in the mean belief of the growth rate, due to a positive consumption

shock, lowers the price/consumption ratio as the wealth effect dominates (as now

ψ = 1/γ < 1). This effect is strong enough to make the return to total wealth posi-

tively related to marginal utility. The Young still perceive model risk as higher than

the Old (remember, the subjective consumption dynamics in the ’Uncertain Mean’-case

are ∆ct+1 = mi,t+
√

1 + Ai,tσεt+1, so this follows since AY oung,t > AOld,t), but given the

negative correlation between total wealth returns and aggregate consumption growth

and the resulting negative risk premium on the total wealth portfolio, the Old hedges

the Young by holding less of the total wealth claim.

The reason the portfolio share does not move much over time (holding beliefs and

wealth constant) in the power utility case is again because with power utility, and

the indifference to the timing of resolution of uncertainty, model uncertainty is simply

not very important for total welfare. Thus, while the Young experience more model

uncertainty relative to the Old, neither agent care very much about it. In the recursive

utility case, however, the agents experience large utility losses from being faced with

model uncertainty. In particular, the amount of long-run risk is proportional to the size

of the update in mean beliefs, which from Equation (2) is Atσ. In the middle of their

respective generations, the relative difference in perception of short run risk (
√

1 + Atσ)

between the Young and the Old is 0.3%, while the relative difference in long-run risk

(Atσ) is 67%. Thus, with recursive utility there is a much bigger difference in perceived

risk between the two agents, which is also why both the dynamics of portfolio allocation

and asset prices (as we show in the next Section) are much more pronounced in this

case.

3.1.2 ’Uncertain Probability’-case

In the case where the probability of a Depression is not known to agents, the differences

portfolio allocation are manifest in terms of differential wealth exposure to the Depres-
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Figure 5 - "Uncertain Probability"-case: Risk-sharing
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Figure 5: The left plots show the change in the wealth share of the Young for different
realizations of the Depression shock (0% or -18%). The current wealth of the agents is set
equal, the current age of the Young and the Old are in the middle of their generations (at
10 and 30 years, respectively), and the current beliefs of the Old are unbiased. The solid
line shows the change in the relative wealth share when the current beliefs of the Young are
also unbiased, whereas the red dashed line shows the case where the Young are pessimistic
(the belief of the mean growth rate 2 standard deviations below the true mean), and the
dash-dotted line shows the case where the Young are optimistic (2 standard deviations above
the true mean)). The right plots show the same but when Young holds 90% of the wealth
in the economy. The top plots show the result from the ’EZ’case whereas the bottom plots
show the result from the ’Power’case.

sion event. Therefore, we plot the log change in the relative wealth of the Young (start-

ing from a 50% wealth share) in the relevant cases dt+1 = 0 and dt+1 = −18%. The left
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plots in Figure 5 show the case where the agents have the same level of wealth before the

shock for the EZ calibration (top plot) and the power utility calibration (lower plot),

where the Old have unbiased beliefs (EOld
t [p] = p). When the Young also are unbiased,

the Old still provide insurance against the Depression event and, as in the previous

case, more so with Epstein-Zin utility than with power utility preferences. Also as in

the previous case, when the Young are optimistic (EY oung
t [p] = 0.0001 < p = 0.00425)

they provide insurance to the unbiased Old, while the reverse is true when the Young

are pessimistic (EY oung
t [p] = 0.02 > p = 0.00425).

The right-hand plots show the same for the case when the wealth share of the Young

is 90%. The Old clearly provide less insurance to the Young in this case when the Young

are pessimistic. Thus, relative to the case in Chen, Joslin, and Tran (2012), where

agents agree to disagree and are certain about their beliefs about the probability of a

disaster, the case of uncertain beliefs feature less aggressive risk-sharing/speculation.

We will make this point precise when discussing the conditional risk premium below.

3.2 Asset pricing implications

3.2.1 Unconditional Moments

Table 2 shows the unconditional moments from 10,000 simulations of length 247 quar-

ters, as in the data sample for the "Uncertain Mean"-case. The simulations have a 2000

period burn-in period to avoid the effects of initial conditions. The table standard mo-

ments from four versions of the model– two cases where agents suffer from the ’This

Time is Different’-bias, with Epstein-Zin and power utility preferences, respectively,

the benchmark case where agents know the mean parameter, and the one-agent case

where there is only one dynasty and therefore no effects of risk sharing.9 Table 3 shows

the corresponding for the "Uncertain probability"-case.

Introducing the ’This Time is Different’-bias has strong implications for asset pric-

ing, whether agents have Epstein-Zin or power utility. In the former case, the equity

9For the power utility specifications, it was necessary to tighten the truncation bounds somewhat
to ensure finite utility. Since consumption growth is i.i.d., Sharpe ratios and risk premiums are the
same in the power utility and Epstein-Zin economies in the known parameter case and we therefore
only present for the EZ known parameter case.
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Table 2 - Unconditional Moments: Learning about the Mean

Table 2: This table gives average sample moments from 10,000 simulations of 247 quar-
ters from the "Uncertain mean"-calibration. The columns labelled "EZ" correspond to the
calibrations given in Table 1. The "Power" columns have the EIS parameter, ψ, set such
that agents have power utility. the column labelled "Known mean" corresponds to moments
from the benchmark case where agents know the true mean growth rate of the economy and
therefore are not subject to the ’This Time is Different’-bias. The column "One agent" cor-
responds to the case where there is only one dynasty in the economy and therefore no effects
of risk-sharing across agents.

Data ’This Time is Different’ Known mean One agent

EZ: γ = 10 Power: γ=10 EZ: γ = 10 EZ: γ = 10

ψ = 1.5 ψ = 1/10 ψ = 1.5 ψ = 1.5

1929− 2011 β = 0.994 β = 0.994 β = 0.994 β = 0.994

ET
[
rm − rf

]
5.1 5.2 0.1 1.5 4.5

σT
[
rm − rf

]
20.2 16.6 10.5 12.9 15.5

SRT
[
rm − rf

]
0.25 0.31 0.01 0.12 0.29

ET
[
rf
]

0.86 2.4 18.7 3.4 0.16

σT
[
rf
]

0.97 0.3 2.6 0.0 0.86

σT [Mt+1] /ET [Mt+1] - 0.51 0.20 0.27 0.49

γ × σT [∆ct+1] - 0.27 0.27 0.27 0.27

ET [∆ct+1] 1.8% 1.8% 1.8% 1.8% 1.8%

σT

[
∆cTAt+1

]
2.2% 2.2% 2.2% 2.2% 2.2%

risk premium increases by a factor more than 3, while the Sharpe ratio and price of

risk increases by a factor more than 2, relative to the known parameters cases, match-

ing the data well. In the latter case, however, the risk premium and Sharpe ratio on

equity decreases, as a ’positive’update in beliefs decreases the price-dividend ratio and

therefore the absolute value of the covariance between the pricing kernel and the equity

return.

The asset pricing implications of the ’This Time is Different’-bias are similar to

the parameter learning effects already documented in Collin-Dufresne, Johannes, and

Lochstoer (2013a). What is different is that (a) the moments in Tables 2 and 3 reflect

a stationary, long-run equilibrium and not a transient phenomenon, and (b) that there

are two agents that agree to disagree. The latter effect typically leads to a reduction in
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Table 3 - Unconditional Moments: Learning about Disaster Probability

Table 3: This table gives average sample moments from 10,000 simulations of 247 quarters
from the "Uncertain probability"-calibration. The columns labelled "EZ" correspond to the
calibrations given in Table 1. The "Power" columns have the EIS parameter, ψ, set such
that agents have power utility. the column labelled "Known prob." corresponds to moments
from the benchmark case where agents know the true probability of a Depression event and
therefore are not subject to the ’This Time is Different’-bias. The column "One agent"
corresponds to the case where there is only one dynasty in the economy and therefore no
effects of risk-sharing across agents.

Data ’This Time is Different’ Known prob. One agent

EZ: γ = 5 Power: γ=5 EZ: γ = 5 EZ: γ = 5

ψ = 1.5 ψ = 1/5 ψ = 1.5 ψ = 1.5

1929− 2011 β = 0.994 β = 0.994 β = 0.994 β = 0.994

ET
[
rm − rf

]
5.1 4.9 0.2 1.7 6.2

σT
[
rm − rf

]
20.2 16.7 12.1 13.2 18.1

SRT
[
rm − rf

]
0.25 0.30 0.01 0.13 0.35

ET
[
rf
]

0.86 1.8 10.7 3.2 1.4

σT
[
rf
]

0.97 0.9 1.4 0.1 1.4

σT [Mt+1] /ET [Mt+1] - 0.69 0.17 0.20 0.86

γ × σT [∆ct+1] - 0.135 0.135 0.135 0.135

ET [∆ct+1] 1.8% 1.8% 1.8% 1.8% 1.8%

σT

[
∆cTAt+1

]
2.2% 2.2% 2.2% 2.2% 2.2%

unconditional Sharpe ratios and risk premiums as the optimists tend to hold more of

the risky asset. This also happens here, as can be seen by the price of risk for the power

utility case, which is lower than the price of risk for the known parameters benchmark

case. If there was only one agent with learning, these would be very close with the

learning case having a slightly higher price of risk. However, with the ’This Time is

Different’-bias and two agents, the price of risk drops from 0.27 in the benchmark i.i.d.

case to 0.20 in the power utility case as speculation and the presence of optimists in

the market decreases the required average risk compensation. In the Epstein-Zin case

with learning, however, the price of risk increases to 0.51. Thus, the model uncertainty

risk channel dominates with these preferences. This is underscored by noting that the

unconditional sample moments corresponding to the ’one agent’-cases in these tables
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are similar to that of the two-agent economies. Thus, unlike what is the case in Chen,

Joslin, and Tran (2012), it seems risk-sharing does not strongly affect the unconditional

sample moments– a feature we discuss more below.

3.2.2 Wealth dynamics and risk pricing

Figure 6 - Wealth dynamics and the risk premium

Figure 6: The figure shows the conditional annualized equity risk premium versus the current
relative consumption of the Young, for the case with an uncertain Depression probability.
Both the Old and the Young are assumed to be in the middle of their respective generations.
"Power" refers to models where the agents have power utility, whereas "EZ" refers to models
where agents have Epstein-Zin utility with γ > 1/ψ. The dashed lines correspond to the
case where the mean beliefs of the agents coincide. The solid line corresponds to the case
where the Young have pessimistic mean beliefs, while the Old have optimistic mean beliefs.
The green line with the long dashes in the bottom right graph corresponds to the case where
instead the Young are optimists and the Old are pessismists.

With heterogenous beliefs the relative wealth of agents in the economy arise as

an additional state variable. In our setting, this endogenous state variable affects
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asset prices in two distinct ways. First, consistent with previous literature, if there are

optimist (pessimists) in the market, risk premiums and Sharpe ratios are lower (higher)

under the objective measure. Second, and particular to the belief heterogeneity in the

generational ’This Time is Different’model, the heterogeneity in agents’ confidence

in their beliefs matters. As discussed earlier, this uncertainty has particularly strong

effects on asset prices when agents have Epstein-Zin utility. Thus, even if agents’mean

beliefs coincide, an increase in, say, the wealth of the Young affects asset prices as the

wealth-weighted beliefs are now more uncertain.

Figure 6 shows the annualized equity risk premium (under the objective mea-

sure) for the ’Unknown probability’-case plotted against the consumption share of the

Young– i.e., the agent that perceives more model uncertainty. As before, the agents

are in the middle of their respective generations in terms of their age. The dashed

blue lines correspond to the case where the agents’mean beliefs about the Depression

probability coincide (and are set approximately equal to the true value). The bottom

right plot shows the main case where beliefs are uncertain (due to the ’This Time is

Different’-bias) and agents have Epstein-Zin preferences. Here the equity risk premium

increases from 4% when all the wealth are in the hands of the Old to over 10% when

the Young hold all the wealth. The consumption share varies between 0.3 and 0.7 in

simulations, so in practice the range of variation in the risk premium resulting from

variation in the relative wealth of agents is from 5% to 8%. The bottom left plot shows

the same economy but where agents have power utility preferences. Note that the blue

line here barely budges, as in this case the model uncertainty has a very low risk price.

That is, the aforementioned source of wealth-dynamics-induced variation in the price

of risk is absent when agents have power utility.

Another source of variation in the risk premium that is due to the wealth dynamics

is, as mentioned, the difference in mean beliefs. The solid red lines show the case where

the Young agent is pessimistic (EY oung
t [p] = 0.02) and the Old agent is optimistic

(EOld
t [p] = 0.001). For the both the power utility and the EZ cases, the risk premium

is increasing the more wealth are given to the pessimistic agent (in this example, the

Young). However, note that the sensitivity of the risk premium to the amount of

consumption of the optimistic agent is much higher for the power utility case when

the wealth of the optimistic agent is low. In particular, the risk premium decreases

from 6% to 0.5% when the relative consumption share of optimists goes from 0 to

0.5. This echoes the finding of Chen, Joslin, and Tran (2012), who document that in
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terms of the pricing of disaster risk, the risk premium decreases precipitously when

only a small mass (e.g., 10-20% of total wealth) of optimists are introduced in the

model. Thus, the disaster model does not seem robust to a reasonable amount of belief

heterogeneity. In the EZ case, however, the same change in the consumption share of

the optimists (the Old in this example), decreases the risk premium from about 12%

to about 6%. In other words, the strong nonlinearity found in the power utility case

is no present when agents have EZ preferences and face model uncertainty. Note that

in both cases agents are learning, subject to the ’This Time is Different’-bias. In fact,

the two top plots shows the same graphs for the case where agents do not learn and

are perfectly certain about their (different) beliefs, as in the model of Chen, Joslin,

and Tran (2012). Here, each agent remains an optimist or pessimist forever, with no

updating of beliefs. Since there are no model-uncertainty-induced long-run risks in

this case, both the EZ and the power utility cases exhibit the strong nonlinearity and

fragility of the disaster model with respect to belief heterogeneity. In sum, allowing

for uncertain beliefs, learning, and Epstein-Zin preferences renders the disaster model

more robust along this dimension.

These two sources of excess return predictability, as well as the common movements

in beliefs, makes standard excess return forecasting regressions using the lagged divi-

dend yield as the predictive variable find a significant and positive relation (for the EZ

model) between the dividend yield and future excess returns, as in the data. We do

not report such regressions for brevity.

3.2.3 Over- and undervaluation vs beliefs

The model features periods of over- and undervaluation, as agents at times become

either too optimistic (after a sequence of positive Normal shocks or a lack of Depression

shocks) or too pessimistic (after a sequence of negative Normal shocks or a recent

Depression shock) relative to the true model. Given that agents beliefs are close to

rational—agents update as Bayesian during their lifetime and therefore have mean beliefs

close to the truth—one may think the asset misvaluation must be quite small. This is

not the case. The reason is that while the belief updates are quite ’small,’ they are

very persistent. Thus, they affect valuations strongly. In this section, we show, through

simulated paths from the model, how big these misvaluations can be.
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Figure 7 - "Uncertain Mean": Simulated Paths
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Figure 7: The figure shows time series statistics from the ’Uncertain mean’model. The
consumption shocks are taken from U.S. post-WW2 data, from 1947Q2 to 2009Q4.

’Uncertain mean’-case The top left plot of Figure 7 shows the mean beliefs about

the mean parameter, µ, of the two agents using actual consumption shocks (real per

capita quarterly U.S. consumption growth from 1947 to 2009). We set the prior mean

beliefs equal to truth for both agents in 1947Q1 and let the agent from Dynasty A

start out as a new Young, while the agent from Dynasty B starts out as just having

become Old. The mean beliefs are annualized. The blue slide (red dashed) line shows

the mean beliefs of the agent from Dynasty A (B). Since the two agents have differing

variances of beliefs, they do not update the same, even though they observe the same

shocks. Mean beliefs decrease in bad times, given the bad consumption outcomes, and

the period around the Great Recession shows the biggest decline in belief about the

long-run mean growth rate.

The range of the mean beliefs is from about 1.2% to 2.7% p.a. and the beliefs are

clearly quite persistent, as one would expect given the updating rule. The top right plot

in Figure 7 shows the model-implied Price-Dividend ratio.10 Its range is from about

10Simulated paths of model quantities like the risk premium and the price-dividend ratio will have
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27 to 54. In the benchmark economy where agents know that consumption growth

is i.i.d., the price-dividend ratio is constant, so the effect of introducing a relatively

mild departure from Rational Expectations is large. The price-dividend ratio is highly

persistent, echoing the belief dynamics. The plot shows that there are long (>10yr)

periods where the market price level is too high or too low relative to the level when

mean beliefs are at the true value, in which case the P/D-ratio is about 38. Thus, the

range of the price-dividend ratio over the sample indicates the market was at times

almost 30% underpriced and at times more than 40% overpriced.

Generally, the price-dividend ratio increases in good times and decreases in bad

times, most notably over the Great Recession. These dynamics are mirrored in the

equity risk premium as shown in the lower left plot of Figure 7. Generally, when

agents are optimistic, the risk premium is low. There is additional variation in the risk

premium related to the wealth-dynamics of the two agents, as discussed earlier. The

range of the risk premium is from about 3% to 8%, with the peak reached during the

Great Recession.

One implication of the model presented here with an experiential learning bias,

is that an econometrician who uses a long sample to estimate (the dynamics of) risk

aversion jointly with consumption dynamics and assumes Rational Expectations will

conclude that investors exhibit high and time-varying risk aversion. In particular, with

a long sample the econometrician will conclude that consumption growth is i.i.d. and

estimate the mean and volatility parameters to be equal to their true values. The

(conditional) price of risk in the i.i.d. economy, when agents are assumed to know the

true model, is approximately γ×σ– risk aversion times the quantity of risk and in the
’Uncertain Mean’-model γ = 10. Define estimated conditional risk aversion as:

γt ≡
σt (Mt+1)

Et (Mt+1)
/σ. (16)

Here σt(Mt+1)
Et(Mt+1)

is the maximum conditional Sharpe ratio in the ’This Time is Different’-

jumps at times of generational shifts. This is because we only have two long-lived cohorts and not a
continuum as in, e.g., Garleanu and Panageas (2012). This is, of course, an unrealistic feature of the
model and one borne out of necessity in order to keep the state space small. To focus on the time
series of beliefs, and the discrete generational changes, we plot paths of model quantities averaging
over all possible prior variances for both agent. In other words, we solve for the path of, say, the
price-dividend ratio, given that the two agents are of ages 1 and 21 at the beginning of the sample,
then for the case when agents are 2 and 22, and so on. The consumption shock series is the same in all
cases. Finally, we take the average at each time t of the price-dividend ratios to arrive a time-series.
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economy under the objective measure and σ is the volatility of consumption growth.

The bottom right plot of Figure 7 shows the path of this ’estimated conditional risk

aversion’over the same sample. It is always above 10 and ranges from about 12 to about

28, with a pronounced persistent and counter-cyclical pattern. Thus, the dynamics of

this ’estimated risk aversion’is more reminiscent of an external habit formation model,

such as Campbell and Cochrane (1999), and due to the small but persistent mistakes

agents make in their belief formation as well as the fact that the model uncertainty is

priced when agents have Epstein-Zin preferences.

Cash Flow vs. Discount Rate Shocks. In his presidential address, Cochrane

(2011) argues that historically all variation in price-dividend ratios correspond to vari-

ation in discount rates and none to variation in expected cash flows. In the models we

considered here, however, the variation in the price-dividend ratios is instead mainly

due to variation in agents’expectations of future cash flows as agents update beliefs

about the unknown parameters.

Under the objective measure, however, dividend growth is i.i.d., and so there is in

fact no variation in expected cash flows under this measure. Thus, historical analysis

of the relationship between the price-dividend ratio and future returns will attribute

all variation in the price-dividend ratio to discount rate variation. In this sense, this

paper highlights that even statistically ’small’departures from Rational Expectations

can lead to a radically different view of the fundamental drivers of price variation.

Beliefs vs. Lagged Returns. Table 4 gives the correlation between conditional

expected returns and lagged returns on the dividend claim. In particular, the column

“Average subjective”gives the correlation between next quarter’s expected subjective

returns, averaged across agents of all combination of ages, with increasing backward-

looking windows of realized returns. As discussed and reviewed in Greenwood and

Shleifer (2014), survey evidence shows a positive relation between lagged stock returns

and (some) investors’forward-looking expected returns. As the table shows, this pos-

itive relation is present in the “This Time is Different”-model, both in gross returns

and in excess returns. This is notable, as in the model investors are learning about

fundamentals and do not use returns directly in their belief formation (see Barberis,

Greenwood, Lin, and Shleifer (2014) for an analysis of an economy where investors

32



Table 4 - Beliefs vs. Returns

Table 4: The table gives the correlation between the conditional expected return on the
dividend claim with lagged returns on the dividend claim. The column denoted "Average
subjective" gtives the average conditional subjective expected return of the agents in the
economy, averaged across agents. The column denoted "Objective" gives the conditional
expected return using the true model parameters (i.e., under the objective, P-measure). The
conditional expected return is always the next quarters’expected return, while the lagged
return is measured over different backward-looking horizons (s).

Correlation between conditional
expected returns and lagged returns

Lagged return
horizon (Σs

j=0rt−j) Average subjective Objective

1 quarter (s = 1) 0.07 −0.08

1 year (s = 4) 0.13 −0.15

3 years (s = 12) 0.22 −0.26

5 years (s = 20) 0.30 −0.32

explicitly extrapolate from lagged stock returns). Thus, the relation between returns

and beliefs is fully endogenous to the model. To understand this outcome, consider a

sequence of positive shocks which yields positive stock returns and increases investors’

mean beliefs about the growth rate of the economy. This would by itself does not

change risk premiums. However, since growth rates are uncertain, the higher long-run

growth rate makes the dividend claim more sensitive to future growth rate shocks. For

intuition, consider the Gordon growth formula P/D = 1/ (r − µ). The price-dividend

ratio is more sensitive to shocks to growth rates when growth rates are high. Since

shocks to growth rates are priced risks, the increased covariance of returns with shocks

to growth rates leads to a higher subjective risk premium.

In reality, though, investors update ’too much’and so on average high growth rate

expectations are too optimistic and prices in fact mean-revert. This is shown in column

“Objective”in Table 4, which gives the correlation between lagged stock returns and

conditional expected returns using the true probabilities to calculate the expectation.

This correlation is negative, as one would expect with mean-reverting price-dividend
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ratios and given the true, constant growth rate in the economy.

Figure 8 - "Uncertain Probability": Simulated paths
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Figure 8: The figure shows selected time series statistics from the ’Uncertain probability’-
model. The relevant shocks are Depression realizations. We simulate a path for one full
life-time (160 quarters) and let the Depression occur only in the 41st quarter in order to
illustrate the model dynamics. The Young generation is assumed to come alive in the first
quarter (Dynasty A), while the initial Old generation (Dynasty B) becomes the new Young
in the 81st quarter (the dotted, vertical line in each plot). The subjective mean beliefs in the
top left plot refer to the mean belief about the probability of a Depression event. The risk
premiums and volatilities all refer to the aggregate dividend claim.

’Uncertain probability’-case For the "Uncertainty probability"-model, where agents

learn about the probability of a Depression shock, the implications for over- and un-

dervaluation are in many ways similar to the "Uncertain mean"-case. The top left plot

of Figure 8 shows the mean beliefs about the (annualized) probability of a Depression

for the two Dynasties, where both agents start at t = 1 with unbiased beliefs. In this

simulation, the Depression shock occurs at time t = 41, and there are no Depressions

thereafter until t = 160 (i.e., the time period considered covers the full life of an agent).

The agent from Dynasty A was again a new Young at t = 1, while the agent from Dy-
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nasty B was a new Old. Thus, at the time of the shock, they are both in the middle of

their respective generations. The Young updates more quickly in the direction of a low

Depression probability as long as no Depression shock occurs. Once the shock hits, its

again the Young that update more and their mean beliefs flip from being the optimists

in the market to being the pessimists. At t = 80, the Old die (from Dynasty B) and

the previous Young become the new Old (from Dynasty A), which is why the mean

belief of Dynasty B has a kink at this point in time (the new Young starts updating

more quickly).

At t > 80, there is only one of the two generations in the market that has experi-

enced the Depression personally (Dynasty A). This agent assigns a higher probability

to the Depression state than the Young who have not experienced the Depression,

as documented empirically in Malmendier and Nagel (2011). The upper right plot

of Figure 8 shows the model-implied price-dividend ratio. First, the fluctuations are

large, from about 25 to about 45. Further, it takes about 120 quarters (30 years) after

the Depression shock for the price-dividend ratio to reach its level when beliefs are

unbiased, so the effects of the shock are long-lasting. Again, the benchmark known

parameters i.i.d. consumption growth model has a constant price-dividend ratio, so

these fluctuations reflect misvaluation, as well as the priced model uncertainty.

The bottom left plot of Figure 8 shows three versions of the conditional risk

premium– the objective risk premium, the risk premium using agent A’s beliefs, and

the risk premium using agent B’s beliefs. First, note that the risk premium falls in all

three cases as long as a Depression does not occur. Once a Depression occurs, the risk

premium goes up in all three cases as agents update the likelihood of a severe consump-

tion drop. However, the conditional risk premium goes up the least for the Young, who

become the pessimists in the market upon experiencing the shock as they update their

beliefs the most. Consider the time t = 100 in the plot. This is after the Depression

shock and after a new generation was born (at t = 81). Thus, here we can consider the

’Depression babies’effect on expected market returns. The agent (Dynasty A) who

experienced the Depression event and is still alive expects a risk premium that is about

1.5% points below that of the current Young (Dynasty B) who did not experience the

Depression. Thus, consistent with Malmendier and Nagel’s findings, the generation

that experienced the Depression have a relatively lower allocation to stocks given their

relatively low expectation of future excess stock market returns.

The bottom right plot in Figure 8 shows the path of the VIX (here, risk-neutral an-
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nualized quarterly conditional equity return volatility) and the variance risk premium

(VRP: the ’VIX’minus the actual (objective measure) conditional annualized quar-

terly equity return volatility). The Depression event at t = 41 is associated with an

increase in the VIX as the subjective beliefs about the likelihood of a disaster increases.

Interestingly, the variance risk premium increases more. This is due to the fact that

the Depression shock causes a wealth-transfer from the more Old to the Young. Thus,

the wealth-weighted perceived model uncertainty increases and claims that pay off in

the Depression state (such as a variance swap) become more valuable hedges, leading

to a higher variance risk premium.

3.3 The Empirical Relation between the Price-Dividend Ratio

and the fraction of Young vs. Old

A robust implication of the model is that asset prices are more sensitive to macro

shocks when the Young control more wealth in the economy, since these agents update

beliefs more strongly in response to macro shocks. Further, the price level should on

average be lower in this case, as the young perceive more model risk and therefore on

average require higher returns.

In lieu of data on the aggregate wealth (including human capital) of the old versus

the young, we here use demographic data to proxy for this ratio. In particular, we

use Census data from 1900 to 2013 to calculate the log ratio of the number of people

in the 25-44 year age bracket versus the 45+ age bracket. We obtain the annual real

price-dividend ratio from the Shiller data and annual real, per capita GDP growth

from the NIPA tables.

First, as a description of the raw data, we relate the level of the ratio of young to

old to the aggregate price-dividend ratio. Panel A of Table 5 shows a regression of the

log price-dividend ratio (the pd-ratio) on the log ratio of young to old (the yo-ratio

from here on). Over the sample, the pd-ratio is trending up, while the yo-ratio is

trending down, yielding a strong negative relation (an R2adj of 41%) that admittedly

may be spurious given the high persistence of the series. Given the high persistence,

we also look at 10-year changes in the pd-ratio versus 10-year changes in the yo-ratio,

in annual overlapping observations regressions in Panel B. Here, the R2adj is 7% and the

relation is negative and significant at the 5%-level using Newey-West standard errors
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Table 5

The Empirical Relation between the P/D-ratio and Fraction of Young vs. Old

Table 5: The table shows various regressions relating the log price-dividend ratio (pd) to the
log ratio of the population of Young (25-44 years) to Old (45+ years), yo. The sample is
annual from 1900 to 2013. ∆ denotes an annual difference and ∆10 denotes a 10-year differ-
ence. In Panels A and B, t-statistics are computed using Newey-West standard errors with
20 lags. In Panel C, t-statistics are computed using White standard errors. The regression
with header "Time-Trend" uses the deviations from the full-sample time trend of yo, "40-year
difference" uses the difference between yot and yot−40, while "40-year moving average" uses
the difference between yot and the lagged 40-year moving average of yo. * denotes signifi-
cance at the 10%-level, ** denotes significance at the 5%-level, *** denotes significance at
the 1%-level.

Panel A:
Regression: pdt = α+ β × yot + εt

α β R2adj

Coeffi cient 3.58∗∗∗ −1.08∗∗∗ 41%

(t-stat) (20.9) (−3.13)

Panel B:
Regression: ∆10pdt = α+ β ×∆10yot + εt

α β R2adj

Coeffi cient −0.002 −1.02∗∗ 7.3%

(t-stat) (−0.02) (−2.05)

Panel C:
Regression: ∆pdt+1 = α0 + α1yo

detrended
t + β0∆gdpt+1 + β1∆gdpt+1 × yodetrendedt + εt+1

α0 α1 β0 β1 R2adj

Time-Trend:
Coeffi cient −0.04∗ −0.40 0.82∗∗∗ 8.30∗∗ 14%

(t-stat) (−1.93) (−1.34) (3.26) (2.06)

40-yr difference:
Coeffi cient −0.07 −0.21 3.19∗∗ 8.32∗∗ 5.9%

(t-stat) (−1.38) (−1.51) (2.18) (2.21)

40-yr moving average:
Coeffi cient −0.13∗∗∗ −0.47∗∗ 2.46∗∗∗ 9.49∗∗∗ 18%

(t-stat) (−3.41) (2.04) (3.93) (2.75)
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and 20 lags, again suggesting the relation between the amount of wealth controlled by

the young relative to the old is indeed a factor in determining the level of asset prices.

In Panel C of Table 5 we test whether asset prices are indeed more sensitive to macro

shocks when the yo-ratio is high. Here, we can run annual regressions of changes in

the pd-ratio, so these regressions have more power and should be better behaved. In

particular, Panel C shows results from the regression:

∆pdt+1 = α0 + α1yo
detrended
t + β0∆gdpt+1 + β1yo

detrended
t ×∆gdpt+1 + εt+1, (17)

where yodetrendedt are detrended versions of the yo-ratio. We three different detrending

methods. The first is simply to remove the full-sample time-trend from the raw yo-

ratio. The other two are motivated by the model, and we normalize the ratio at a

generational frequency. In particular, the second version of yodetrendedt is simply the

difference between the current yot-ratio and that 40 years ago, while the third is the

difference between the current yot-ratio and the current 40-year lagged moving average

of the yot-ratio.

All three versions yield positive and significant β0- and β1-coeffi cients. Thus, the

conditional sensitivity of the pd-ratio to GDP shocks, βt ≡ β0 + β1yo
detrended
t is indeed

higher when the fraction of young vs. old is high, as predicted by the model.

4 Conclusion

We have proposed a relatively simple, but quantitatively realistic model that incorpo-

rates the ’this time is different’-bias across generations documented by Malmendier and

Nagel (2011, 2013). In this model, model uncertainty persists indefinitely, and model

uncertainty is an added risk factor due to the assumed preference for early resolution

of uncertainty (Epstein-Zin preferences as in Bansal and Yaron (2004)). Importantly,

consistent with Ang, Bekaert, and Wei (2007), as well as original empirical evidence

presented in this paper, agents’beliefs are very good predictive variables for real output

growth. Thus, the calibration of the bias is not excessive.

The pricing implications of the endogenous long-run risk introduced by such learn-

ing, as shown in Collin-Dufresne, Johannes, and Lochstoer (2013a), remain with the

added feature of more time-variation in Sharpe ratios and expected excess returns. In

particular, optimal risk-sharing between the agents induce fat tails in returns as over-
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and underpricing is exacerbated more as a consequence of optimal risk sharing. Despite

the, in a statistical sense, small departure from the rational expectations assumption,

the asset pricing implications that arise from the experiential learning bias are large.

Over- and underpricing is persistent and large and the norm rather than the exception.

Further, we show that when agents have recursive preferences and are uncertain about

their beliefs, the amount of speculative activity stemming from disagreement in mean

beliefs is tempered. In particular, agents that are optimistic about the Depression

probability are still hesitant to hedge the other agents against this state as they know

they will adversely update their beliefs if the state occurs and since such updates have

a large impact on marginal utility with recursive preferences.
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5 Appendix —Model Solution

5.1 Exchange economy case

We here briefly describe how we solve the model, starting with the exchange economy

case. Denote aggregate consumption Ct. There are two agents with Epstein-Zin prefer-

ences and different beliefs about the exogenous aggregate consumption dynamics. The

resource constraint is:

Ct = CA,t + CB,t. (18)

The preferences of agents A and B are given by:

VA,t = VA (CA,t, VA,t+1) =
[
(1− β)Cρ

A,t + βEA
t

(
V α
A,t+1

)ρ/α]1/ρ
, (19)

VB,t = VB (CB,t, VB,t+1) =
[
(1− β)Cρ

B,t + βEB
t

(
V α
B,t+1

)ρ/α]1/ρ
, (20)

where Ei
t [·] denotes an expectation taken with respect to agent i’s beliefs.
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With complete markets, the Pareto problem can be written:

max
{CA,t,CB,t}∞

t=0

λVA,0 + (1− λ)VB,0 s.t. CA,t +CB,t = Ct for all states and time. (21)

Even though the invidivual utility functions are recursive, the social planner function

is not recursive. However, there exists a recursive formulation (see Lucas and Stokey

(1984), Kan (1995), Backus, Routledge and Zin (2009)):

J (Ct, VB,t) = max
CA,t,VB,t+1

[
(1− β)Cρ

A,t + βEA
t [J (Ct+1, VB,t+1)

α]
ρ/α
]1/ρ

s.t. VB,t ≥ VB (Ct − CA,t, VB,t+1) . (22)

Note that the values VB,t+1 we are maximizing over in this problem are for all possible

states of nature that can occur at t + 1. Thus, we are solving for the consumption-

share of agent A and promised utility for agent B for each possible state over the next

period. Since preferences are monotonic, the utility-promise constraint will bind and

with optimized values we have VA,t = J (Ct, VB,t) and VB,t = VB (Ct − CA,t, VB,t+1).
The first order and envelope conditions for the maximization problem imply that

for each state, the marginal intertemporal rates of substitution of the two agents must

be equal:

πA,t (ωt+1) β

(
CA,t+1
CA,t

)ρ−1(
VA,t+1

µA,t [VA,t+1]

)α−ρ
= πB,t (ωt+1) β

(
CB,t+1
CB,t

)ρ−1(
VB,t+1

µB,t [VB,t+1]

)α−ρ
,

(23)

where πi,t (ωt+1) is agent i’s conditional probability assessment of state ωt+1 being real-

ized next period, determined by agent’s current beliefs as summarized in the posteriors

from the learning problem. Equation (23) is of course a familar requirement for equilib-

rium in a frictionless complete markets economy and, as usual, the agents’probability

measures must be equivalent measures for this condition to hold.

The problem with solving the recursion in Equation (22) us that the evolution

equation for the endogenous state variable (relative wealth, or relative consumption, of

the two agents) is not known. In particular, for power utility preferences, where α = ρ,

Equation (23) provides analytically the evolution equation for the relative consumption

of the two agents as a function of the aggregate state. With α 6= ρ, however, this is

no longer the case, as the value functions of the agents appear and since these value
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functions are unknown (they are, in fact, what we are trying to solve for). One can

start with a guess for the value functions as a function of the aggregate state variables

and then try to apply Equation (23) to solve for the consumption sharing rule, but

this is highly unstable as one of the state variables is the relative consumption share.

One typically needs to effectively guess the equilibrium value functions as the initial

value functions in order for the recursion to be well-behaved. In other words, while the

recursion in Equation (22) techinically provides a value function iteration solution to

the risk-sharing problem, it is very hard to implement in practice.

We instead solve the model using the approach outlined in Collin-Dufresne, Jo-

hannes, and Lochstoer (2013b). Here, we suggest a new numerical approach to solving

these types of problems. The approach relies on two steps. Step 1: solve, in a back-

wards recursion, the risk-sharing problem in a T -period economy. Step 2: increase T

until value functions of both agents no longer change (i.e., has converged according to a

convergence criteria) and verify, using the recursion in Equation (22) that the solution

indeed corresponds to the solution to the infinite horizon problem. The latter is done

by iterating on the recursion given in Equation (22) using both the value functions and

the evolution dynamics for the endogenous state variable as obtained in the backwards

recursion solution to the T -period problem where T is large. Note that we do not need

the economy to be stationary. I.e., there could be degenerate wealth dynamics. This

should be clear from the following discussion, where we outline the approach in detail.

It is convenient to solve a normalized version of this model, where all variables are

divided by aggregate consumption. Let lower case of variables denote the normalized

counterpart. Thus, for an arbitrary variable Zt we have that zt = Zt/Ct. In this case,

the value functions can be written:

vi,t =
[
(1− β) cρi,t + βµρi,t

]1/ρ
, (24)

where µi,t ≡ Ei
t

[
vαi,t+1 (Ct+1/Ct)

α]1/α and where the resource constraint is cA,t+cB,t = 1.

The stochastic discount factor under agent i’s probability measure can then be written

(see Epstein and Zin (1989)):

Ei
t

[
M i

t+1R
j
t+1

]
= 1 for all t and j

M i
t+1 = β

(
ci,t+1
ci,t

)ρ−1(
Ct+1
Ct

)α−1(
vi,t+1
µi,t

)α−ρ
. (25)
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The aggregate state variables in this economy are the ones governing the agents’

subjective consumption dynamics (xt = [mA,t,mB,t, aA,t, aB,t, T − t]′) and the relative
wealth of the two agents. Since the relative consumption of agents is monotone in the

relative wealth of agents, we use the relative consumption of agent A as the endogenous

state variable, cA,t. Thus, vi,t = fi (xt, cA,t).

If the endogenous evolution equation of cA,t is known, we can now easily solve a

standard value function iteration problem on a grid for xt and cA,t ∈ (0, 1):

fA (xt, cA,t) =
[
(1− β) cρA,t + βEA

t [fA (xt+1, cA,t+1)
α (Ct+1/Ct)

α]
ρ/α
]1/ρ

, (26)

fB (xt, cA,t) =
[
(1− β) (1− cA,t)ρ + βEB

t [fB (xt+1, cA,t+1)
α (Ct+1/Ct)

α]
ρ/α
]1/ρ

.(27)

Thus, the crux of the risk-sharing problem is finding the endogenous evolution equation

for cA for all points in the state-space.

Solving the model at T − 1:
At time T , when the economy ends, the value functions reduce to:

vA,T = (1− β)1/ρ cA,T , (28)

vB,T = (1− β)1/ρ (1− cA,T ) . (29)

Equations (28) and (29) give the boundary conditions for the value functions as a func-

tion of the relative consumption of agent A, cA. As mentioned earlier, it is convenient

to use cA,t as the endogenous state-variable (one could equivalently use relative wealth

of, say, agent A), in addition to the exogenous state variables, xt.

At time T − 1, the complete markets requirement that agents IMRS are equalized

across states implies that:

πAT |T−1β

(
cA,T
cA,T−1

)ρ−1(
CT
CT−1

)α−1(
vA,T

µA,T−1 (vA,TCT/CT−1)

)α−ρ
= ...

πBT |T−1β

(
1− cA,T

1− cA,T−1

)ρ−1(
CT
CT−1

)α−1(
vB,T

µB,T−1 (vB,TCT/CT−1)

)α−ρ
. (30)

Here πiT |T−1 denotes the probability agent i assigns to a given state at time T given
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agent i’s beliefs at time T − 1. First, define:

kT−1 =
µB,T−1 (vB,TCT/CT−1)

ρ−α

µA,T−1 (vA,TCT/CT−1)
ρ−α

=
EB
t ((1− cA,T )α (CT/CT−1)

α)
ρ/α−1

EA
t

(
cαA,T (CT/CT−1)

α)ρ/α−1 , (31)

where the dependence of kT−1 on the current state variables in the economy is implicit.

Next, imposing the boundary values as given in Equations (28) and (29), we have that:

πAT |T−1β

(
cA,T
cA,T−1

)ρ−1(
CT
CT−1

)α−1
cα−ρA,T = ...

kT−1π
B
T |T−1β

(
1− cA,T

1− cA,T−1

)ρ−1(
CT
CT−1

)α−1
(1− cA,T )α−ρ

m(
cA,T

1− cA,T

)α−1
= kT−1

πBT |T−1
πAT |T−1

(
cA,T−1

1− cA,T−1

)ρ−1
. (32)

Note first that Equation (32) implies that, for a given state of the world at time T

and value of state variables at time T − 1, cA,T ∈ (0, 1) is decreasing in kT−1 (since

α− 1 < 0). Thus, for a given kT−1, Equation (32) uniquely determines cA,T−1 for each

state of the world at time T and a, say, higher kT−1 implies that cA,T is lower in each

state of the world. Of course, from Equation (31), we only know kT−1 as a function of

cA,T . However, the right-hand side of Equation (31) is monotone in cA,T , which means

it is monotone in kT−1. In particular, since a lower kT−1 means that cA,T is higher

in each state of the world, EA
t

(
cαA,T (CT/CT−1)

α) is decreasing (increasing) in kT−1 if
α > 0 (α < 0). The opposite relation holds for EB

t ((1− cA,T )α (CT/CT−1)
α). Since,

kT−1 is the ratio of these two expectations (taken to the power of ρ/α − 1), we have

that the right hand side of Equation (31) is indeed monotone in kT−1. In other words,

Equations (31) and (32) provide unique solutions for kT−1, and thus for cA,T for each

state of the world at time T . It is also immediate from these equations that a solution

exists where cA,T−1 ∈ (0, 1) and kT−1 > 0.

While the fixed point problem for finding kT−1 implicit in Equations (31) and (32)

must be solved numerically for each point on a grid for the state variables, this is
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very fast given the monotonicity (e.g., a routine like zbrent works very fast). For a

particular choice of α, one can solve analytically for cA,T as a function of kT−1 and the

state variables at T −1. In sum, using cA,T−1 as the endogenous state variable, we now

have numerically the conditional evolution equation for cA, from T − 1 to time T .

Next, we can now solve numerically for the normalized value functions at time T−1

on a grid for the relevant state variables at time T − 1, using:

vi,t =
[
(1− β) cρi,t + βEi

t

[
vαi,t+1 (Ct+1/Ct)

α]ρ/α]1/ρ , (33)

where the state variables are xt and cA,t. Note that solving numerically for the certainty

equivalent of next period’s value function requires the use of the evolution equation for

cA.

The second backwards iteration is then at time t = T − 2. Again, we start with the

requirement that the IMRS is equalized for each state for the two agents:

πAt+1|tβ

(
cA,t+1
cA,t

)ρ−1(
Ct+1
Ct

)α−1(
vA,t+1

µA,t (vA,t+1Ct+1/Ct)

)α−ρ
= ...

πBt+1|tβ

(
1− cA,t+1
1− cA,t

)ρ−1(
Ct+1
Ct

)α−1(
vB,t+1

µB,t (vB,t+1Ct+1/Ct)

)α−ρ
.

Note that vi,t+1 = fi (xt+1, cA,t+1) is known from the previous step in the backwards

recursion. Now, rewrite the above equation as:(
cA,t+1

1− cA,t+1

)ρ−1(
vA,t+1
vB,t+1

)α−ρ
= kt

πBt+1|t
πAt+1|t

(
cA,t

1− cA,t

)ρ−1
, (34)

where kt =
µB,t(vB,t+1Ct+1/Ct)

ρ−α

µA,t(vA,t+1Ct+1/Ct)
ρ−α . It is clear that the left hand side of Equation (34)

is monotone in kt. Since
vA,t+1
vB,t+1

is known as a function of xt+1 and cA,t+1, it is easy

to numerically find the value of cA,t+1 corresponding to a particular outcome (xt,

εt+1), given a value for kt. It is clear from Equation (34) that the value of cA,t+1
given kt is unique when α − ρ < 0, which is the relevant case in our calibrations.

In particular, vA,t+1/vB,t+1 is obviously increasing in cA,t+1 given the state xt+1, and

cA,t+1/ (1− cA,t+1) is trivially increasing in cA,t+1. Since both ρ− 1 < 0 and α− ρ < 0,

we have that the left hand side of Equation (34) is decreasing in kt for all states xt+1.

Finally, we need to solve for kt. Note that the previous equation gives the evolution
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equation for cA,t+1 as a function also of kt (cA,t+1 = g (Xt, cA,t, kt, εt+1)). Thus, we

again find kt as a fixed point of the equation:

kt =
EB
t [(vB (xt+1, 1− cA,t+1 (kt)))

α (Ct+1/Ct)
α]
ρ/α−1

EA
t [(vA (xt+1, cA,t+1 (kt)))

α (Ct+1/Ct)
α]
ρ/α−1 . (35)

Again, Equations (34) and (35) provide a unique solution to the evolution equation for

cA,t to cA,t+1 as a function of the aggregate exogenous state variables at xt and xt+1,

using the corresponding logic as that for kT−1. The normalized value function at time

t can then be found using Equation (33).

Further backwards recursions follow the same algorithm as that given for the case

t = T − 2. In practice, we find that having T > 2400 is suffi cient for convergence of

typical calibrations (clearly, the time-discount factor β is particularly important in this

regard). Note that we do not impose nondegenerate wealth dynamics as the relative

wealth of agents implicitly is a state variable (we just chose the relative consumption

for convenience).
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