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Abstract

This paper studies dynamic persuasion under adversarial selection in regime change games where

the agents choose when to attack, and delay is costly. We construct a simple optimal disclosure policy

called “timely disaster alert,” which promptly warns agents about the impending crisis. This policy

induces perfect coordination on the right course of action — the unique rationalizable strategy is to

wait for and follow the alert, regardless of private signals. Thus, the optimal policy eliminates panic

in the robust sense. We relate this optimal policy to practical early warning systems, such as forward-

looking bank stress tests and debt sustainability analysis.
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Introduction

Economic agents often fail to coordinate on the right course of action, leading to undesirable outcomes.

Consider a bank run, for example, where creditors may withdraw if they believe others will do the same.

Accordingly, a bank may fail even when it is solvent. We refer to such events as panic. Economists

have long been interested in understanding how a planner can design policies to avoid such undesirable

outcomes. The early literature proposes intervention through a “big push.” One can imagine that such

interventions through payoff incentives can be exceedingly costly. More recently, Sakovics and Steiner

(2012) designs the optimal payoff incentives when the planner has limited resources. This paper designs

the optimal dynamic information disclosure policy to persuade agents to coordinate on the right course of

action.

The existing literature studies a static persuasion problem under different coordination environments

(see, for instance, Goldstein and Huang (2016), Inostroza and Pavan (2020), Li, Song and Zhao (2019),

and Morris, Oyama and Takahashi (2020)). Unlike in standard information design problems, this literature

adopts the approach of an adversarial information design under which the principal expects the agents to

play the worst possible equilibrium. The literature has established a uniform result: the optimal disclosure

policy should perfectly coordinate agents’ actions (conformity of action), thereby removing all strategic

uncertainty while retaining the fundamental uncertainty (non-conformity of belief). However, the literature

also shows that, under adversarial selection, even the optimal information structure cannot persuade agents

to coordinate perfectly on the desirable action. For instance, in our bank run example, under the optimal

static disclosure, in some states where the bank is solvent, all the creditors coordinate but do so on the

undesirable action and run. In other words, panic cannot be averted under the static adversarial information

design.

In this paper, we augment the canonical regime change game with a timing dimension and show that

dynamic persuasion — namely, allowing the disclosure policy to be scheduled at a future date and to be

dependent on the past actions taken by the agents — averts panic under adversarial information design.

We construct a simple dynamic information disclosure policy that not only perfectly coordinates agents’

actions but also ensures that they coordinate on the right course of action. Therefore, dynamic persuasion

expands the set of outcomes that the principal can achieve through static persuasion under adversarial

selection. More importantly, the optimal policy completely eliminates undesirable coordination outcomes.

The timing dimension we introduce is natural for many applications. For instance, consider the fol-

lowing classic examples.

Example 1 (sovereign debt default) A country has a significant amount of outstanding sovereign debt

that matures in, say, six months, and the country may default. We interpret this example as a future shock

that arrives at a fixed maturity date. Foreign investors who are wary about the forthcoming crisis and

resulting currency depreciation may relocate their investments before the maturity date. These decisions
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worsen the country’s fiscal condition, which contributes to its inability to repay its debt when the debt

matures.

Example 2 (bank run) Consider creditors who anticipate that the bank will be hit by an adverse shock in

the future (for instance, borrowers in a certain industry will start defaulting on their loans). The creditors

may run on the bank before the shock actually arrives, which weakens the bank and contributes to its

failure. The only difference compared with the first example is that the date on which the shock arrives

and the bank becomes vulnerable is stochastic rather than fixed.

Motivated by such examples, we introduce a finite time window [0, T ]. A shock arrives at a future

date (possibly stochastic) within this window, and once it arrives, it may make the regime vulnerable. The

agents can wait at a cost (standard discounting) or attack at any time. If they attack, they get their payoff

instantaneously depending on whether or not the regime has changed and the regime change depends on

the aggregate attack until then. If the agents attack before the regime changes, they get significantly higher

payoff than if they attack afterwards. In this sense, our dynamic setup features a first-mover advantage.

Introducing a time dimension to the game can change the dynamic incentives of the agents in many dif-

ferent ways.1 Readers may wonder whether this gain in the power of persuasion stems from the principal’s

ability to disclose information over time or from the dynamic game being different from the static game.

In this paper, we focus on the first source. We only consider a dynamic regime change game, where in the

absence of dynamic disclosure, the outcome will be exactly as in the canonical static regime-change game.

However, as the above examples show, there can be a time gap between when the agents start attacking

and when the regime changes. This gap provides an opportunity for dynamic information disclosure.2

We call our proposed policy a timely disaster alert. A disaster alert at a given date τ gets triggered

if, based on the fundamental of the regime as well as on what agents do before the disclosure, it becomes

evident that the regime will change (if it has not already). However, if the alert is not triggered, it means

that the regime will survive provided that no further attack occurs. We call this alert “timely” when

τ ∈ (0, τ̂) for some small but positive τ̂ .

The disclosure policy is simple. However, it is important to note that (1) it is an endogenous disclosure:

if agents attack without waiting for the alert, their actions may trigger the alert; and (2) it forecasts an

impending regime change: the alert gets triggered even though the regime has not changed yet but is in no

condition to survive when the shock arrives.

As is standard in the literature, we assume that before the game begins, the agents receive some noisy

1See Dasgupta, Steiner and Stewart (2012) for some interesting examples.
2In the above examples, the gap arises (at least, with high probability) because the shock arrives in the future, and the regime

becomes vulnerable only after the shock arrives. However, this gap could also arise for many other reasons. For instance, it
may take time to move physical capital. Also, for some applications, the payoff from attacking is not collected instantaneously
but, in the end, is dependent on the ultimate regime outcome, thereby removing the first-mover advantage. See the discussions
in Section 3.1 for details.
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private signals about the fundamental. The principal does not observe these signals. We consider a fairly

flexible exogenous information environment under which the private signals need not be conditionally

independent but can be arbitrarily correlated. We assume only that regardless of their signals and others’

actions, an agent will always have some doubt about whether his action is the right one.

We show that, under a timely disaster alert, the unique rationalizable strategy for any agent of any type

(private signal) is to wait for and then follow the disaster alert.3 Therefore, when the fundamental does not

warrant a run, because all the agents wait for the alert, the alert does not get triggered, which implies that

the agents do not attack afterward. Thus, panic is eliminated under our proposed policy in a robust sense.

We prove this result using three steps. First, consider an agent who plays a strategy that involves

waiting for the disaster alert. We show that, regardless of others’ strategy, this agent must follow the

disaster alert — that is, attack if and only if the alert is triggered. If the alert is triggered, then the regime

must change, and so, he must plan to attack when he learns this. If he also plans to attack when the alert

is not triggered, then this means that he chooses to wait for the alert and then attack, regardless of whether

or not the alert is triggered. As such, waiting has no option value. Since waiting is costly, such strategies

are strictly dominated by attacking right away and not waiting for the alert. Thus, the only rationalizable

strategies are attacking right away or waiting and then following the alert. We refer to this argument as the

option value argument (see Lemma 1).4

Second, the disaster alert is designed such that when the alert is not triggered, regardless of how many

agents choose to attack (instead of waiting), as long as the agents who choose to wait will not attack, the

regime survives. Therefore, following the option value argument, if the alert is not triggered, no further

attack will occur, and the regime never changes. This demonstrates the perfect predictability of the disaster

alert (see Lemma 2).5

Third, it follows from the perfect predictability of the alert that there is no strategic uncertainty after the

time of disclosure; that is, the action of the agents who wait for the disclosure will be perfectly coordinated.

In this sense, their private signals become irrelevant. An agent can benefit from waiting for the alert

because he avoids the mistake of attacking a regime that ultimately survives. This benefit is realized when

the alert is not triggered ex post. Since an agent always has doubt, regardless of whether or not others

wait, the benefit of waiting is positive and independent of the disclosure time τ .

However, this positive benefit does not mean that the agents will wait for the alert. Waiting for the alert

may also result in attacking — but at a later date when the alert is triggered. A short wait is not very costly

if the regime does not change in the meantime. However, given the first-mover advantage, if the regime

3A strategy for an agent of any type is a complete contingency plan. Formally, under a disaster alert, a strategy is when to
attack at three possible histories: the initial history, the one after the alert is not triggered, and the one after the alert is triggered.

4It follows from the doubt assumption that agents always assign a positive probability both to the event that the alert gets
triggered and to the event that the alert does not get triggered. This assumption makes the dominance strict. In Section 4.1, we
discuss the essential features that drive Lemma 1.

5In Section 4.2 and 4.3, we discuss the essential features that drive Lemma 2.
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changes while the agents wait for the alert, then the agent may miss the opportunity to attack a regime

before it changes, which could result in a significant loss. Nonetheless, by setting the disclosure time τ

close to 0, the principal ensures that the probability that an agent will bear such a cost is negligibly small.

Therefore, there exists τ̂ > 0 such that under τ ∈ (0, τ̂), regardless of his signal and regardless of whether

or not others will attack before the disclosure, the benefit outweighs the cost of waiting. This step shows

the importance of providing information in a timely manner (see Lemma 3).

From the three above-mentioned lemmas, it follows that when the principal sets a timely disaster

alert, under the unique rationalizable strategy, the agents ignore their private signals and wait for and then

follow the alert. Thus, even though the agents receive different signals and have different beliefs about

the fundamental, this simple policy persuades the agents to perfectly coordinate on taking the desirable

action, which eliminates panic in the robust sense. It is worth noting that our iterated elimination arguments

only require that the agents are rational and believe others are rational, whereas common knowledge of

rationality is not needed.

The proposed optimal policy — timely disaster alert — resembles an early warning system (EWS). An

EWS is common in practice. For instance, the International Monetary Fund (IMF) and the World Bank

regularly conduct forward-looking debt sustainability analysis (DSA), which aims to provide the market

with an early warning of sovereign debt distress. After the Great Recession, bank supervisors adopted

forward-looking bank stress tests to assess banks’ performance under some predicted future shock, and

they publicly disclosed whether or not a bank would be able to sustain that adverse shock. However,

it is important to note a crucial feature of our proposed disclosure policy: it not only depends on the

fundamentals but also takes all historical market responses (up to the disclosure time) into account. This

feature can be missing in many EWS in practice. We show in Section 4.2 that without this feature, the

disclosure policy may fail to perfectly coordinate the agents’ actions after the disclosure, and accordingly,

the agents may not wait for such warnings.6

It is also important to note that the effectiveness of our policy hinges on the scheduled date of the

disclosure being timely. This makes it unlikely that the regime changes while the agents wait for future

disclosure. When the agents can collect their payoff instantaneously by attacking, and early movers get

the advantage, they will not wait for the alert if they believe the regime is likely to change while they

wait. It is the stochastic arrival of the shock that causes the cost of waiting to decrease continuously to

zero as the disclosure date moves closer to time zero. When the payoffs from attacking are not realized

instantaneously or when there is no first-mover advantage, the result will be stronger: the agents will wait

and follow the alert even when the shock always arrives before the disclosure date (see Section 3.1). We

6In practice, an EWS serves many other purposes and is often designed in conjunction with other supplementary policies.
See Goldstein and Leitner (2018) for how such disclosure policies can facilitate banks of heterogeneous quality to raise funds
under adverse selection. See Orlov, Zryumov and Skrzypacz (2018) for how it helps to discover systemic risk and how it can
be combined with capital regulations. See Inostroza (2019) for a comprehensive disclosure policy including banks’ liquidity
position and asset quality.
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also show that the result is robust when we allow for the observability of regime change, the infrequent

arrival of new information over time, and the possibility that only some (but not all) agents have doubts

(see Section 3.2, 3.3 and 3.4).

Theoretically, this paper contributes to two strands of the literature: (1) dynamic coordination and (2)

Bayesian persuasion or information design. See Angeletos and Lian (2017) for a recent survey on dynamic

coordination. This literature studies how coordination can be affected when agents learn some information

about the past (see, for instance, Chamley (1999, 2003), Angeletos, Hellwig and Pavan (2007), Dasgupta

(2007), Chassang (2010)). Motivated by our examples, we build a dynamic regime change game in which

a shock arrives in the future and a mass of privately informed agents decide when to attack. Unlike

the above-mentioned papers, we study how a principal can manipulate the agents’ beliefs by optimally

choosing when and how the agents learn about the past attacks and the underlying state. The crucial

feature of the game that we exploit is that the agents can choose to wait at a cost and attack at a later date.

If, instead, agents move sequentially in an exogenous order, then our result does not hold. In this case, to

dissuade an agent from attacking, the principal needs to assure him that other agents moving later in the

exogenous order will also be dissuaded from attacking. Basak and Zhou (2020) consider such a setup and

show how frequent disclosures can help.7

There is a large and growing literature on Bayesian persuasion or information design, which started

with Kamenica and Gentzkow (2011). See Kamenica (2019) and Bergemann and Morris (2019) for recent

surveys. Bergemann and Morris (2016) find the optimal Bayes correlated equilibrium (BCE) and then

design a disclosure policy that will generate a Bayes Nash equilibrium (BNE), which will have the same

outcome as in the optimal BCE. The authors assume that the agents will play the principal’s preferred

BNE. In our coordination game, a simple full disclosure can eliminate panics if agents play the “good”

BNE in which no one attacks a regime unless an attack is warranted by its fundamental. However, there is

also a “bad” BNE under full disclosure, which admits the undesirable outcome. To this end, we adopt an

adversarial information design approach (as in Mathevet, Perego and Taneva (2020)), which assumes that

the principal anticipates that the agents will play her least preferred equilibrium.

Assuming adversarial selection, in a regime change game with conditionally independent Gaussian

private signals, Goldstein and Huang (2016) find the optimal monotone binary public disclosure policy.

Inostroza and Pavan (2020) significantly generalize this result and establish that the optimal public disclo-

sure should always perfectly coordinate the agents’ actions. Li, Song and Zhao (2019) find the optimal

private disclosure when the agents share a homogeneous belief. Morris, Oyama and Takahashi (2020)

7Notice that, in our motivating examples, the agents endogenously choose the timing of their attack. The timing of the
attack is exogenous when, for instance, a borrower issues a portfolio of short-term debt with diversified maturity dates, forcing
the creditors to make their rollover decisions at different maturity dates. Together, these two studies provide a broad picture
of how the principal can adopt dynamic information disclosure policies to foster coordination. However, these two papers are
fundamentally different in terms of their underlying mechanisms and their scope of application. We will discuss the relation
between the two studies in detail in Section 4.
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characterize the set of implementable adversarial equilibrium outcomes in all binary action super modular

games, including regime-change games. As we have already mentioned, this literature shows that under

adversarial selection, panic cannot be averted using static persuasion. Our study contributes to this liter-

ature by showing that when one adds a natural timing dimension to the problem, perfect coordination on

the desirable action can be achieved using a simple dynamic information disclosure policy.

Our paper also contributes to the growing literature on dynamic persuasion (see, for instance, Au

(2015), Ely (2017), Ball (2019), Ely and Szydlowski (2020), Orlov, Skrzypacz and Zryumov (2020),

Smolin (2021), and Orlov, Skrzypacz and Zryumov (2020)). Broadly speaking, this literature uses future

disclosure as a carrot to persuade an agent to do what the principal wants. We study adversarial information

design in dynamic regime change games.8 In our setup, the design of future information, on the one hand,

can be made dependent on whether agents wait for the future disclosure; on the other hand, it determines

whether agents would choose to wait. We find that the optimal policy features a delayed binary disclosure

(or disaster alert), and, as long as the period of delay is sufficiently short, all agents wait for and then

follow the alert.9

Outline The rest of this paper is organized as follows. Section 1 describes the model and solution

concept. Section 2 shows how a timely disaster alert eliminates panic in a robust sense. Section 3 discusses

the limitations of and extensions to this design. Section 4 highlights the essential features of our optimal

design that drives this positive result, and Section 5 concludes.

1 Model

The economy is populated by a principal, a continuum of risk-neutral agents, indexed by i ∈ [0, 1], and

a regime. To understand the dynamic aspect of panic, we introduce two features to the canonical regime

change game: (1) a shock arrives at a future (possibly stochastic) date, which makes the regime vulnerable;

and (2) the agents can attack at any time within a time window, where attack is irreversible and waiting is

costly. Below, we describe the details of this model.

The shock’s arrival date There is a time window [0, T ]. A shock arrives once at some date ts within

this time window, following a commonly known distribution G : [0, T ] → [0, 1]. The regime becomes

8Only a few recent studies look into optimal disclosure in dynamic games. See, for instance, Li, Szydlowski and Yu (2021)
for the dynamic entry game or Ely et al. (2021) for the dynamic contest.

9Orlov, Skrzypacz and Zryumov (2020) investigate a problem in which a receiver chooses when to exercise a real option,
and the sender is biased toward either late or early exercise. They find that, under commitment, the optimal policy to persuade
the receiver to wait is a delayed disclosure of all information; and, if the sender lacks commitment, it is optimal to “pipette”
information gradually over time. In our dynamic persuasion problem, the timely disaster alert policy remains optimal even if
the principal lacks commitment. See Section 4.4 for a detailed discussion.
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vulnerable and may change only after the shock arrives. We assume that there is no mass at time 0 (i.e.,

G(0) = 0) and that the shock is certain to arrive by time T (i.e., G(T ) = 1).

The fundamental of the regime Before the game begins, nature chooses the fundamental state θ from

a commonly known distribution Ψ : Θ → [0, 1], where Θ is a subset of R. For a country facing a potential

sovereign default, θ can be interpreted as the fiscal capacity of the country; for a bank, θ captures the

strength of the balance sheet.

Irreversible Attack The agents can attack at any time within the time window [0, T ]. In different ap-

plications of a regime change game, attacking could mean the withdrawal of early investment, exiting

from a market, or shorting a currency. Since attack is irreversible, an agent simply chooses when to attack,

ti ∈ [0, T ], if at all. We represent not attacking in the given time window asT, where T < T < ∞. There-

fore, the action space of any agent is [0, T ] ∪ {T}. We say that an agent is active at any time t ∈ [0, T ] if

and only if he has not attacked by time t. We define Nt =
´
i
1{ti ≤ t}di as the mass of attack until time t

(inclusive), which is non-decreasing in time t.

Timing We consider a continuous-time model. We use the notation t− (and t+) to capture the instance

before (and after) t but excluding t. Between time t and time t + ∆t (where ∆t → 0), we allow for a

sequence of events to occur in a particular order. First, the agents receive information (if there is any).

Next, the agents decide whether to attack if they have not attacked already. Then, the regime outcome

(whether the regime changes if it has not already) is determined. The details of how the regime outcome is

determined will be discussed shortly. Following that, the agents who attack collect their payoffs. Finally,

the shock may arrive if it has not arrived yet. There is no time discounting between these events. Figure 1

depicts the order of events.

t+∆t

information attack or not regime outcome payoff if attack shock

t

Figure 1: Timing

First, note that when the agents attack, they collect their payoff instantaneously in the same period.

Second, note that we use the conventions that the shock arrives after the regime outcome is determined at

any t. We use this convention to allow the agents a chance to attack and collect their payoffs at ti = 0 even

before any shock can arrive. Otherwise, our result will be even stronger. We discuss alternative timing con-

ventions and some alternative cases in which the payoffs from attacking are not collected instantaneously

in Section 3.1.
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Regime Change There is a differentiable function R(θ,Nt) governing the regime’s preparedness to face

the shock at any time t. A stronger fundamental makes the regime better prepared (i.e., ∂R
∂θ

> 0). On the

other hand, more attacks weaken the regime’s preparedness (i.e., ∂R
∂Nt

< 0). As we incorporate a timing

dimension in the standard regime change game, the time when the regime changes, denoted by tc, plays

an important part in our analysis. Given θ and (Nt)t∈[0,T ], if R(θ,NT ) ≥ 0, the regime never changes and

survives in the end. This is denoted by tc = ∞. Otherwise, if R(θ,NT ) < 0, the regime does not survive

in the end, it changes at the first instance after the shock arrives (t > ts) when R(θ,Nt) < 0.

Formally, a regime survives until time t (inclusive) either if (1) the shock has not arrived by the time

the regime outcome is determined for time t, i.e., t ≤ ts,10 or (2) the shock has arrived (t > ts) but the

fundamental is strong enough to withstand the attack so far, i.e., R(θ,Nt) ≥ 0. Assuming that the regime

changes in the end (R(θ,NT ) < 0), we define

tnc := sup{{t : 0 ≤ t ≤ ts} ∪ {t : ts < t ≤ T & R(θ,Nt) ≥ 0}}

as the last date beyond which the regime cannot survive. By definition, tnc ≥ ts. The equality holds when

the regime changes the next instance of the shock arrival, i.e., R(θ,Nt+s
) < 0. Notice that this makes the

second set in the above expression empty. Finally, we define tc, the time at which the regime changes as

tc =

t+nc if R(θ,NT ) < 0

∞ if R(θ,NT ) ≥ 0.
(1)

By definition, either the regime never changes (tc = ∞), or it changes at some date in the time interval

[0+, T+].

Payoff The agents are ex ante identical. They have a stationary discount rate β > 0 and are expected

utility maximizers. If an agent chooses to attack at time ti ∈ [0, T ], then he obtains

π(ti, tc) = e−βti [1{ti < tc}U + 1{ti ≥ tc}U ]. (2)

Based on the above specification, the payoff from attacking depends on the agent’s position in the queue

of attacking agents. If he attacks early enough before most of the other attacking agents and thus before

the time of the regime change (ti < tc), he obtains a high payoff U ; otherwise, he is too late to attack

(ti ≥ tc) and obtains a low payoff U .11

10Recall that, by convention (See Figure 1), the regime outcome at time t is determined before the shock arrives. Therefore,
if the shock arrives at time t, it does not influence the regime outcome at t but at t+.

11In Example 1, where the shock arrives at the deterministic date T , the regime can either change at tc = T+ or never
change tc = ∞. Therefore, ti < tc holds true for any ti ∈ [0, T ]. Accordingly, the payoff from attacking boils down to
π(ti, tc) = e−βtiU .
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Assumption 1 (First-mover Advantage) The payoff from attacking before the regime changes is higher

than attacking after the regime changes: U > U .

Note that an agent’s action, by itself, does not affect tc. Therefore, under this payoff specification, if

an agent decides to attack, he is better off by attacking as early as possible — that is, attack at ti = 0.

Therefore, without any disclosure from the principal, this game boils down to the canonical binary action

static regime change game. Notice that if the principal can achieve more than what she can achieve under

static persuasion, then it is because of her ability to disclose information dynamically and not because the

dynamic game is different from the static game.12

On the other hand, if an agent does not attack at all (ti = T), then he obtains

π(T, tc) = e−βT [1{T < tc}V + 1{T ≥ tc}V ].

For the agent who chooses not to attack, his payoff is realized at time T+ depending on whether or not the

regime changes in the end. If the regime does not change (tc = ∞ > T), he gets a high payoff V , and if

the regime changes (tc ≤ T+ ≤ T), he gets a lower payoff. We assume V ≥ 0.

Assumption 2 (Complementarity) The payoffs satisfy the following inequalities:

e−βTV > U, and U > V .

To understand the above assumption, first, suppose sufficiently many other agents choose to attack and,

accordingly, the regime does not survive in the end — that is, tc ̸= ∞. Strategic complementarity dictates

that conditional on a regime change, the payoff from attacking at any ti ∈ [0, T ] is strictly higher than not

attacking ti = T; that is,

π(ti, tc ̸= ∞)− π(T, tc ̸= ∞) = e−βti [1{ti < tc}U + 1{ti ≥ tc}U ]− e−βTV > 0.

The above inequality holding true for any ti ∈ [0, T ] necessitates U > V . Second, suppose that insuffi-

ciently many agents attack and, accordingly, the regime survives in the end — that is, tc = ∞. Strate-

gic complementarity dictates that conditional on the regime surviving, the payoff from attacking at any

ti ∈ [0, T ] is strictly lower than that from not attacking ti = T; that is,

π(ti, tc = ∞)− π(T, tc = ∞) = e−βtiU − e−βTV < 0

12Although this setup is natural for our examples, this may not be true in some other dynamic setup. For instance, consider
riding a stock bubble, where an agent wants to wait until the last minute before the regime changes (see Abreu and Brunnermeier
(2003)). Notice that in their setup, even without any disclosure, agents still have incentive to wait and therefore the game is
very different from a canonical regime change game. We think this is a very interesting but substantially different setup. We
leave the information design question in such a setup for future research.
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The above inequality holding true for any ti ∈ [0, T ] necessitates U < e−βTV .

In Section 3.1, we consider some variants of this payoff structure. For instance, we consider a setup

where there is no first-mover advantage or payoff depends on the final regime outcome, or it takes time to

collect the payoff from attacking. We show that the results are robust under such variants.

Dominance Regions We assume that there exist θ and θ ∈ Θ such that R(θ, 0) = R(θ, 1) = 0. Since

the preparedness function R is strictly decreasing in the accumulated attack Nt and Nt ∈ [0, 1] for any t,

when θ ∈ ΘL ≡ Θ ∩ (−∞, θ), regardless of agents’ strategy, the regime cannot survive, and it changes

right after the shock arrives (i.e., tc = t+s ). When θ ∈ ΘU ≡ Θ ∩ [θ̄,+∞), the regime will always survive

(i.e., tc = ∞) regardless of the attacks. We refer to ΘU (or ΘL) as the upper (or lower) dominance region,

where not attacking ti = T (or attacking right away ti = 0) is the dominant strategy. Throughout the

paper, we assume the existence of the dominance regions (i.e., ΘL, ΘU ̸= ∅). Recall that the shock will

definitely arrive by the end of the time window (G(T ) = 1). However, it is possible that the fundamental

is so strong (θ ∈ ΘU ) that the shock does not make the regime vulnerable to the attacks at all.

Exogenous Information The agents receive some noisy signals si ∈ S before the game begins. We as-

sume that, given any underlying fundamental θ, the signal profile s(θ) ∈ S[0,1] is drawn from a distribution

F (s|θ) with associated density f(s|θ). The signals may not be conditionally independent. For instance, if

some agents share a common information source, or if they have some communication among themselves,

then conditional on θ, the signals could be correlated. We allow for any arbitrary correlation, ranging from

conditionally independent signals to perfectly correlated signals (homogeneous beliefs). The exogenous

information structure is common knowledge.

We assume that the information-generating process F satisfies the following property.

Assumption 3 (Doubt) There exists ϵ > 0, such that any agent i with noisy signal si ∈ S believes that

P(θ ∈ ΘU |si) =
´
θ∈ΘU fi(si|θ)dΨ(θ)´
θ∈Θ fi(si|θ)dΨ(θ)

> ϵ, P(θ ∈ ΘL|si) =
´
θ∈ΘL fi(si|θ)dΨ(θ)´
θ∈Θ fi(si|θ)dΨ(θ)

> ϵ,

where fi(si|θ) = margs−i
f(s|θ).

It holds that, regardless of the noisy signal an agent receives, he always assigns at least 2ϵ probability

that θ is in the dominance regions for some ϵ > 0. Recall that a regime with fundamental θ ∈ ΘU (θ ∈ ΘL)

survives (changes) regardless of the attacks. Hence, this assumption is equivalent to saying that, regardless

of his signal and other agents’ actions, an agent always has some doubt about whether his action is the

right choice.13

13In particular, if the marginal distribution has full support and a bounded density — that is, fi(si|θ) ∈ [f, f ] for all θ ∈ Θ,
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In Section 3.4, we discuss why the doubt assumption is more than necessary for our main result.

For simplicity of exposition, we assume that the agents do not observe any new information over time.

Later we relax this assumption. We show that the main insight can easily be extended when the agents

observe the regime change (if it happens) (see Section 3.2) or infrequently receive additional noisy signals

regarding the fundamental θ (see Section 3.3).

Principal As is standard in literature, we assume that the principal is concerned about the final outcome

of the regime and prefers the survival of the regime. The principal’s payoff is simply 1{R(θ,NT ) ≥ 0}.

To go back to our examples, a regulator who values financial stability wants the bank to survive, IMF or

world bank wants to avoid the sovereign debt crisis.14 The principal does not know the private signals

that the agents have received. However, unlike the agents, at any time t, the principal can observe the

endogenous history of attacks until then; that is, (Ns)s<t. In addition, through all necessary due diligence,

the principal can figure out the fundamental of the regime (θ) and, thus, can assess the preparedness of the

regime to face the shock even if the shock has not yet arrived.15

Disclosure Policy The principal commits to a dynamic public information disclosure policy denoted by

Γ = (d,S), where S is the message space, and d : [0, T ]×Θ× [0, 1] → ∆(S) is a mapping that specifies

a public message depending on the date τ ∈ [0, T ], the fundamental θ ∈ Θ, and the history of attack

until then Nτ− . Note that, at τ = 0, any message can only be about the fundamental; for any τ > 0,

the message can vary depending on how many agents wait for the message. It is important to note that

this disclosure rule allows the principal to send messages that vary with the history of attack Nτ− (or,

equivalently, the fraction of agents choosing to wait 1−Nτ−). This property is referred to as endogenous

disclosure. Moreover, since the fundamental θ is realized before the game begins, the principal can also

design information based on θ and disclose that information even before the shock actually realizes at ts.

We refer to this property as forecasting.16

Solution Concept and Adversarial Selection We consider the strategic form representation of the dy-

namic game. Given the disclosure policy Γ , a strategy of an agent of any type is to make a contingency

and si ∈ S, where 0 < f ≤ f < +∞ — then Assumption 3 holds true for any ϵ ∈ (0,min{ (1−Ψ(θ))f

f
,
Ψ(θ)f

f
}).

14Our main result is robust if the principal wants to reduce the size attack when such attacks are unwarranted, or wants to
maximize welfare. We discuss more nuanced preferences and the associated challenges in Section 4.4.

15This is consistent with the fact that bank supervisors and international organizations rely on historical data and econometric
models to forecast the regime’s preparedness to face some future shock. In Section 4.3, we discuss small errors in prediction.

16We can also allow for disclosure conditional on whether the shock has arrived, the whole history of attack (i.e., (Ns)s≤τ− ),
or private disclosure. However, as will be clear soon, these alternatives do not add any value in our setup. To focus our attention
on the information design problem, we assume away any cost of acquiring information (or due diligence) and disclosing
information. In real-world applications, these costs can be negligible compared with the loss brought about by a banking crisis
or a sovereign debt crisis.
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plan for when to attack (ti ∈ [0, T ] ∪T) at the initial history ∅ and at every history based on the informa-

tion disclosed by the principal. We use iterated elimination of strictly dominated strategies in the strategic

form game as our solution concept. A strategy is rationalizable if it can survive the iterated elimination of

strictly dominated strategies. Given any disclosure policy Γ , let R(Γ ) be the set of rationalizable strategy

profiles.17,18

The principal does not expect the agents to play the rationalizable strategy profile that is advanta-

geous to her. Rather, she anticipates, state by state, the worst-case scenario that is consistent with some

rationalizable strategy profile. We refer to this as adversarial selection. Define

ΘC(Γ ) := {θ ∈ Θ|R(θ,NT (x)) < 0 for some x ∈ R(Γ )}.

The superscript C stands for regime change. In words, if θ /∈ ΘC(Γ ), then the regime will survive,

regardless of whatever rationalizable strategies the agents play; otherwise, if θ ∈ ΘC(Γ ), the regime will

not survive under some rationalizable strategy profile x ∈ R(Γ ).

Panic and Robust Information Design A distinctive feature of the regime change game is that when

θ ∈ ΘL, it is inevitable that the regime will change, regardless of what the agents do. Hence, no disclosure

policy Γ can ensure the survival of such a regime (i.e., ΘL ⊆ ΘC(Γ ) for any Γ ). However, a regime

could also change even when it is not warranted (θ /∈ ΘL), as agents may choose to attack the regime if

they believe that many others will do the same. We refer to this as panic-based attacks. Let us define

ΘP (Γ ) := ΘC(Γ ) \ ΘL for any policy Γ as the set of fundamentals in which the regime change may

happen under some rationalizable strategy profile, and if it happens, it is caused by panic-based attacks.

Given the principal’s payoff specification and under adversarial selection, she chooses Γ to maximize

E[1{θ /∈ ΘC(Γ )}]. Since the regime will change regardless of Γ for any θ ∈ ΘL, the principal’s objective

is equivalent to

min
Γ

P(θ ∈ ΘP (Γ )),

where P(θ ∈ ΘP (Γ )) =
´
ΘC(Γ )

dΨ(θ). This is referred to as adversarial (or robust) information design.

If ΘP (Γ ) = ∅, then we can conclude that policy Γ eliminates panic in a robust sense.

17Note that the set of rationalizable strategy R(Γ ) could be different based on the underlying exogenous information structure
F . However, since F is exogenous and commonly known, for convenience, we suppress F from R(·).

18Note that rationalizability requires common knowledge of rationality. However, as will be seen in Section 2, our main
result only requires that the agents are rational and that they believe others are rational. Any higher order rationality is not
required for our theory. Additionally, our results will hold true for more restrictive solution concepts such as Perfect Bayesian
Equilibrium (PBE) (see the Online Appendix).
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2 Main Result

In this section, we construct a simple dynamic information disclosure policy. This policy induces (even

in the worst case) the agents to perfectly coordinate their actions and never attack a regime when it is not

warranted (θ /∈ ΘL), thereby eliminating panic in the robust sense.

2.1 Static Benchmarks

To fix ideas, let us start with time 0 disclosure policies. Recall that the principal can send the message

at τ = 0, before the agents have their first opportunity to attack. Depending on the message from the

principal and their own signals, agents may or may not attack. However, since a delayed attack is costly,

if an agent decides to attack, he will do so immediately. Thus, the game boils down to the canonical static

regime change game.

Full Disclosure Suppose that the fundamental θ is fully revealed at time 0. A possible equilibrium out-

come is that all the agents perfectly coordinate on not attacking when θ /∈ ΘL. However, given the strategic

complementarity, this is not the only rationalizable strategy profile. In another possible equilibrium, all

agents attack at t = 0 whenever θ /∈ ΘU . Therefore, for a principal who anticipates the adversarial

outcome, full disclosure is the worst policy because it maximizes the chance of regime change.

No Disclosure Suppose the principal does not provide any information. Then, depending on the distri-

bution of the signals that the agents receive, there can be multiple equilibria. For instance, suppose that the

agents share a homogeneous belief about θ. If they believe that the probability that θ ∈ ΘL is sufficiently

small, there exists an equilibrium in which they do not attack. However, if they believe that the probability

that θ ∈ ΘU is sufficiently small, then there also exists another equilibrium in which they all panic and

attack. Using global game perturbation, Morris and Shin (2003) show that if the agents have sufficiently

heterogeneous beliefs, there is a unique rationalizable strategy: attack if and only if the private signal is

below a threshold. This means that unless the fundamental is sufficiently strong, there are panic-based

attacks and the regime changes (see Section 3.4 for details).

Partial Disclosure There exist many time-0 partial disclosure policies. Consider the following policy

Γ 0: at time 0, the principal publicly discloses whether or not the regime change is warranted (θ ∈ ΘL, or

equivalently, R(θ, 0) < 0). There is an equilibrium in which the agents attack if and only if the principal

sends the message that the regime change is warranted. However, there are other equilibria in which

panic-based attacks are possible (see Angeletos, Hellwig and Pavan (2007)). To ensure that the agents

never attack in any equilibrium, the positive news needs to be stronger than θ /∈ ΘL. Under conditionally

independent Gaussian signals, Goldstein and Huang (2016) find the optimal binary (pass/fail) monotone
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public disclosure policy. The authors show that if the principal gives a pass grade iff R(θ, 0) > k for

a sufficiently large k, then, under the adversarial selection, the agents will not attack when they see the

regime gets a pass grade, and attack when they see the regime gets a fail grade. Notice that this disclosure

policy perfectly coordinate the agents actions. However, when θ is such that R(θ, 0) ∈ [0, k], the regime

gets a fail grade, and all the agents coordinate on attacking. Therefore, the regime changes although the the

fundamental does not warrant a change (since θ ≥ θ). Inostroza and Pavan (2020) generalizes this result

by showing that under conditionally independent super-modular signal, the optimal binary disclosure is a

pass/fail disclosure that perfectly coordinates the agents actions.19 Notice that under such optimal static

disclosure ΘP ̸= ∅, that is, under adversarial selection, panic cannot be averted using static persuasion.

The above discussion underscores two important aspects of the problem. First, to understand how to

reduce the chance of panic, we cannot simply select the principal’s preferred equilibrium. Many policies

can eliminate panic if the agents play the principal’s preferred equilibrium (such as full disclosure, or Γ 0

policy). However, these policies cannot do so in the robust sense. Second, panic cannot be eliminated

simply by providing information early (at time 0, before the agents have any chance to attack). Below, we

allow for a fairly flexible information environment in which, ex ante, the agents receive some arbitrarily

correlated noisy signals (as long as there is some doubt). We show that the principal can exploit the

endogenous waiting and construct a simple dynamic disclosure policy that eliminates panic in the robust

sense.

2.2 A Simple Dynamic Disclosure Policy: Disaster Alert

We consider a simple partial disclosure policy. The principal sends a binary signal S = {0, 1} at a fixed

date τ ∈ (0, T ). We refer to this policy as Γ τ .20 The public signal dτ ∈ {0, 1} is generated based on the

underlying fundamental θ and the history of attacks Nτ− as follows:

dτ (θ,Nτ−) =

1 if R(θ,Nτ−) < 0;

0 otherwise.

We call dτ a disaster alert: the alert is triggered if dτ = 1 and is not triggered if dτ = 0.21 When the

alert is triggered (dτ = 1), it implies that regardless of the agents’ actions after the disclosure, the regime

cannot survive (i.e., tc < ∞). To see this, first consider the case in which, ex post, the shock arrives

before the time of disclosure (i.e., ts < τ ). Since R(θ,Nτ−) < 0, the regime has already changed (i.e.,

19The authors also show that under some conditions, such optimal pass/fail disclosure could be non-monotonic.
20Since this is a one-time disclosure at a specific date τ , we simplify notation by using τ as a superscript (rather than as an

argument in the disclosure policy).
21In the spirit of Bayesian persuasion, this can be thought of as the principal sending a recommendation at time τ to the

agents to “attack” when the disaster alert is triggered and to “not attack” otherwise.
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tc ≤ τ ). Next, consider the case in which, ex post, the shock has not yet arrived by the time of disclosure

(i.e., ts ≥ τ ). However, since R(θ,Nτ−) < 0, the regime will change as soon as the shock arrives (i.e.,

tc = t+s ).

On the other hand, if the alert is not triggered (dτ = 0), the agents learn that, without further attacks,

the regime will survive regardless of when the shock arrives (i.e., R(θ,NT = Nτ−) ≥ 0). However, the

survival of the regime is not guaranteed following dτ = 0. If some agents choose to attack after no alert,

the regime may still change.

In this spirit, the proposed disaster alert policy resembles a real-world EWS, which aims to generate an

accurate forecast of a future crisis by all historical information. Notice that the proposed policy is simple:

it is binary and public. However, it is an endogenous disclosure. The message at date τ depends on the

fraction of agents who choose to wait for the disclosure (1 − Nτ−). If some agents do not wait for the

disaster alert and attack before time τ , then the attack may trigger the alert (R(θ,Nτ−) < 0). Moreover, it

forecasts. The alert is triggered (R(θ,Nτ−) < 0) even when the regime has not yet changed (ts ≥ τ ), but

it is evident that it will change.

2.3 Optimality of Disaster Alert

The proposed policy can be interpreted simply as an assurance from the principal. That is, “Do not panic;

just wait until time τ , and at that time, I will send you an alert if a regime change is inevitable.” The

following theorem shows that if the principal asks the agents to wait for only a little while (small enough

τ ), then, under the unique rationalizable strategy, the agents will always do so and follow the principal’s

advice regardless of their own information.

Theorem 1 Under G(0) = 0, there exists τ̂ > 0 such that under the disclosure policy Γ τ with τ ∈ (0, τ̂ ),

panic is eliminated in the robust sense; that is, ΘP (Γ τ ) = ∅.

Theorem 1 claims that when the principal sets the disaster alert in a timely manner, she achieves her most

preferred outcome as the unique rationalizable outcome. We prove this theorem using three lemmas that

we will discuss next.

Option Value of Waiting

Consider the game under the disclosure policy Γ τ where τ ∈ (0, T ). Nature moves first and selects (θ, s),

where s is the profile of signals for each agent. Each agent i ∈ [0, 1] learns his own type si. An agent i of

type si makes a contingency plan for when to attack at three possible histories: the initial history (∅), the

one after the alert is not triggered (dτ = 0), and the one after the alert is triggered (dτ = 1). Let t∅, t0, and
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t1 be the time of attack at these three histories, respectively. Therefore, the strategy space for each agent is

X := {(t∅, t0, t1) ∈ [0, T ] ∪ {T} × ([τ, T ] ∪ {T})2}.

Consider an agent i of type si who plays a strategy xi = (t∅, t0, t1), while others play strategy x−i. Let

ui(xi, x−i; si) be his expected payoff. If t∅ ∈ [0, τ), then

ui(xi, x−i; si) = E[π(t∅, tc)|x−i, si].

Note that if t∅ ∈ [0, τ), then the agent is no longer active at time τ . Therefore, the path of play and, hence,

the payoff are unaffected by the specification of t0 and t1. On the other hand, if t∅ ∈ [τ, T ] ∪ {T}, then

ui(xi, x−i; si) =P(dτ = 0|x−i, si)E[π(t0, tc)|x−i, si, d
τ = 0]

+P(dτ = 1|x−i, si)E[π(t1, tc)|x−i, si, d
τ = 1].

As the agent is still active at time τ , the path of play and, hence, the payoff of the agents are determined

only by t0 and t1 but not t∅.

Lemma 1 (Option value) For any agent i of any type si, the only rationalizable strategies are

– strategy A: (0, t0, t1), where t0, t1 ∈ [τ, T ] ∪ {T}; and

– strategy W: (t∅,T, τ), where t∅ ∈ [τ, T ] ∪ {T}.

As we have already mentioned, for any agent i, given any strategy profile played by others, for any

t0, t1 ∈ [τ, T ] ∪ {T}, the strategy (0, t0, t1) leads to the same path of play and, hence, the same payoff for

this agent. We refer to all such strategies as A (attack immediately). Similarly, for any t∅ ∈ [τ, T ] ∪ {T},

strategy (t∅,T, τ) leads to the same path of play and, hence, the same payoff for agent i. We refer to all

such strategies as W (wait and follow).

The intuition behind Lemma 1 is simple. First, consider an agent who makes a plan not to wait for

the alert or, equivalently, to attack before the disclosure date (i.e., t∅ ∈ [0, τ)). Since waiting is costly, in

the absence of any new information, he will attack as early as possible to avoid an unnecessary delay cost.

Therefore, any strategy that involves t∅ ∈ (0, τ) is strictly dominated by attacking immediately at t∅ = 0

(strategy A).

Next, suppose that an agent makes a contingency plan whereby he waits for the alert (i.e., t∅ ≥ τ ).

Conditional on dτ = 1, as it predicts a regime change regardless of what others do thereafter, this agent

will attack and will do so immediately at t1 = τ to save some waiting cost. As such, any strategy (t∅, t0, t1)

that involves t∅ ≥ τ and t1 > τ is dominated by (t∅, t0, t1 = τ) for the same t∅ and t0. It follows from
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the doubt assumption that the agent assigns a positive probability that dτ = 1 regardless of his type. This

makes the dominance strict.

However, given that an agent makes a contingency plan whereby he waits and attacks immediately

after dτ = 1 (i.e., t∅ ≥ τ and t1 = τ ), if he also attacks after dτ = 0 (i.e., t0 ∈ [τ, T ]), then the information

dτ has no value. This agent should have attacked at time 0 and saved the cost of waiting for the alert.

That is, strategy A strictly dominates any strategy involving waiting and attacking regardless of dτ (i.e.,

(t∅, t0, t1 = τ) with t∅ ≥ τ and t0 ∈ [τ, T ]).22 Thus, if a rational agent chooses to wait for the disaster

alert, it must be that he will follow it — that is, attack if and only if the alert is triggered (strategy W).23

Different from disclosing information at t = 0, under Γ τ , the agents need to wait to see the message

from the principal. To understand the role of future disclosure (i.e., τ > 0), let us contrast this with the Γ 0

disclosure policy (see Section 2.1). Recall that under the policy Γ 0, there exists an equilibrium in which

an agent may attack after learning d0 = 0 (i.e., R(θ, 0) ≥ 0). Note that under policy Γ τ with τ > 0, an

agent may still plan to attack at the information set dτ = 0 (i.e., t0 ∈ [τ, T ]). However, based on Lemma

1, this case can occur only under strategy A; that is, this agent will attack at time 0 and will no longer be

active at the time of disclosure. Thus, when the agents play some rationalizable strategies, on path, attacks

cannot happen after dτ = 0.

Predictability of Disaster Alert

By Lemma 1, when an agent plays some rationalizable strategy, if he waits for the disclosure, he will

follow the disaster alert dτ (i.e., attack if and only if the disaster alert is triggered). Accordingly, the public

signal dτ perfectly coordinates the actions of these agents from time τ onward. Recall that the agents

who remain active at the disclosure time τ are the ones who play the “wait and follow” strategy (W).

Conditional on no alert (dτ = 0), they will never attack (i.e., t0 = T). Therefore, the regime always

survives following dτ = 0 since R(θ,NT ) = R(θ,Nτ−) ≥ 0. Consequently, as long as agents play

rationalizable strategies (either A or W), the regime changes if and only if dτ = 1. In other words, the

binary public signal dτ predicts the ultimate regime status.

Following Lemma 1, we can also infer the time of regime change tc given that dτ = 1. By definition

of dτ , the alert is triggered (dτ = 1) if and only if R(θ,Nτ−) < 0. By Lemma 1, the agents who attack

22It is worth noting that the result in Lemma 1 only involves one round of elimination of dominated strategies, and it does
not even require the agents to hold the belief that others will never play dominated strategies.

23A similar option value of the waiting argument appears in the context of social learning, in which an agent can learn from
others’ actions, but such actions do not affect his payoff (see Chamley and Gale (1994) and Gul and Lundholm (1995)). The
intuition is simple: Consider two agents deciding whether to attack at time 1 or time 2. If an agent waits to see whether the
other agent attacks, it must hold that he will take different actions, conditional on whether the other agent attacks at time 1.
Otherwise, there is no positive option value of waiting. The result also has an intuitive connection to the coordination with an
outside option example in the forward-induction literature, introduced by Kohlberg and Mertens (1986). The outside option
appears naturally in our dynamic setting, as the agents can choose to attack immediately rather than waiting for the future
disclosure. Forward induction is formalized using iterated weak dominance (Ben-Porath and Dekel, 1992). However, note that
given the doubt assumption, we can use the standard iterated elimination of strictly dominated strategies (IESDS).
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before the disclosure time τ are the ones who play strategy A and attack at time 0. Therefore, Nτ− = N0,

implying that R(θ,N0) < 0. By definition of tc, this means that the regime changes as soon as the shock

arrives (i.e., tc = t+s ). The following lemma summarizes this.

Lemma 2 (Perfect Predictability) Under policy Γ τ , (1) if dτ = 0, the regime survives — that is, tc = ∞;

and (2) if dτ = 1, the regime changes as soon as the shock arrives — that is, tc = t+s .

Timely Alert and Negligible Waiting Cost

Consider an agent who receives a signal si. He faces some fundamental uncertainty regarding θ: he

has some doubt about whether his action is going to be the right choice (regardless of what others do).

Moreover, he still faces strategic uncertainty about whether or not other agents will wait for the disclosure.

However, as long as all agents who wait for the disclosure will follow the disaster alert (Lemma 1), the

disaster alert can perfectly predict the regime outcome (Lemma 2). Therefore, if he waits for the alert, his

private information si becomes irrelevant. The disaster alert can help him avoid the mistake of attacking a

regime that will survive in the end. Nevertheless, an agent who waits for disclosure may end up attacking

the regime at a later date. Such a delay in attacking is costly, especially so if, by waiting, the agent misses

the opportunity to attack the regime before it changes (i.e., t1 = τ ≥ tc). Thus, an agent will be reluctant

to play strategy W if he believes that the alert is likely to be triggered.

Lemmas 1 and 2 hold true regardless of the time of disclosure τ as long as τ > 0. Next, we explore

the timing of disclosure and discuss the role of a “timely” disclosure.

Lemma 3 (Timely Alert) There exists τ̂ > 0 such that under the disclosure policy Γ τ with any τ ∈ (0, τ̂),

the unique rationalizable strategy for any agent i ∈ [0, 1] and any signal si ∈ S is W; that is, wait for the

disclosure and then follow the alert.

Lemma 3 establishes the dominance of the “wait and follow” strategy (W) over attacking immediately

(A) under a timely disaster alert. By convention, if the agent attacks immediately (A), he obtains U

regardless of tc. That is, regardless of the fundamental, others’ strategies, and the shock arrival time, he

gets the highest possible payoff from attacking if he attacks immediately. In comparison, waiting for the

alert (W) is profitable if the alert is not triggered (dτ = 0), but it is costly if the alert is triggered (dτ = 1).

The Benefit of Waiting If no alert is triggered (dτ = 0), the agent expects the regime to survive in

the end (Lemma 2). In this case, the “wait and follow” strategy (W) prevents agents from making the

mistake of attacking a regime that survives. That defines the benefit of waiting. Conditional on dτ = 0,

the expected benefit from playing W , as compared to A, is

B(Γ τ , x−i, si) := E
[
π(T, tc)− π(0, tc)

∣∣∣x−i, si, d
τ = 0

]
.
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Recall that the agent who plays W chooses t0 = T when dτ = 0. It follows from Lemma 2 that as long as

others play a rationalizable strategy (i.e., xj ∈ {A,W}), conditional on dτ = 0, the regime never changes

(tc = ∞). Therefore,

B(Γ τ , x−i, si) = π(T,∞)− π(0,∞) = e−βTV − U. (3)

This expected benefit is independent of the disclosure time τ , noisy information si, and others’ rationaliz-

able strategies x−i, and it is strictly positive (by Assumption 2).

The Cost of Waiting On the other hand, conditional on dτ = 1, the regime changes as soon as the shock

arrives (i.e., tc = t+s ) (Lemma 2). Recall that, given dτ = 1, an agent who plays strategy W attacks at

t1 = τ . Therefore, the expected payoff from the “wait and follow” strategy (W) is24

E(π(τ, tc)|x−i, si, d
τ = 1) =e−βτ

ˆ T

ts=0

(
1{ts ≥ τ}U + 1{ts < τ}U

)
dG(ts)

=e−βτ
(
(1−G(τ−))U +G(τ−)U

)
. (4)

Accordingly, the expected cost of waiting is

C(Γ τ , x−i, si) :=E
[
π(0, tc)− π(τ, tc)

∣∣∣x−i, si, d
τ = 1

]
=(1−G(τ−))(1− e−βτ )U +G(τ−)(U − e−βτU). (5)

Similar to the benefit, the expected cost C is independent of the signal si since dτ = 1 perfectly predicts

that the regime will change as soon as the shock arrives. Unlike the benefit, the cost depends on the

disclosure time τ . To see this, note that, with probability G(τ−), the shock arrives and, consequently, the

regime changes before the time of disclosure (i.e., ts < τ and tc = t+s ≤ τ ). In this case, waiting induces

a reduction in the payoff from U to e−βτU . However, with probability (1 − G(τ−)), the shock does not

arrive and, consequently, the regime changes after time τ (i.e., ts ≥ τ and tc = t+s > τ ). In this case, the

cost induced by waiting is simply the loss of time value of U (i.e., (1− e−βτ )U ).

An early disclosure limits the waiting cost since C(Γ τ , x−i, si) falls as τ decreases. The loss of time

value (1− e−βτ )U decreases continuously to 0 when the disclosure time τ decreases to 0. The assumption

that G(0) = 0 and the fact that G(·) is right continuous (since it is a cumulative distribution function)

ensure that the probability of a significant payoff drop G(τ−) is negligibly small when τ is set sufficiently

close to 0. Therefore, although the decrease in payoff U − e−βτU is bounded away from 0, when τ

decreases to 0, the expected cost is C(Γ τ , x−i, si) → 0. This holds true for any agent i, regardless of his

24Notice that if ts ≥ τ , then, following our timing convention (see Figure 1), the regime does not change when the agent
attacks at time τ .
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signal si and others’ rationalizable strategy x−i.

The Dominance of W over A It follows from Assumption 3 that regardless of the signal si and other

agents’ actions, there is at least ϵ chance that the disaster alert will not be triggered, and that, accordingly,

attacking early will be a mistake. This enables us to get a lower bound for the net expected benefit from

playing W as compared to A for any given si; that is,

D(Γ τ , x−i, si) := P(dτ = 0|x−i, si)B(Γ τ , x−i, si)− P(dτ = 1|x−i, si)C(Γ τ , x−i, si)

≥ ϵ · B(Γ τ , x−i, si)− (1− ϵ) · C(Γ τ , x−i, si). (6)

Recall that the benefit B(Γ τ , x−i, si) and the cost C(Γ τ , x−i, si) are independent of x−i and si. The

benefit is strictly positive and is independent of τ , whereas the cost is increasing in τ and converges to 0 as

τ decreases to 0. Therefore, there exists τ̂ > 0 such that the net benefit of waiting D(Γ τ , x−i, si) is strictly

positive if the time of disclosure is set at any τ ∈ (0, τ̂). As such, a timely disaster alert ensures that the

expected benefit outweighs the expected cost, irrespective of the signal si and other agents’ strategies (as

long as they play rationalizable strategies W and A). In other words, under a timely disaster alert, for

si ∈ S, strategy W strictly dominates strategy A.

It is worth noting that the strict dominance of W involves only two rounds of iterated elimination of

strictly dominated strategies, whereas higher orders of rationality are not required.

Theorem 1 follows immediately from the above lemmas. Given that the disaster alert is set in a timely

manner, under the unique rationalizable strategy profile, all agents wait for the disclosure and follow the

alert afterward. Since all the agents wait for the alert, any regime that can survive without attack (θ /∈ ΘL)

will not trigger the alert (dτ = 0). Because the agents will not attack when the alert is not triggered, any

regime with θ /∈ ΘL will never change. Therefore, any timely disaster alert policy Γ τ with τ ∈ (0, τ̂)

eliminates panic in the robust sense (i.e., ΘP (Γ τ ) = ∅).

3 Extensions

In this section, we discuss the robustness of the timely disaster alert policy by extending the dynamic

regime change model to consider alternative scenarios of the exogenous information structure, timing

setup, and payoff specification.

3.1 Time Gap and Negligible Waiting Cost

Since the shock arrives in the future, and the regime becomes vulnerable only after the shock arrives, it

creates a time gap between when the agents can start attacking (time 0) and when the regime changes (tc).
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When the shock arrives at a deterministic date T (as in Example 1), if the regime changes, it changes only

at tc = T+. Thus, the regime cannot change while the agent waits for the disclosure at time τ . When

the shock arrives at a stochastic date ts ∈ [0, T ] (as in Example 2), the regime can change at any date

tc ∈ [0+, T+]. The probability that the regime can change before any given disclosure date τ is, at most,

G(τ−). Under the assumption G(0) = 0, the probability that the regime will change before the time of

disclosure can be made arbitrarily small when the disclosure time τ is sufficiently close to zero.

This time gap is essential for our main result. Recall that the cost of waiting for the disaster alert is

(see (5))

C(Γ τ , x−i, si) = (1−G(τ−))(1− e−βτ )U +G(τ−)(U − e−βτU)︸ ︷︷ ︸
C2(.)

. (7)

The second term in this cost, denoted byC2(.), is a result of the missed opportunity of attacking the regime

before it changes. Suppose that there is a significant probability that the shock arrives before the disclosure

date. For instance, consider the extreme case with G(0) = 1. This means that regardless of τ when the

alert is triggered (dτ = 1), the regime has already changed. Hence, there is no time gap. In this case, the

first term in (7), which captures the cost of waiting purely due to time discounting, will be negligibly small

when the disclosure time τ is sufficiently close to 0. However, the second term is bounded away from 0;

that is, independent of τ ,

C2(Γ
τ , x−i, si) ≥ G(0)(U − U) > 0.

As a result, the disclosure policy may fail to persuade the agents to wait for the alert.

However, in some specific environments, even with no time gap, a timely disaster alert can still be

effective. Below, we describe a few of these environments by changing some features of our dynamic

setup. We argue that in these alternative environments, our main result in Theorem 1 will hold even when

the shock arrives before time 0 with certainty (i.e., G(0) = 1).

Alternative Timing Convention

According to our timing convention (see Figure 1), the regime cannot change at time 0. This allows the

agents to attack at time zero and collect U even before any shock arrives. Consider an alternative setting in

which between the time interval t and t +∆t, the shock arrives before the regime outcome is determined

(either before or after the agents decide to attack). Then, if the shock arrives at time 0, the regime can

change before any agents can attack the regime. In this case, the agents who attack at time 0 get only U

(instead of U ). Therefore, the probability that an agent misses the opportunity to attack a regime before it

changes while waiting for the alert is G(τ−)−G(0) instead of G(τ−). Therefore, C2(.) changes to

CA
2 (Γ

τ , x−i, si) = [G(τ−)−G(0)](U − e−βτU).
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Since G(.) is a cumulative density function (CDF), it is right continuous, and hence, the cost CA
2 (.) can be

made arbitrarily small when the disclosure time τ is sufficiently close to 0. Therefore, regardless of G(·),
Theorem 1 will hold true.

No First-mover Advantage

Suppose there is no first-mover advantage (i.e., U = U = U ). This means that the payoff from attacking

a regime is independent of whether the attack happens before or after the regime changes. Accordingly,

C2(.) becomes

CNF
2 (Γ τ , x−i, si) = G(τ−)(1− e−βτ )U,

and the total cost of waiting, CNF (Γ τ , si, x−i) = (1− e−βτ )U , is independent of G(·) and decreases to 0

continuously when the disclosure time τ decreases to 0. This makes Theorem 1 even stronger.25

Payoff depends only on final outcome

In our benchmark model, we assume that the payoff from attacking is collected instantaneously, which

depends only on the regime status at the time of attack. Suppose, instead, that the payoff from attacking at

ti is determined by the final regime outcome: πNI(ti, tc) = e−βti
[
1{tc = ∞}U + 1{tc < ∞}U

]
. Note

that, under this payoff specification, there is no first-mover advantage. Although the payoff from attacking

is higher when the regime survives (tc = ∞), as compared to that conditional on regime change (tc < ∞),

attacking at a later date can never cause a discrete drop from U to U in the payoff. Conditional on the the

alert being triggered (dτ = 1 and, accordingly, tc < ∞), an agent gets U if he attacks at ti = 0 and e−βτU

if he waits for the disaster alert. Hence, similar to that in the case of no first-mover advantage, the total

cost of waiting is

C
NI(Γ τ , si, x−i) = (1− e−βτ )U.

Obviously, regardless of G(0), this cost of waiting decreases continuous to 0 when the disclosure time τ

decreases to 0. Therefore, when the payoffs from attacking are not collected instantaneously but dependent

only on the final regime outcome, Theorem 1 holds true regardless of G(·).26

25In practice, some policies are designed to remove the first-mover advantage. For instance, the bankruptcy code “avoidable
preference” prevents creditors from being treated more favorably than others. For details, see Sections 547 and 550 in Chapter
11 of the U.S. Bankruptcy Code. It is implemented by calling back debt repayments made shortly before bankruptcy. The
proceeds are then shared among all creditors in bankruptcy court. Under this bankruptcy code, there will be no first-mover
advantage, and the payoff that the attacking agents get may be subject to the final status of the regime, thereby slightly com-
plicating the payoff specifications. Nevertheless, given that this type of policy helps to remove the first-mover advantage, the
same arguments can be used to demonstrate that such policy makes the timely disaster alert policy more effective at preventing
panic.

26If one moves beyond the financial market applications (for instance, political regime change), it is plausible that an agent
gets a lower payoff from attacking when the regime survives at the end (tc = ∞) than when it changes (tc < ∞). Thus,
the condition U > U (Assumption 1) is violated. Nonetheless, when the payoff of attacking is determined only by the final
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Slow-moving Capital

Another reason that the payoffs from attacking are not paid instantaneously is that moving investments

away from a country or withdrawing funds from financial institutions often takes time. This could be a

result of some exogenous constraints. For example, there are constraints on cross-board capital flows, and

withdrawing from money market mutual funds or hedge funds might be subject to redemption gates. Or

delays can happen simply because moving capital away, which involves selling off properties and firing

employees, is time consuming.

Suppose, as in our benchmark setup, the agents choose when to attack and an attack is irreversible.

However, it takes l > 0 time to collect the entire payoffs from an attack. An agent who starts attacking

at time ti receives a high flow payoff u at any instant t ∈ [ti, ti + l] if the regime has not changed yet

(t < tc) and a low flow payoff u ∈ (0, u) if the regime has already changed (t ≥ tc). We assume that any

agent who has started attacking at ti finishes B
(
t−ti
l

)
part of his attack by time t, where B(·) has support

[0, 1] and admits a density b(·). This generalizes our benchmark model, which becomes a special case with

l → 0. We assume the first-mover advantage (Assumption 1) and complementarity (Assumption 2) with

regard to the flow payoffs.

Proposition 1 If l > 0 and b(·) is Lipschitz continuous, then regardless of G(·), there exists τ̂l ∈ (0, l]

such that under disaster alert Γ τ with τ ∈ (0, τ̂l), ΘP (Γ τ ) = ∅.

Proposition 1 demonstrates that, when the market moves slowly, the waiting cost for a timely disclosure

can be made negligible regardless of G(·). To see this argument, consider the special case with uniform

distribution (i.e., B(·) = U [0, 1]). Note that, conditional on dτ = 1, an agent gets the same flow payoff in

the interval [τ, l] regardless of whether he plays A or W and, thus, the cost of waiting C(Γ τ , x−i, si) is no

higher than the flow payoff he loses in the interval [0, τ) — that is, uτ
l

. Therefore, as τ decreases to 0, the

cost of waiting for the timely disaster alert decreases continuously to 0. Accordingly, following the same

insight from Theorem 1, we can show that a timely disaster alert eliminates panic in the robust sense.

From the above discussions, it should be clear that the assumptions on the payoff specification and

timing we adopted in the benchmark model (that is, instantaneous payment, first-mover advantage, and

the timing convention) are most conducive to panic and, thus, represent the most challenging case for

the principal. They are not necessary for our result to hold true, whereas relaxing these assumptions

strengthens our result.

regime outcome, what is essential to our theory is the complementarity in payoffs (see Assumption 2) and costly delay, whereas
Assumption 1 plays no role in our analysis.
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3.2 Observable Regime Change

In many applications (e.g., bank runs), the agents might naturally observe when the regime changes.

Consider an exogenous information structure in which regime change is observable. If the agents have

seen no regime change, then the timely disaster alert policy serves purely as a warning of impending

regime change, and, thus, it will become more effective, meaning that the time cutoff τ̂ can be greater.

To see this, note that when the agents can observe the regime change, under a disaster alert policy Γ τ ,

the only rationalizable strategies are: (1) attack right away (A) and (2) attack as soon as the regime has

changed, or attack at time τ if the regime has not changed by time τ but the alert is triggered (dτ = 1), and

do not attack otherwise. Let us call this second strategy Wo. The difference between strategies Wo and

W is that, with Wo, the agent, during the waiting period, can attack at an earlier date if the regime change

occurs before the disclosure time τ . Thus, compared with the case in which the regime change cannot be

observed, the cost of waiting for the disaster alert decreases. Formally,

C
O
2 (Γ

τ , si, x−i) = G(τ−)U −
ˆ τ−

0

e−βtUdG(t) < G(τ−)
(
U − e−βτU

)
.

As such, it is even easier to dissuade the agents from playing A. Under the same timely disaster alert

policy Γ τ with τ ∈ (0, τ̂), all the agents play strategy Wo, and, thus, panic is eliminated even when the

regime change is observable.

3.3 Arrival of Additional Information

In our benchmark setup, we assume that the principal has full control of the information after the game

begins, and the agents do not get any additional information over time. In practice, this may not always be

the case, especially if the time horizon is long. For example, if the time horizon is a month, agents may

receive weekly updates about the fundamental θ from other sources.

Suppose that an agent i receives a vector of noisy signals si := (s0i , s
1
i . . . , s

K
i ) at specified dates

{t0, t1, . . . tK}, where t0 = 0 and tK < T . As before, the noise can be arbitrarily correlated, and regardless

of si, an agent i always has some doubt. We assume that the information arrives infrequently; that is,

τ :=
K+1

min
j=1

{tj − tj−1} > 0,

where tK+1 = T . This implies that whenever the agents receive some information, there is at least a time

window of τ before new information arrives or the game ends. τ > 0 gives the principal the scope to set a

timely disaster alert shortly after each arrival of new information and before the next information arrives

or the game ends. We construct an extended Γ τ policy as follows: a timely disaster alert every time after

the new information arrives. That is, the k-th disaster alert is triggered — that is, dtk+τ = 1, if and only if
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R(θ,Ntk+τ−) < 0, where k = 0, 1, . . . K.

Proposition 2 If G(·) is atomless, and exogenous information arrives infrequently over time, there exists

τ̃ > 0 such that, under the extended disclosure policy Γ τ with τ ∈ (0,min{τ̃ , τ̄}), the unique rationaliz-

able strategy is to wait for all the alerts and then to follow them. Under this strategy, panic is eliminated

in the robust sense; that is, ΘP (Γ τ ) = ∅.

When the agents get additional information over time, one disaster alert dτ is not enough to be per-

suasive. An agent may act on his new information arriving later than the disaster alert and attack at that

time. As Proposition 2 states, however, as long as the principal can set a timely disaster alert every time

after the arrival of new information, the agents will never act on their own signals. Instead, they always

choose to wait for the next disclosure and to follow the disaster alert. We prove this by extending the

iterated elimination argument from Theorem 1. We show that the strategy of waiting for all alerts and

refraining from attacking unless any alert is triggered strictly dominates any strategy involving waiting for

the alerts before time tk (k = 0, 1, . . . , K), then attacking at time tk but not waiting for the later alert(s).

The formal proof is relegated to the Appendix. Following this result, we can see that even when agents

receive additional information about fundamental θ, if the disaster alert is continuously in place, panic will

be eliminated.

3.4 Doubt

Throughout this paper, we have maintained the assumption that regardless of their private signals, the

agents always have some doubt. Recall that waiting is profitable only when no alert is triggered (dτ = 0)

and the doubt assumption guarantees that dτ = 0 arises with a positive probability bounded away from 0,

regardless of what others do.

Suppose that the agents share a homogeneous belief about the fundamental. If the agents do not doubt

and believe that the regime changes with certainty if all others attack, then they may not wait for the

disaster alert. Thus, panic may occur. In this sense, doubt is necessary for eliminating panic.

However, under heterogeneous beliefs, agents who do not have doubt may still believe that many others

have doubt, and, thus, those agents will wait for the alert (Lemma 3). That makes the endogenous signal

dτ = 0 more likely to arise, thereby increasing the benefit from waiting (infection argument). Thus, a

timely disaster alert can be effective even when the doubt assumption is relaxed to some extent.

To illustrate this, we consider a specialized environment commonly used in the global game literature.

We assume that the regime change function R(θ,N) = θ − N . Nature draws θ from the improper prior

U [−∞,∞], and agents receive a conditionally independent noisy signal si = θ + σεi, where εi ∼iid

N(0, 1) and σ > 0 is a scale parameter. Note that, for any given ϵ, an agent who receives signal si >
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1 + σΦ−1(ϵ) assigns a probability less than ϵ to θ ∈ ΘU , which violates the doubt assumption.27

Proposition 3 In the above specialized environment,

1. Under no disclosure, the unique rationalizable strategy is to attack at t = 0 for si < ŝ = p̂+σΦ−1(p̂)

and to never attack for si ≥ ŝ. Accordingly, the regime survives if and only if θ ≥ θ̂ = p̂, where

p̂ :=
U − e−βTV

e−βTV − e−βTV
.

2. Under disaster alert policy Γ τ with τ ∈ (0, T ), the unique rationalizable strategy is to play A for

si < s∗(τ) = p∗(τ) + σΦ−1(p∗(τ)) and to play W for si ≥ s∗(τ). Accordingly, the regime survives

if and only if θ ≥ θ∗(τ) = p∗(τ), where

p∗(τ) :=
U − e−βτ

(
G(τ−)U + (1−G(τ−)U

)
e−βTV − e−βτ

(
G(τ−)U + (1−G(τ−)U

) ∈ (0, 1).

3. Under no disclosure, ΘP = [0, θ̂) and, under policy Γ τ , ΘP (Γ τ ) = [0, θ∗(τ)). The disaster alert

policy Γ τ reduces the probability of panic, that is, θ∗(τ) < θ̂ for any τ ∈ (0, T ).

4. For any τ > 0, θ∗(τ) decreases as τ decreases; that is, an earlier disaster alert is more effective.

Additionally, for any ζ > 0 (however small), there exists τ̂(ζ) such that, under the policy Γ τ with

τ ∈ (0, τ̂(ζ)), θ∗(τ) < ζ .

Recall that, under no disclosure, the game boils down to a static regime change game, where the agents

choose between “attack” and “not attack.” Morris and Shin (2003) use the infection argument and show

that for each type si, a unique strategy survives the iterated elimination of strictly dominated strategies

(IESDS) — that is, attack for si < ŝ and not attack for si ≥ ŝ. This implies that the regime survives if and

only if the fundamental is beyond some cutoff θ̂. Given the above specialized environment, this cutoff is

θ̂ = p̂ (see the Appendix for the formal argument). Notice that p̂ is the probability of survival that makes

an agent indifferent between attacking and not attacking.

Under a disaster alert policy, the difference is that, instead of “not attack,” the agents play strategy W
— that is, they wait but attack if the disaster alert is triggered (See Lemma 1). Clearly, an agent gets a

higher payoff from W than from “not attack” as W provides the agents with an opportunity to attack later

when the regime change is expected to happen. Therefore, when the waiting option is available, agents are

less likely to attack the regime at time 0. Accordingly, regardless of disclosure time τ , after IESDS, the

27In this specialized environment, ΘL = (−∞, 0) and ΘU = [1,∞), and for any signal si, P(θ ∈ ΘL|si) > 0 and
P(θ ∈ ΘU |si) > 0 (although not bounded away from 0 for all si). This is sufficient to guarantee that the only rationalizable
strategies are A and W (see the proof of Lemma 1).

26



cutoff θ∗(τ) is lower than the fundamental cutoff θ̂ under the static game. As τ falls, the expected payoff

from W further increases, and, accordingly, θ∗(τ) falls. Proposition 3 shows that the fundamental cutoff

θ∗(τ) → 0 and the panic set Θp(Γ τ ) converges to an empty set when τ decreases to 0.

4 Discussion: Deconstructing Disaster Alert

We saw that an EWS, when designed appropriately, can be remarkably effective under a reasonably general

setup. This section spells out the essential features of our disaster alert policy and the properties of the

underlying environment that account for the effectiveness. We also elaborate on the differences with the

existing literature that studies how to manipulate information to foster coordination.

4.1 Endogenous Timing and Future Binary Disclosure

The disaster alert Γ τ sends a binary public signal dτ ∈ {0, 1} at a future date τ > 0, and when dτ = 1, a

regime change is inevitable (the regime will surely change if it has not already). This feature is essential

for Lemma 1 (the option value argument): an agent who waits for the alert will not attack after the alert is

not triggered. It is necessary for this option value argument that the agents have the option to wait for the

alert.28

Consider an alternative setup where the agents do not have the option to wait. For instance, in a

simultaneous move game, the agents can only choose between whether to attack or not attack. As we

have mentioned before, a static binary disclosure that reveals whether the regime will change without

further attack cannot eliminate panic in the robust sense. If the agents believe that others will ignore their

private information and coordinate based on this publicly disclosed information, then there are no panic-

based attacks. However, they may not believe that others will do so, which creates other equilibria with

panic-based attacks.

Basak and Zhou (2020) consider a dynamic regime change game where agents move sequentially but

in an exogenous order. At a specified date, an agent decides whether or not to attack. However, the

agent does not have the option to wait. This is motivated by the example where creditors of a staggered

debt portfolio make rollover decisions sequentially. Similar to the static setting, when agents move in an

exogenous order, a one-time binary disclosure regarding whether the regime can survive without further

attack may not dissuade the agents from attacking. The authors propose frequent disclosure instead of a

28Note the inherent asymmetry in our setup: Only one of the actions — namely, attack — is irreversible, and the principal
wants to dissuade the agents from taking this irreversible action. The option value argument does not apply if the principal wants
to persuade the agents to take the irreversible action (for instance, a dynamic coordination game of investment, as in Dasgupta
(2007)). One may conjecture that if the attack were also a reversible action, then the result would be stronger because the agents
who do not attack would be reassured by the fact that agents who had attacked could change their minds later. However, they
may adopt the following strategy (Wc): attack right away and reverse the action only if the alert is not triggered. The adoption
of this strategy could trigger the alert although the regime change was not warranted, and, thus, panic is not eliminated.
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onetime disclosure. They build an inductive argument that shows that each disclosure is persuasive if the

subsequent ones are persuasive for agents moving later.29

Basak and Zhou (2020) demonstrate the value of frequent disclosure under exogenous timing and

explain the (informational) benefit from a debt profile with diversified maturity dates. Unlike Basak and

Zhou (2020), this paper speaks to the effectiveness of dynamic disclosure (such as supervisory bank stress

tests and debt sustainability analysis) in very different applications where agents can choose the timing of

their attack. The main difference between the underlying mechanisms in these two papers is as follows.

When an agent learns that the regime can survive without further attack, he may still attack because he

faces strategic uncertainty regarding what others will do. When the agents move in exogenous order, the

principal must assure an agent that she will also persuade those moving later; this necessitates frequent

disclosure. In contrast, when agents can choose the timing of the attack, as Lemma 2 shows, a one-time

alert perfectly predicts the regime outcome. That is, there is no strategic uncertainty regarding all those

agents who have waited. Therefore, frequent disclosure is not required, but the timing of disclosure matters

as it controls the cost of waiting.

4.2 Endogenous Disclosure

The option value argument shows that the agents who wait for the alert will follow. However, it does not

mean the agents will wait for the alert. The alert must provide valuable information so as to persuade

the agents to wait for it. In Lemma 2, we show that regardless of whether an agent believes that others

will wait or attack, a disaster alert is always valuable in the sense that it can perfectly predict the regime

outcome. An essential feature for this perfect predictability of the disaster alert is endogenous disclosure;

that is, the principal sends different messages based on the number of agents who endogenously choose to

wait for the alert.

Note that when the agents move simultaneously, any disclosure policy (see, for instance, Goldstein

and Huang (2016), Inostroza and Pavan (2020), Morris, Oyama and Takahashi (2020), and Li, Song and

Zhao (2019)) is solely based on the fundamental and, thus, is not an endogenous disclosure. However,

in a dynamic setting with multiple agents, the message disclosed can be based on historical endogenous

actions.

To see why endogenous disclosure is an essential property, consider an alternative policy Γ̃ τ , which

is the same as Γ τ except that the alert is triggered if and only if R(θ, 0) < 0 (or, equivalently, θ ∈ ΘL).

29Basak and Zhou (2020) consider a more restrictive environment in which the agents are endowed with conditionally
independent signals (as in the canonical global games) and are restricted to playing monotone strategies. We do not impose any
such restrictions in the present paper.

28



Formally,

d̃τ (θ,Nτ−) =

1 if R(θ, 0) < 0;

0 otherwise.

Under this policy, the principal sends a binary future signal, and the message d̃τ = 1 predicts the regime

change regardless of the agents’ choices. Therefore, whoever waits for the future binary disclosure d̃τ

would follow it (Lemma 1 holds true). However, the message d̃τ = 0, which means “the regime will

survive if no one attacks it,” cannot predict the survival of the regime. If some agents do not wait for the

future disclosure but choose to attack (choose A over W), then following d̃τ = 0, the regime can still

change even without any further attack. As such, the binary signal d̃τ cannot predict the regime outcome

(Lemma 2 fails), and, therefore, agents may not find the alert d̃τ worth waiting for.30

The crucial difference between the above policy Γ̃ τ and a disaster alert Γ τ is that dτ = 0 means

that “the regime will survive if there is no attack after the disclosure time τ .” Unlike d̃τ = 0, it predicts

no regime change as long as the agents who wait for the disclosure will follow it, regardless of the size

of attack Nτ− before the disclosure.31 This makes the disaster alert dτ more valuable than d̃τ under the

alternative disclosure policy Γ̃ τ .

Interestingly, under a timely disaster alert Γ τ , as the agents play the unique rationalizable strategy

W , on path, at the disclosure time τ , dτ = 0 shares the same meaning regarding the fundamental state

θ as d̃τ since no one attacks before time τ (i.e., Nτ− = 0). However, as the above discussion shows,

the history-dependent design has a significant impact on whether agents would wait for future disclosure.

Since agents may not choose to wait for d̃τ at t = 0, the policy Γ̃ τ cannot be robust in eliminating panic.

4.3 Forecasting

However, the history-dependent design, by itself, is not enough to guarantee the perfect predictability of

the disaster alert dτ . Under our disaster alert, even if the shock has not arrived by the time of disclosure, if

it is evident that the regime will not survive when the shock arrives, the principal triggers the alert (sends

message dτ = 1). We call this feature of disaster alert forecasting. This forecasting property is also

30To see this formally, suppose that an agent believes that the regime will survive with probability P(tc = ∞|x−i, si, d̃
τ =

0) = p. Then, the benefit of waiting is

B(Γ̃ τ , x−i, si) := E
[
π(T, tc)− π(0, tc)

∣∣∣x−i, si, d̃
τ = 0

]
= e−βT [(1− p)V + pV ]− U.

If x−i is such that most of the other agents choose A over W , then p is sufficiently small. Accordingly, the above benefit
may not be positive. This means that there can be an equilibrium in which the agents panic and attack rather than wait for the
disclosure d̃τ . In contrast, under policy Γ τ , P (tc = ∞|x−i, si, d

τ = 0) = 1 (Lemma 2). Thus, regardless of whether others
choose A or W , waiting for dτ always has a strictly positive benefit.

31Formally, dτ = 0 (i.e., R(θ,Nτ−) ≥ 0) implies d̃τ = 0 (i.e., R(θ, 0) ≥ 0) since R(θ,N) is decreasing in N . However, it
is possible to have dτ = 1 and d̃τ = 0. Consider θ /∈ ΘL ∪ ΘU . Then, d̃τ = 0 since R(θ, 0) ≥ 0. In that case, if sufficiently
many agents attack before time τ such that R(θ,Nτ−) < 0, then dτ = 1.
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essential for perfect predictability (Lemma 2).

To see this, consider this alternative policy Γ̂ τ , which is the same as Γ τ except that the alert is triggered

if and only if the regime change has occurred before time τ ; that is, tc < τ . Formally,32

d̂τ (θ,Nτ− ,1{ts < τ}) =

1 if R(θ,Nτ−) < 0 & 1{ts < τ} = 1;

0 otherwise.

Unlike under Γ τ policy, when the regime is doomed to change but has not yet changed (R(θ,Nτ−) < 0

and 1{ts < τ} = 0), the principal does not trigger the alert. Note that, since d̂τ is a future binary signal

with d̂τ = 1 predicting the regime change, Lemma 1 holds true under Γ̂ τ . However, the agents could see

“no alert” (d̂τ = 0) just because the shock has not arrived yet (i.e., ts ≥ τ ), but the regime will change

once the shock arrives later. Thus, d̂τ = 0 does not guarantee no future regime change even without any

further attack (Lemma 2 fails). Therefore, forecasting is an essential feature of our disaster alert.

Notice that the disclosure policy Γ̂ τ only reveals whether or not the regime has already changed. The

literature often considers this policy as naturally available information rather than a deliberate information

design policy. For instance, in Angeletos, Hellwig and Pavan (2007) and Basak and Zhou (2020), agents

may move at different dates, and when they move, they know whether or not the regime has already

changed. The above-mentioned studies assume that the shock has already arrived. However, if the shock

arrives at a future date (as in our current setup), then as we have argued, this alternative disclosure policy

Γ̂ τ fails Lemma 2. Consequently, the agents may not want to wait for such an alert. This is true even if the

principal uses frequent disclosure. Thus, the frequent disclosure as proposed in Basak and Zhou (2020)

fails to eliminate panic in our present setup.

Forecasting Errors

In practice, forecasting requires due diligence.33 However, it may be difficult, if not impossible, to learn

about θ before the shock arrives, making forecasting infeasible or at least erroneous. A false negative

happens when the alert is triggered (dτ = 1) but R(θ,Nτ−) ≥ 0; a false positive happens when the alert

is not triggered (dτ = 0) but R(θ,Nτ−) < 0. A forecasting error makes the timely disaster alert less

32Notice that the principal’s message is also conditional on whether the shock has already arrived. Abusing notation, we
incorporate the indicator 1{ts < τ} into the argument of dτ .

33For forward-looking bank stress tests, bank supervisors collect data from the individual banks and, based on their models,
investigate how the banks’ balance sheets perform under some projected future stress scenarios. For debt sustainability analysis,
IMF and the World Bank use historical data regarding a country’s debt burdens and its macroeconomic conditions; perform
a forward-looking analysis of the country’s fiscal standing under different scenarios with plausible future shocks; conduct
stress tests to evaluate country-specific risks stemming from future potential shocks (e.g., natural disasters, volatile commodity
prices); and rely on quantitative models to identify the vulnerabilities in its public debts. For the details of the DSA program
run by the IMF, see International Monetary Fund, ”The Debt Sustainability Framework for Low-Income Countries,” July
13, 2018, https://www.imf.org/external/pubs/ft/dsa/lic.htm. For econometric methods adopted in the
development of an EWS for sovereign debt crises, see Dawood, Horsewood and Strobel (2017).
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valuable. A false negative can be disastrous since the agents will all attack following the alert, although

regime change is not warranted (i.e., θ /∈ ΘL). Therefore, the principal should apply very stringent rules in

generating the warning — sending the message of “no warning” unless the crisis is certain. However, this

action could generate false positives more often. Although a false positive does not entail the same risk, if

the probability of a false positive is high, the agents may ignore the disclosure and act based on their own

signals. Accordingly, panic could ensue. The following proposition shows that a timely disaster alert is

effective as long as there is no false negative and the probability of a false positive is sufficiently small.

Proposition 4 Suppose that there is no false negative and that a false positive happens with probability,

at most, η > 0. If η < η0 ≡ V−eβTU
V−V

, then there exists τ̂(η) > 0 such that under Γ τ with τ ∈ (0, τ̂(η)),

ΘP (Γ τ ) = ∅.

The intuition behind this result is simple. Since there is no false negative, the agents will attack

immediately after learning dτ = 1. Therefore, the option value argument (Lemma 1) still holds true.

Because it is possible to have a false positive, dτ = 0 cannot be a perfect predictor of the survival of

the regime, thereby reducing the benefit of waiting. However, if the principal can set the disaster alert

sufficiently early to save the cost of waiting, then agents will still wait for the future disclosure provided

that the incidence of a false positive is small enough.

4.4 Principal’s preference and commitment

Our principal has a simple preference: she only cares about the ultimate regime outcome and prefers

that the regime survives.34 Under such preference, ex ante commitment is not necessary for our optimal

disclosure policy. To see this, at the disclosure time τ , if R(θ,Nτ−) < 0, then the regime change is

inevitable regardless of the agents’ actions after time τ . Therefore, the principal has no incentive to

misreport or delay the disclosure ex post. Moreover, from an ex ante perspective, policy Γ τ is able to

completely eliminate the panic and obtain the most preferred outcome for the principal. Therefore, she has

no incentive to deviate to any other disclosure rules (e.g., send other messages before time τ ). However,

if the principal has more nuanced preferences, she may need commitment power to implement an EWS or

may not want an EWS in the first place.

Recall that under the proposed optimal disclosure policy, when θ ∈ ΘL, regardless of what the agents

do, the regime changes as soon as the shock arrives; and when θ /∈ ΘL, all agents coordinate on not

attacking and the regime never changes. It is easy to see that the timely disaster alert policy remains

optimal if the principal derives a positive flow utility for every moment that the regime survives, or if

the principal not only cares about the survival of the regime but also gets a higher payoff when the size

34This preference specification is consistent with that of international organizations trying to reduce the panic associated with
sovereign debt defaults (Example 1) or of bank supervisors and regulators trying to stop runs on healthy banks (Example 2).
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of the attack on a fundamentally sound regime (θ /∈ ΘL) is smaller. Moreover, if the principal wants to

maximize the welfare of the agents, then she should schedule the disclosure time τ as early as possible (but

still after time 0) because the agents bear an unnecessary cost while waiting for the alert.35 However, if the

principal’s objective is in conflict with that of the agents — if, for example, she wants to minimize the size

of the attack or delay the attack as much as possible even when regime change is inevitable — then the

timely disaster alert is not a desirable policy. This is because, under this policy, when the regime change is

inevitable, all the agents attack and do so immediately after the alert is triggered. For such problems, the

regulator should use private messages to generate miscoordination among agents.36

5 Conclusion

We extend the canonical regime change game to a dynamic setup in which privately informed agents

choose when to attack (if at all) and the first mover gets an advantage. We study an adversarial information

design in this dynamic game under a fairly flexible exogenous information structure. We construct a

dynamic disclosure policy that publicly sends a binary message (alert or no alert) at a future date but in

a timely manner. We show that, under this simple policy, the unique rationalizable strategy is to wait for

and then follow the alert, regardless of agents’ private information. This timely disaster alert is proved

optimal as, under the unique rationalizable strategy profile, it perfectly coordinates agents on taking the

right course of action and achieves the principal’s most preferred outcome. The main contribution of the

paper is to show that, unlike the case under static persuasion, when a timing dimension is added to the

coordination problem, the principal can eliminate the undesirable outcomes that can arise from agents’

failure to coordinate on the right course of action.

Relating our optimal policy to the reality, we show that the proposed policy resembles an EWS, such

as debt sustainability analysis or forward-looking bank stress tests. These information disclosure policies

caution agents about the impending crisis. This paper provides a rationale for adopting such a policy

by uncovering the underlying mechanism that makes an EWS effective at preventing panic. Our theory

demonstrates the optimality of a binary pass/fail design and emphasizes that “endogenous disclosure,”

“forecasting,” and “timely disclosure” are necessary features of an effective EWS.37

35The principal can also supplement the disclosure policy Γ τ with an additional public disaster alert at time 0, which is
purely fundamental based and reveals whether or not θ ∈ ΘL. With this additional disclosure, if θ ∈ ΘL, agents attack at time
0; otherwise, they wait for the disclosure at time τ and never attack after observing dτ = 0. However, strict dominance does
not work if the agents know θ /∈ ΘL. Nevertheless, we can use PBE as our solution concept and show that, under this policy,
all agents will wait and follow dτ if θ /∈ ΘL and attack at time 0 if θ ∈ ΘL (see the Online Appendix).

36Optimal private disclosure in such environment is an open question and beyond the scope of this paper. See Ely (2017) for
an interesting example with two agents and a bank that wants to maximize the time when the last depositor runs.

37Anderson (2016) provides some anecdotal evidence demonstrating the benefit of promptly conducting bank stress tests.
The author shows that forward-looking stress tests were quite effective in the U.S. but not as effective in Europe. The author
argues that this contrasting experience can be attributed to the fact that the stress test attempt in the U.S. was “timely,” whereas
it was perhaps “too late” in Europe.
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Appendix

Proof of Lemma 1. We prove that the undominated strategy for any type si is A and W in three steps.

Step 1. (0, t0, t1) ≻ (t∅, t0, t1) for all t∅ ∈ (0, τ), t0, t1 ∈ [τ, T ] ∪ {T}.

Consider any agent i with any signal si, and take any strategy profile x−i as given. For any t∅ ∈ [0, τ),

ui((t∅, t0, t1), x−i) = e−βt∅
[
P(t∅ < tc|x−i, si)U + (1− P(t∅ < tc|x−i, si))U

]
.

For any given si and x−i, the distribution of tc(si, x−i) is fixed and, therefore, P(t∅ < tc|x−i, si) (weakly)

decreases with t∅. Because U > U > 0, and e−βt∅ strictly decreases with t∅, the expected payoff

E[ui((t∅, t0, t1), x−i)|si] strictly decreases with t∅ for t∅ ∈ [0, τ), thereby proving the strict dominance

of (0, t0, t1).

Step 2. (t∅, t0, τ) ≻ (t∅, t0, t1) for all t∅, t0 ∈ [τ, T ] ∪ {T}, and t1 ∈ (τ, T ] ∪ {T}.

Fix any agent i, consider any signal si and take any strategy profile x−i as given, for any t∅ ∈ [τ.T ] ∪
{T} and t0, t1 ∈ [τ, T ] ∪ {T},

ui((t∅, t0, t1), x−i) = P(R(θ,Nτ−(x−i)) ≥ 0|si)E[πi(t0, tc)|dτ = 0, x−i, si]

+ P(R(θ,Nτ−(x−i)) < 0|si)E[πi(t1, tc)|dτ = 1, x−i, si]. (A.1)

Note that the first term on the RHS is independent of t1. Let us consider the expected payoff conditional

on dτ = 1 in the second term on the RHS. For t1 ∈ [τ, T ],

E[πi(t1, tc)|dτ = 1, x−i, si] = e−βt1
[
U + P(t1 < tc|dτ = 1, x−i, si)(U − U)

]
. (A.2)

Observe that P(t1 < tc|dτ = 1, x−i, si) weakly decreases with t1. Since U > U > 0 and β > 0, we have

E[πi(τ, tc)|dτ = 1, x−i, si] > E[πi(t1, tc)|dτ = 1, x−i, si] for any t1 ∈ (τ, T ].

Next, consider t1 = T. By definition of (1), tc ≤ T+ ≤ T given that R(θ,Nτ−) < 0. This implies

that, regardless of x−i and si, E[πi(T, tc)|dτ = 1, x−i, si] = e−βTV . Since U > V and β > 0, we have

(see (A.2))

E[πi(τ, tc)|dτ = 1, x−i, si] ≥ e−βτU > e−βTU > e−βTV = E[πi(T, tc)|dτ = 1, x−i, si].

Therefore, the following inequality holds for any t1 ̸= τ regardless of si and x−i,

E[πi(τ, tc)|dτ = 1, x−i, si] > E[πi(t1, tc)|dτ = 1, x−i, si].

Under Assumption 3, for any x−i, si, the probability

P(R(θ,Nτ−(x−i)) < 0|si) ≥ P(R(θ, 0) < 0|si) = P(θ ∈ ΘL|si) > 0.
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This implies that E[ui((t∅, t0, τ), x−i)|si] > E[ui((t∅, t0, t1), x−i)|si] for all t∅ ∈ [τ, T ]∪{T}, t0 ∈ [τ, T ]∪
{T}, t1 ∈ (τ, T ] ∪ {T}.

Step 3. (0, t′0, t
′
1) ≻ (t∅, t0, τ) for any t′0, t

′
1 ∈ [τ, T ] ∪ {T} and t∅ ∈ [τ, T ] ∪ {T}, t0 ∈ [τ, T ].

First, let us compare the expected payoffs from these two strategies for any fixed si and x−i. Under

(t∅ = 0, t0, t1), we have ui((t∅ = 0, t′0, t
′
1), x−i) = U. Then, observe that, since U > U > 0, the expected

payoff from (t∅, t0, τ) with t∅ ≥ τ and t0 ∈ [τ, T ] satisfies

ui((t∅, t0, τ), x−i) ≤ e−βt0P(dτ = 0|si, x−i)U + e−βτP(dτ = 1|si, x−i)U ≤ e−βτU.

Given that β > 0 and U > 0, E[ui((t∅ = 0, t′0, t
′
1), x−i)|si] > E[ui((t∅, t0, τ), x−i)|si].38

Therefore, for agent with any type si, for any strategy satisfying t∅ ∈ [0, τ), the only undominated

strategy is A = (0, t0, t1) where t0, t1 ∈ [τ, T ] ∪ {T}; and for any strategy satisfying t∅ ∈ [τ, T ] ∪ {T},

the only undominated strategy is W = (t∅,T, τ), where t∅ ∈ [τ, T ] ∪ {T}.

It is worth noting that there is only one round of elimination, as we do not require agents to hold

the belief that other agents are not playing dominated strategies. Further, regarding the the belief about

fundamental θ, this elimination only requires P(θ ∈ ΘL|si) > 0 for any si in Step 2, which obviously

holds true under Assumption 3.

Proof of Lemma 2. Given that the only rationalizable strategies are A and W for any type si,

conditional on dτ = 0, NT = Nτ− as t0 = T under strategy W . Therefore, by definition, tc = ∞ as

R(θ,NT ) = R(θ,Nτ−) ≥ 0. Moreover, under either strategy A or W , Nτ− = N0 since t∅ /∈ (0, τ).

Therefore, conditional on dτ = 1, R(θ,N0) = R(θ,Nτ−) < 0 which implies that tc = t+s (see the

definition of tc in (1)).

Proof of Lemma 3. The proof follows the discussion after Lemma 3 directly. To complete the proof,

here, we set out to find τ̂ explicitly. First, from (5), the expected cost C(Γ τ , x−i, si) satisfies the following

inequality:

C(Γ τ , x−i, si) = G(τ−)e−βτ (U − U) + (1− e−βτ )U < G(τ−)(U − U) + βτU.

From (6), the expected payoff difference is at least

D(Γ τ , x−i, si) > −(1− ϵ)
[
G(τ−)(U − U) + βτU

]
+ ϵ(e−βTV − U).

38Note that this step does not require the agent to hold the belief that P(dτ = 0|si, x−i) > 0. Even when the agent believes
that this probability is zero, he would attack immediately if anticipating that dτ = 1 will arise with certainty.

37



Note that the payoff differences are independent of si and x−i. Let us define

τ̂ := min

{
ϵ

2(1− ϵ)

e−βTV − U

βU
,G−1

(
ϵ

2(1− ϵ)

e−βT V̄ − U

U − U

)}
.

As G(0) = 0, τ̂ > 0 for any ϵ > 0. It is easy to check that, for any given τ ∈ (0, τ̂), D(Γ τ , si) > 0. Thus,

under Γ τ with τ ∈ (0, τ̂), A is strictly dominated by W .

Proof of Theorem 1. By Lemma 3, under policy Γ τ with τ ∈ (0, τ̂), for any agent i ∈ [0, 1] with

any type si ∈ S, the only rationalizable strategy is W . Therefore, Nτ− = 0. Consider any θ /∈ ΘL. By the

definition of ΘL, R(θ,Nτ− = 0) ≥ 0 and, thus, dτ = 0. By Lemma 2, conditional on dτ = 0, tc = ∞.

Hence, ΘC(Γ τ ) = ΘL and ΘP (Γ τ ) = ∅.

Proof of Proposition 1. Since it takes an agent l > 0 time to finish the attack, at any date t, there is a

difference between the pledged attack Nt and the materialized attack Mt, where Mt :=
´
x≤t

B
(
t−x
l

)
dNx.

By definition, Mt ≤ Nt and MT+l = NT . The regime changes at the first instance when R(θ,Mt) < 0,

and if R(θ,MT+l) ≥ 0, then the regime never changes. Accordingly, we redefine tc as follows.

tc :=

min{t ∈ [t+s ,∞)|R(θ,Mt) < 0} if R(θ,MT+l) < 0

∞ if R(θ,MT+l) ≥ 0.
(A.3)

The agent, who attacks at time t, gets a flow payoff from t until the attack is finished, t+ l. Therefore,

the payoff from starting an attack at time t ∈ [0, T ] can be written as

π(t, tc) = e−βt

ˆ l

0

e−βz [1{t+ z ≥ tc}u+ 1{t+ z < tc}ū] dB(
z

l
). (A.4)

To make the payoffs comparable, we write the payoff from not attacking (i.e., t = T) as

π(T, tc) = e−βT

ˆ l

0

e−βz [1{tc < ∞}v + 1{tc = ∞}v] dB(
z

l
).

Complementarity (Assumption 2) dictates that the flow payoffs satisfy e−βTv > u > u > v ≥ 0.39

By definition, under the disaster alert policy Γ τ with τ ∈ (0, l), the alert is triggered (dτ = 1) if θ

and the pledged attack Nτ− are such that R(θ,Nτ−) < 0. As in our benchmark setup, when dτ = 1, the

regime changes (tc < ∞) regardless of what the agents do afterwards. Moreover, for any t′ > t where

t, t′ ∈ [0, T ], and any tc, π(t′, tc) < π(t, tc). Thus, delayed attack is always costly. Therefore, Lemma 1

and 2 hold true. However, note that, unlike in the benchmark model, we do not have tc = t+s . Although

39To connect this augmented model to our benchmark setup, one can interpret the instantaneous payoffs U and U in our
benchmark setup as Y = y ·

(´ l
0
e−βzdB( zl )

)
and Y = y ·

(´ l
0
e−βzdB( zl )

)
where Y stands for U, V and y stands for u and v.

It is worth noting that when the time lag l decreases to 0, all flow payoffs (in lowercase letters) converge to the original payoffs
(in uppercase letters), and the materialized proportion of the attack is no different from the pledged attack —i.e., Mt → Nt.
This brings us back to the benchmark model, where attacks are instantaneous (l = 0).
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the agents may start attacking at time 0, the regime may not change as soon as the shock arrives because

all the attacks may not have materialized by then.

It follows from Lemma 2 that conditional on dτ = 0, tc = ∞. Therefore, the benefit of playing W
over A is

BS(Γ τ , x−i, si) := E[π(T, tc)− π(0, tc)|dτ = 0, x−i, si] =
(
e−βT v̄ − ū

) ˆ l

0

e−βzdB(
z

l
) (A.5)

Note that BS(Γ τ , x−i, si) > 0 and it is independent of τ , whether others choose A or W , and si.

Consider an agent who starts to attack at t. Conditional on dτ = 1, t + z ≥ tc iff ts < t + z and

R(θ,Mt+z) < 0. Since ts is an independent random variable, we have

P(t+ z ≥ tc|dτ = 1, x−i, si) = P(R(θ,Mt+z) < 0|x−i, si, d
τ = 1)P(ts < t+ z).

For convenience, we write P(t + z) := P(R(θ,Mt+z) < 0|si, x−i, d
τ = 1). It is understood that this

probability depends on si, x−i, but we suppress them to reduce the burden of notation. Therefore, the

expected payoff from start to attack at time 0 (A) conditional on dτ = 1, x−i and si is

E [π(0, tc)|dτ = 1, x−i, si] =

ˆ l

0

e−βz
[
P(z)G(z−)u+ (1− P(z)G(z−))u

]
dB

(z
l

)
, (A.6)

and the expected payoff from start attacking at τ conditional on dτ = 1, x−i and si is

E [π(τ, tc)|dτ = 1, x−i, si] =

ˆ l

0

e−β(z+τ)
[
P(τ + z)G(z + τ−)u+ (1− P(τ + z)G(z + τ−))u

]
dB

(z
l

)
=

ˆ l+τ

τ

e−βz
[
P(z)G(z−)u+ (1− P(z)G(z−))u

]
dB

(
z − τ

l

)
≥
ˆ l

τ

e−βz
[
P(z)G(z−)u+ (1− P(z)G(z−))u

] 1
l
b

(
z − τ

l

)
dz. (A.7)

We substitute τ + z with z to get the second equality, and the last inequality comes from the fact that
u > u ≥ 0. It follows from (A.6) and (A.7) that conditional on dτ = 1, x−i, and si, the cost of playing W
rather than A, denoted by CS(Γ τ , x−i, si), is

E
[
π(0, tc)− π(τ, tc)

∣∣∣dτ = 1, x−i, si

]
≤
ˆ τ

0

e−βz
[
P(z)G(z−)u+ (1− P(z)G(z−))u

] 1
l
b
(z
l

)
dz

+

ˆ l

τ

e−βz
[
P(z)G(z−)u+ (1− P(z)G(z−))u

] 1
l

(
b
(z
l

)
− b

(
z − τ

l

))
dz.

Notice that e−βz [P(z)G(z−)u+ (1− P(z)G(z−))u] ≤ ū. Since b(·) is Lipschitz continuous, there exists

κ ∈ (0,∞) such that b
(
z
l

)
− b

(
z−τ
l

)
≤ |b

(
z
l

)
− b

(
z−τ
l

)
| ≤ κ τ

l
. Moreover, since b is continuous and

defined on a closed domain [0, 1], it is bounded; that is, there exist b > 0 such that b
(
z
l

)
≤ b. Therefore,
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for any si and τ ∈ (0, l),

CS(Γ τ , x−i, si) ≤ u

(ˆ l

τ

1

l
κ
τ

l
dz +

τ

l
b̄

)
<

u(b̄+ κ)

l
τ. (A.8)

The first inequality follows immediately from the above discussions, and the second inequality relies on

τ > 0. Note that the expected cost CS(Γ τ , x−i, si), by definition, is positive. Its upper bound u(b̄+κ)
l

τ is

independent of si, x−i and G, and it is strictly increasing in τ with limτ→0
u(b̄+κ)

l
τ = 0. Following (A.5),

(A.8) and Assumption 3, the expected payoff difference between W and A is

DS(Γ τ , x−i, si) =P(dτ = 0|si)BS(Γ τ , x−i, si)− P(dτ = 1|x−i, si)CS(Γ τ , x−i, si)

>ϵ(e−βT v̄ − ū)

ˆ l

0

e−βzdB
(z
l

)
− (1− ϵ)

u(b̄+ κ)

l
τ.

Let us define τ̂l := min{ ϵ
1−ϵ

·
(

e−βT v−u
u(b+κ)

) ´ l

0
e−βzdB

(
z
l

)
· l, l}. Clearly, for any ϵ > 0, τ̂l > 0. Therefore,

under Γ τ with any τ ∈ (0, τ̂l), D(Γ τ , x−i, si) > 0 regardless of si and other agents’ choices between A
and W , thereby proving the dominance of W over A.

Proof of Proposition 2. Under the extended Γ τ policy, where τ < τ , each agent chooses a contin-

gency plan (tk, tk0, t
k
1)

K
k=0, where tk, tk0 and tk1 denote the time of attack after receiving the private signal

at tk, seeing dtk+τ = 0 and dtk+τ = 1. It follows from the same argument as in Lemma 1 that (1) since

waiting is costly, an agent either attacks at tk, or he waits at least until the next information arrives at

tk + τ ; and (2) if he waits, then it must be that he plans to use the information. Since the regime will

surely change following dtk+τ = 1, he must plan to attack at tk + τ after learning this. This implies,

after dtk+τ = 0, he must wait at least until the next information arrives (at time tk+1). This implies

that the only rationalizable strategies are (W)K+1
k=0 , in which Wk (k = 1, 2, . . . , K) means (1) ∀l < k,

tl ≥ tl + τ, tl0 ≥ tl+1, t
l
1 = tl + τ ; (2) tk = tk; and (3) ∀l > k, tl ≥ tl, and tl0, t

l
1 ≥ tl + τ. In addition, W0

means t0 = t0 = 0, and tl0, t
l
1 ≥ tl + τ for all l ≥ 0; and WK+1 means tK0 = T, and tl ≥ tl + τ , tl0 ≥ tl+1

and tl1 = tl + τ for all l ≤ K.

The Wk strategy means that the agent waits for all the first k alerts and not attack unless an alert is

triggered, but then attack at tk after receiving the new private signal, and not wait for the next alert. Note

that W0 = A strategy means attack at time 0 and not wait for any alert; and WK+1 strategy means wait

for all the alerts and never attack unless an alert is triggered.

Next, we prove that WK+1 is the unique rationalizable strategy for any type si. We prove this by

iterated elimination: we first establish the strict dominance of WK+1 over WK ; and then we show that,

for any k ∈ {0, 1, . . . , K − 1}, if WK+1 strictly dominates any Wk′ for all k′ > k, then WK+1 strictly

dominates Wk.

To prove that WK is strictly dominated by WK+1, first note that both strategies follow the same path if
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any of the first Kth alerts is triggered, or dtK−1+τ = 1. Therefore, when comparing these two strategies, we

only need to consider the histories following dtK−1+τ = 0. Conditional on dtK+τ = 0, under all possible

rationalizable strategy profile x−i = (xj)j ̸=i in which xj ∈ {Wk}K+1
k=0 , NT = NtK+τ− . Therefore, as in

Lemma 2, tc = ∞ following dtK+τ = 0. Therefore, similar to (3), the benefit of WK+1 compared to WK ,

conditional on dtK+τ = 0, is

BK(Γ
τ , x−i, si) := π(T,T)− π(tK ,T) = e−βTV − e−βtKU.

On the other hand, if dtK+τ = 1, under strategy WK+1, the agent attacks at time tK + τ , whereas he

attacks at tK under strategy WK . Therefore, the expected cost of WK+1 compared to WK can be written

as

CK(Γ
τ , x−i, si) := E

[
π(tK , tc)− π(tK + τ, tc)

∣∣∣dtK−1+τ = 0, dtK+τ = 1, si

]
.

Recall that, under any rationalizable strategy profile x−i, conditional on dtK−1+τ = 0, attacks between

time tK−1 + τ and tK + τ only occur at time tK . Therefore, conditional on dtK−1+τ = 0 and dtK+τ = 1,

R(θ,Nt) ≥ 0 for any t < tK , and R(θ,Nt) < 0 for any t ≥ tK . By the definition of tc, tc = tK if ts < tK ,

tc ∈ (tK , tK + τ ] if ts ∈ [tK , tK + τ) and tc > tK + τ if ts ≥ tK + τ .

Therefore, the cost of waiting CK(Γ
τ , x−i, si) is

e−βtK
[
(1−G(t−K))U +G(t−K)U

]
− e−β(tK+τ)

[
(1−G(tK + τ−))U +G(tK + τ−)U

]
.

It is easy to see CK(Γ
τ , x−i, si) is strictly increasing in τ . Under the assumption that G is atomless, as

τ → 0, G(tK + τ−)−G(t−K) → 0. Therefore, limτ→0CK(Γ
τ , si) = 0.

We can write the expected payoff difference from WK+1 as compared to WK as

DK(Γ
τ , x−i, si) := P(dtK−1+τ = 1|si) · 0 + P(dtK+τ = dtK−1+τ = 0|si)BK(Γ

τ , si)

−P(dtK+τ = 1, dtK−1+τ = 0|si)CK(Γ
τ , si)

> ϵ · BK(Γ
τ , x−i, si)− (1− ϵ) · CK(Γ

τ , x−i, si).

The last inequality follows from the fact that, under the doubt assumption, for any si, P(dtK+τ = dtK−1+τ =

0|si) > ϵ, and, accordingly, P(dtK+τ = 1, dtK−1+τ = 0|si) < 1 − ϵ. The expected benefit BK is strictly

positive and is independent of τ and si, whereas the expected cost CK(Γ
τ , x−i, si) → 0 if τ decreases to

0. Therefore, as in Lemma 3, for any ϵ > 0, we can find τ̃K > 0 such that for any τ ∈ (0,min{τ̃K , τ̄}),
DK(Γ

τ , x−i, si) > 0 irrespective of si. As this holds true for any x−i, WK+1 strictly dominates WK .

Now, given that strategy WK is strictly dominated, there is no attack at time tK under any undominated

strategies. Therefore, the second to last alert dtK−1+τ perfectly predicts the regime outcome, i.e., dtK+τ =

dtK−1+τ = 1(tc < ∞). Next, we repeat the same argument and evaluate the expected benefit and cost

of strategy WK+1 compared to strategy WK−1. There is no difference between these two strategies if

dtK−2+τ = 0. Conditional on dtK−2+τ = 0, the benefit of WK+1 comes from the event when dtK−1+τ = 0
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(and accordingly tc = ∞), whereas the cost comes from the event when dtK−1+τ = 1 (and accordingly

tc < ∞). Conditional on dtK−2+τ = 0 and dtK−1+τ = 1, the agent attacks at time tK−1 under WK−1 and

he attacks at time tK−1 + τ under WK+1. Following the same procedures as we did for the comparison

between WK+1 and WK , we can show the existence of the cutoff τ̃K−1 > 0 and establish the strict

dominance of WK+1 over WK−1 under any policy Γ τ with τ ∈ (0,min{τ̃K−1, τ̃K , τ̄}).
Following the same procedures, we can find (K+1) cutoffs {τ̃k}Kk=0, and establish the strict dominance

of WK+1 over Wk (for all k = 0, 1, . . . , K) under any disclosure policy Γ τ with τ ∈ (0,min{τ̃ , τ̄}), where

τ̃ := minK
k=0 τ̃k > 0. This completes the proof.

Proof of Proposition 3.

No Disclosure If there is no disclosure, the game boils down to a binary action static regime change

game similar to Morris and Shin (2003) (henceforth MS), where each agents decides whether to “attack”

or “not attack” at time 0. If an agent attacks, then his payoff is U ; and if he does not attack, his payoff is

e−βTV if the regime survives at T (i.e., tc = ∞) and e−βTV if the regime changes (i.e., tc < ∞). The

regime survives if and only if R(θ,NT = N0) = θ−N0 ≥ 0. Thus, under no disclosure, an agent will not

attack if and only if the regime survives with probability

P(θ ≥ N0|si) ≥
U − e−βTV

e−βTV − e−βTV
= p̂.

Following the standard global game argument, IESDS yields a unique rationalizable strategy, under

which, agents attack if and only if si < ŝ for some cutoff ŝ, and accordingly, the regime changes if and

only if θ < θ̂. When others follow such a monotone strategy, the agent who receives higher signal is

more optimistic about the regime surviving. The marginal agent with si = ŝ must be indifferent between

attacking and not attacking. This gives us P(θ ≥ θ̂|ŝ) = p̂. Given uniform prior and Gaussian noise,

θ|si ∼ N(si, σ
2). Therefore, the above indifference condition simplifies to Φ( ŝ−θ̂

σ
) = p̂. Moreover, when

other agents play such monotone strategy, there is less attack when θ is higher. The fundamental cutoff

θ = θ̂ is such that N0(θ̂) = P
(
s < ŝ|θ = θ̂

)
= Φ( ŝ−θ̂

σ
) = θ̂. Therefore, we have θ̂ = p̂.

Policy Γ τ Under a disaster alert Γ τ , since P(θ ∈ ΘL = (−∞, 0)|si) > 0 and P(θ ∈ ΘU = [1,+∞)|si) >
0 for all si, following Lemma 1, the rationalizable strategies are A and W .40 Similar to the static game, if

an agent plays A and attack at t = 0, he gets U . However, if an agent plays the strategy W , conditional on

dτ = 0, he never attacks and gets e−βTV (since the regime survives following dτ = 0), and, conditional

on dτ = 1 (and consequently tc = t+s ), he attacks at time τ and gets the expected payoff

E[π(τ, tc)]|x−i, si, d
τ = 1] = e−βτ

(
G(τ−)U + (1−G(τ−))U

)
.

40Note that this is the only condition on exogenous information that is required for the proof of Lemma 1 (See footnote 38).

42



Note that this expected payoff is strictly greater than e−βTV , the payoff from not attacking a failed regime

in the static game.

Recall that under policy Γ τ , the regime survives if and only dτ = 0 (Lemma 2), and, similar to the

static game, dτ = 0 if and only if R(θ,N0) = θ −N0 ≥ 0. Therefore, an agent plays W if and only if he

believes that dτ = 0, and, accordingly, the regime survives (i.e., θ ≥ N0) with probability

P(θ ≥ N0|si) ≥
U − e−βτ

(
G(τ−)U + (1−G(τ−)U

)
e−βTV − e−βτ

(
G(τ−)U + (1−G(τ−)U

) = p∗(τ).

Note that p∗(τ) < p̂ for any τ ∈ (0, T ) because

e−βTV < e−βτ
(
G(τ−)U + (1−G(τ−))U

)
< U < e−βTV .

In addition, it is easy to check that p∗(τ) increases with τ and limτ↓0 p
∗(τ) = 0.

Following the standard global game argument (as in case of no disclosure policy), IESDS yields a

unique rationalizable strategy, under which, agents takes A if and only if si < s∗(τ) for some cutoff s∗(τ),

and accordingly, the regime changes if and only if θ < θ∗(τ). Therefore, the indifference condition for

the marginal agent s∗(τ) is Φ
(

s∗(τ)−θ∗(τ)
σ

)
= p∗(τ), and at θ = θ∗(τ) the aggregate attack N0(θ

∗(τ)) =

Φ
(

s∗(τ)−θ∗(τ)
σ

)
= θ∗(τ). Thus, for any τ ∈ (0, T ), we have

θ∗(τ) = p∗(τ). (A.9)

Therefore, ΘP (Γ τ ) = [0, p∗(τ)). Recall that, under no disclosure policy, ΘP = [0, p̂). Since p∗(τ) < p̂,

ΘP (Γ τ ) ⊂ ΘP . Finally, recall that p∗(τ) strictly increases with τ and limτ↓0 p
∗(τ) = 0. Therefore, for

any ζ > 0, we can always find τ̂(ζ) > 0 such that for any τ < τ̂(ζ), θ∗(τ) = p∗(τ) < ζ .

Proof of Proposition 4. First of all, the option value argument (Lemma 1) still holds with false-

positive errors. That is because: (1) since dτ = 1 predicts tc < ∞ regardless of what agents do after time

τ (as there is no false alarm), agents will attack following dτ = 1; and (2) following the same argument as

in Step 3 of the proof of Lemma 1, any strategy involving waiting (t∅ ≥ τ ) and then attacking after dτ = 0

(t0 ∈ [τ, T ]) is strictly dominated by A. Therefore, with false-positive errors, the only rationalizable

strategies are A and W .

Fix any rationalizable strategy profile x−i, for convenience, let us denote P(dτ = 0, tc < ∞|si, x−i)

as Pe(si, x−i), P(dτ = 0, tc = ∞|si, x−i) as P0(si, x−i), and P(dτ = 1, tc < ∞|si, x−i) as P1(si, x−i).

Therefore, we can write the expected payoff from W as

P1(si, x−i)e
−βτ

(
G(τ−)U + (1−G(τ−))U

)
+ P0(si, x−i)e

−βTV + Pe(si, x−i)e
−βTV . (A.10)
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As the payoff from A is U , the expected payoff difference is

D(Γ τ , x−i, si) =P1(si, x−i)
(
e−βτ

[
G(τ−)U + (1−G(τ−))U

]
− U

)
+P0(si, x−i)

(
e−βTV − U

)
+ Pe(si, x−i)

(
e−βTV − U

)
.

Recall that the probability of a false-positive is, at most, η and this upper bound is independent of si and

x−i —i.e., P(tc < ∞|dτ = 0, si) = Pe(si,x−i)
Pe(si,x−i)+P0(si,x−i)

≤ η. Thus, Pe(si, x−i) ≤ η
1−η

P0(si, x−i). In

addition, as P1(si, x−i)+P0(si, x−i)+Pe(si, x−i) = 1, P1(si, x−i) ≤ 1−P0(si, x−i) for any si and x−i.

Since

e−βTV − U < e−βτ
[
G(τ−)U + (1−G(τ−))U

]
− U < 0 < e−βTV − U,

we have

D(Γ τ , si) ≥
(
1− P0(si, x−i)

) (
e−βτ

[
G(τ−)U + (1−G(τ−))U

]
− U

)
+P0(si, x−i)

(
e−βT

[
V +

η

1− η
V

]
− 1

1− η
U

)
.

Define η0 := V−eβTU
V−V

. Under Assumption 2, η0 is strictly positive, and for η < η0, e−βT
[
V + η

1−η
V
]
−

1
1−η

U > 0. Moreover, recall that, under Assumption 3, P0(si, x−i) ≥ P(θ ∈ ΘU |si) > ϵ for all si ∈ S and
x−i. Then, we can define τ̂(η) > 0 for any η < η0 as follows.

τ̂(η) := min

 ϵ

2(1− ϵ)

e−βT
(
V + η

1−ηV
)
− U

1−η

βU
,G−1

 ϵ

2(1− ϵ)

e−βT
(
V + η

1−ηV
)
− U

1−η

U − U

 .

It is easy to check that, given η < η0 and P0(si, x−i) > ϵ, D(Γ τ , si) > 0 for any τ ∈ (0, τ̂(η)). That is,

A is strictly dominated by W . Following the proofs of Lemma 3 and Theorem 1, ΘP (Γ τ ) = ∅ for any

τ ∈ (0, τ̂(η)).
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