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Abstract:  Numerical predictive modeling is widely used in different application 

domains. While many modeling techniques have been proposed, and a number of 

different aggregate accuracy metrics exist for evaluating the overall performance of 

predictive models, other important aspects, such as the reliability (or confidence, 

uncertainty) of individual predictions, have been underexplored. We propose to use 

estimated absolute prediction error as the indicator of individual prediction reliability, 

which has the benefits of being intuitive and providing highly interpretable 

information to the decision makers as well as allowing for more precise evaluation of 

reliability estimation quality.  As importantly, the proposed reliability indicator allows 

to reframe reliability estimation itself as a canonical numeric prediction problem, 

which makes the proposed approach general-purpose (i.e., can work in conjunction 

with any outcome prediction model), alleviates the need for distributional 

assumptions, and enables the use of advanced, state-of-the-art machine learning 

techniques to learn individual prediction reliability patterns directly from data.  

Extensive experimental results on multiple real-world datasets show that the proposed 

machine-learning-based approach can significantly improve individual prediction 

reliability estimation as compared to a number of baselines from prior work, especially 

in more complex predictive scenarios. 
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1.    Introduction and Motivation 

Many critical decisions in real world rely on predictions, e.g., investors forecast returns, doctors 

diagnose diseases, producers predict sales.  Facilitated by continuous improvements in data 

processing and storage technologies, this has spurred development and improvement of machine 

learning and, more generally, predictive modeling techniques.  However, these automated 

predictions are often imperfect because they are made from noisy, limited data or using simplified 

computational or probabilistic reasoning. 

For numeric prediction tasks, predictive models focus primarily on providing individual 

prediction outcomes; for example, a diabetes risk estimation model would output the risk score of 

diabetes for each potential patient.  Meanwhile, the quality of predictive models is commonly 

evaluated using aggregate prediction accuracy metrics, such as mean absolute error or root mean 

squared error, calculated on some test set of data.  The issue of individual prediction reliability 

(IPR), i.e., the magnitude of error or level of uncertainty of any specific individual prediction, has 

not been explored as comprehensively.  When applying properly trained models, i.e., models with 

best possible aggregate accuracy, to real-world data, the ability to provide reliability estimation 

for any specific prediction is undoubtedly important, especially for the purpose of facilitating 

decision support.  As an example, let’s assume that, when estimating the severity of Parkinson’s 

disease for two individual patients using Parkinson’s Disease Rating Scale (Tsanas et al. 2010), 

both patients are predicted to have the same rating score of 123, i.e., the same predicted disease 

severity.  At the same time, the prediction reliability could be highly different for numerous 

reasons, e.g., because these two patients belong to highly different age groups for which different 

amounts of data are available.  For example, it is possible that the prediction of 123 for a younger 

patient means that the true disease rating value likely is 123 ± 30 (i.e., between 93 and 153), while 

the same prediction for an older patient might be much more reliable, i.e., 123 ± 5.  The diagnosis 

reliability information is important for deciding on individualized treatment, yet is not captured by 

the predicted outcome (i.e., 123) alone.  

As another simple illustration of the research context, consider the stylized, synthetically 
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generated data1 in Fig. 1, where X axis represents the input variable and Y axis represents the 

outcome to be predicted.  Specifically, the black dots represent data points (𝑥, 𝑦), and the solid red 

line represents the estimated linear regression model 𝑦ො ൌ 𝑓ሺ𝑥ሻ  that is used for prediction.  

Although the linear regression model represents the most accurate predictive model for this dataset 

(as this dataset was generated with this purpose in mind), it is easy to see that the predictions for 

𝑥 ∈ [-0.5, 0.5] are much less reliable in a given setting, i.e., prediction errors 𝑒 ൌ |𝑦 െ 𝑦ො| ൌ |𝑦 െ

𝑓ሺ𝑥ሻ| for individual data points in this area are typically much higher than for 𝑥 ∉ [-0.5, 0.5].   

Figure 1. Synthetic Data Example for Prediction Reliability Issue. 
(X axis: input variable. Y axis: outcome variable. Dots: data points. Solid line: predictive model based on linear regression.) 

In other cases, where the true data generating process cannot be accurately recovered, the 

prediction errors can result not only from the random noise, which typically leads to the variance 

of outcome predictions, but also from the misfit of the models which leads to systematic bias of 

outcome predictions (Domingos 2000, Geman et al. 1992).  It is also important to reiterate that 

individualized prediction reliability estimates are not captured by traditional aggregate accuracy 

metrics, yet this knowledge can be critical in many real-world numeric prediction applications, for 

example, in risk-sensitive areas where decision based on an individual prediction would entail 

health or financial consequences.  For example, when predicting the 10-year risk score of a 

cardiovascular disease for a specific patient or the 3-year return of a stock portfolio for a specific 

customer, it would be important to know not only the actual prediction but also the estimated 

reliability of such a prediction before making a final decision about medical treatment or financial 

                                                            
1 2000 points were created by generating their x values uniformly at random from [-2, 2], and their corresponding y values were 
generated using function y = 2.5x + ,   N(0,2). In particular,  = 2 for x  [-2,-0.5]  [0.5,2];  = 10 for x  [-0.5, 0.5].  
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investment.  In summary, by design, the goal of individual prediction reliability is not to be another 

metric that needs to be balanced together (e.g., as part of the machine learning loss function) with 

the overall model accuracy, but rather to provide diagnostic information to decision makers who 

use a given outcome prediction model, i.e., providing not only the model’s prediction for a given 

input, but also the indication of how reliable each specific prediction is expected to be. 

It should be mentioned that prediction reliability has been referred to in different ways in 

previous literature: prediction risk, prediction uncertainty, prediction confidence, etc.  We draw on 

(Bosnić and Kononenko 2008a) to use prediction reliability for the sake of terminological 

consistency.  Reliability estimation has been used for two main purposes.  One line of research 

uses estimated reliability as an additional criterion (e.g., in conjunction with accuracy-based 

metrics) for model evaluation, where models with higher prediction reliability are typically more 

preferred.  Different methods have been proposed for estimating prediction reliability for this 

purpose, e.g., cross-validation, bootstrapping, Bregman divergence, covariance-based (Efron 

2004, Shao 1996, Taylor and Ye 2012).  Similar to aggregate accuracy metrics mentioned before, 

reliability estimated in this type of work is still used as an aggregate model evaluation tool.  The 

other line of research uses prediction reliability for individual prediction explanation or 

description, which is directly aligned with the focus of this paper.  Those studies fall into three 

finer-grained groups based on the type of outcome to be predicted, i.e., reliability for a single 

example in classification, probability estimation, or numeric prediction.  In this paper, we focus 

specifically on reliability of numeric prediction models (as will be discussed in the next section), 

which has been significantly underexplored in research literature, as compared to reliability 

estimation for other types of outcomes.  For example, reliability of probability estimation is often 

measured by Brier score (Brier 1950) which is calculated as the squared difference between actual 

outcome (binary or categorical) and predicted probability assigned to that outcome.  There have 

been numerous studies investigating individual classification reliability.  For some classifiers, like 

logistic regression or naïve Bayes (Hand and Yu 2001, Walker and Duncan 1967), the posterior 

probability of an individual predicted class can be viewed as confidence (reliability) of its 
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prediction. Most related studies propose more general (model-agnostic) approaches, e.g., 

transductive reliability estimation (Kukar and Kononenko 2002, Tzikas et al. 2007) drawing on 

transduction based confidence estimation (Ho and Wechsler 2003, Proedrou et al. 2002, Saunders 

et al. 1999) or the typicalness framework (Melluish et al. 2001, Nouretdinov et al. 2001).   

Even though the reliability estimation for numeric prediction models has been significantly 

underexplored in research literature, it undoubtedly represents an increasingly important issue due 

to the needs for more fine-grained understanding of predictive model performance, as will be 

discussed in next section.  Therefore, going beyond the evaluation of the overall (i.e., aggregate) 

accuracy performance of numeric prediction models, in this study we focus on providing a general-

purpose, data-driven approach to individual prediction reliability (IPR)2 estimation.  In particular, 

we propose to use a simple IPR indicator based on expected absolute prediction errors, which has 

the benefits of being intuitive and providing highly interpretable information to the decision 

makers as well as allowing for more precise evaluation of reliability estimation quality.  Even more 

importantly, the proposed IPR indicator also allows us to reframe reliability estimation itself as a 

canonical numeric prediction problem (of the absolute prediction error), which makes the proposed 

approach general-purpose (i.e., can work in conjunction with any outcome prediction model), 

alleviates the need for any statistical/distributional assumptions, and enables the use of advanced, 

state-of-the-art machine learning techniques to learn IPR patterns directly from data.  Advantages 

of the proposed approach are demonstrated using comprehensive computational experiments on 

several real-world datasets and in comparison to multiple techniques from prior work.   

2.    Related Work 

Given the popularity of (and reliance on) predictive modeling techniques in many aspects of 

everyday life, in general a more comprehensive and nuanced understanding of predictive model 

performance represents an increasingly important issue.  Ability to provide IPR estimates is an 

important aspect for both application and interpretation of predictive models (Briesemeister et al. 

2012, Bosnić and Kononenko 2008a, Shrestha and Solomatine 2006).  In particular, for a given 

                                                            
2 We use acronym IPR to refer to “individual prediction reliability” throughout the paper. 
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predictive model, IPR estimates would provide better understanding for which data points the 

model is expected to perform better vs. worse (i.e., have higher vs. lower reliability).  This connects 

well to the topic of error analysis, which helps to find opportunities for substantial increase in 

predictive performance.  For example, in biomedical informatics, the error models of individual 

cells can discern new subpopulations within complex mixtures of cells and derive more robust 

measures for cell classification (Kharchenko et al. 2014).  In medical diagnosis, analyzing 

inaccurate predictions are important to find out what cases can confuse machine learning models 

even when the overall predictive performance is impressive (Choi et al. 2016).  In biological 

natural language processing (Hakala et al. 2013), analyzing inaccurate predictions helps 

diagnosing whether false predictions of the event type (e.g., gene expression, transcription, etc.) is 

due to missing or incorrectly constructed features.  In speech recognition (Qian et al. 2018), error 

analysis is used to identify top types of errors (substitution, deletion, etc.) that the system makes 

under different noise contexts, which is valuable in informing prediction application as well as 

system adaptation.  In online recommender systems, examining rating prediction errors at 

individual level can inform designing of meta-learning algorithms for different users or user groups 

(Collins et al. 2018).  IPR estimates are also relevant to the important research topic of algorithmic 

bias (Datta et al. 2015, Simoiu et al. 2016, Hosanagar 2019, Johndrow and Lum 2019), as they 

could provide early detection signals of potential systematic bias of predictive models.  Finally, as 

mentioned earlier, IPR provides extra information, which is important for facilitating better 

decision making across a broad array of applications in chemical and pharmaceutical research 

(Briesemeister et al. 2012, Liu et al. 2018, Toplak et al. 2014, Cortés-Ciriano and Bender 2018), 

financial markets (Dash et al. 2015, Huang et al. 2018, Solares et al. 2019), medical diagnosis 

(Lebedev et al. 2014, Iorio et al. 2015, Tomassetti et al. 2016), and many others.  

In terms of methodologies for the IPR representation and calculation, traditional approaches 

could be summarized into two broad categories: (i) distribution-based, i.e., estimating an entire 

distribution of the outcome variable predictions for any given input value x, which can then be 

provided to the decision makers directly or in some aggregate form (such as confidence interval) 
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as information about prediction reliability or confidence, and (ii) indicator-based, i.e., providing a 

simple, single-numeric-value-based indicator of IPR for given x, often based on some heuristic. 

Distributional, or confidence-interval-based (Wonnacott and Wonnacott 1990), approaches are 

rooted in statistical properties of prediction models, especially regression models, and represent 

an intuitive way to indicating IPR – predictions with wider confidence intervals (for a given 

confidence level) indicate higher model uncertainty.  Distributional approaches also tend to be 

model-specific, i.e., designed specifically for a particular outcome prediction model, and rely on 

certain statistical assumptions.  In both least-squares-based and likelihood-based learning of 

regression models, generation of confidence intervals or other confidence metrics is based on the 

assumption of independent and identical distribution of errors across the input space (i.e., 

homoscedasticity) (Halpe 1963, Knafl et al. 1985).  However, this homoscedasticity assumption 

is usually violated in many real-world settings which is explicitly the focus of this study (reflecting 

situations similar to the one illustrated in Fig. 1), and thus, the derived confidence intervals would 

fail to reflect actual IPR.  More sophisticated regression-based distributional approaches draw on 

the flexible Gaussian process (Rasmussen 2004), which allows to incorporate information on 

similarity between data points into the model building.  Although the probabilistic Gaussian 

process regression model facilitates the derivation of predictive distribution for the regression 

outcome, the key characteristic of this modeling technique is that the variance of the distribution 

for new observation x (i.e., the indicator of its prediction reliability) only depends on the input 

features of x and, in particular, on the relative location (e.g., distance calculated using feature 

values) of x to other observations in the training data, and not on the observed target (outcome) 

values (Rasmussen 2004).3  Because of the latter fact, it is unlikely to capture the magnitude of 

error in the prediction that is due to variability in the outcomes, which makes it a less informative 

measurement of IPR.  Figure 2a emphasizes this by presenting the 95% prediction intervals of 

Gaussian process regression learned from the synthetic dataset used in Fig. 1 – the widths of 

                                                            
3 More detailed discussion of this issue can be found in Appendix A of the Online Supplement. 
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individual prediction intervals are similar across the input (x) space, not reflecting the actual 

variability in the outcomes.  There have been other distributional approaches that extend certain 

specific learning techniques to make predictions together with corresponding probabilistic 

reliability estimates (Khosravi et al. 2010, Papadopoulos et al. 2001).  For example, Hwang et al. 

(1997) use an asymptotic approach to build confidence intervals for neural networks; however, 

similarly to what has been discussed above, due to traditional statistical assumptions on errors 

(e.g., homoscedasticity) and model parameters, the prediction intervals generated by this approach 

are not designed to reflect the variability in the actual outcomes (but rather the variability in model 

predictions), as illustrated in Figure 2b on the same stylized dataset.  
                                      
 
 
 
 
 
 
 
 
 
 
 
 
 (a) Gaussian Process-based prediction interval    (b) Neural Networks-specific prediction interval       (c) Bootstrapping-based prediction interval 

Figure 2. Individual Prediction Reliability Representation Based on 95% Confidence / Prediction Interval 
(X axis: input variable. Y axis: outcome variable. Dots: data points. Solid line: predictive model based on different techniques.) 

Another standard approach to construct prediction distributions and corresponding prediction 

intervals is bootstrapping (Efron 1979).  Such an approach has some clear benefits in that it can be 

used with all kinds of predictive models (i.e., it is not model-specific) and generate distributions 

without having to rely on statistical assumptions; however, heteroscedasticity still poses a 

significant challenge for bootstrapping-derived IPR representation in certain situations.  To 

illustrate, in Fig. 2c we plot confidence intervals obtained from this approach on data presented in 

Fig. 1.4  Obviously, due to the similarity of data patterns in the bootstrap samples, the predictions 

of all linear models across the entire input space would be similar.  This means that, across the 

entire range of input values (𝑥), the width of point-wise confidence intervals derived from the 

                                                            
4 Each bootstrap sample was generated from original training data by randomly sampling (with replacement) 500 data points, on 
which a linear regression model was learned and then applied to make predictions for test data.  We repeat this process 100 times 
– resulting in 100 predictions for each data point, from which 95% prediction interval is empirically constructed. 
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prediction variance would be similar too and not reflective of the actual underlying variability of 

data, as indicated in Fig. 2c. 

To summarize, the existing distributional approaches (many of which are model-specific and 

rely on restrictive statistical assumptions) have been designed mainly to reflect the distribution of 

model predictions and, therefore, are less well-suited for capturing the actual underlying variability 

of ground truth data (and, hence, actual prediction errors), i.e., for capturing IPR in heteroscedastic 

environments.  As an alternative, a number of prior studies addressed this issue by turning to 

simpler, yet more flexible, indicator-based approaches to IPR estimation, which we discuss next. 

Indicator-based approaches typically represent general-purpose (i.e., applicable with any 

outcome prediction model, free from statistical assumptions) IPR estimators that provide a simple 

numeric value as an indicator of IPR for any individual input value.  Among these approaches, 

early work focused on using nonparametric bootstrapping techniques (Carney et al. 1999, Heskes 

1997) and summarizing the individual prediction variability across samples (e.g., by using 

confidence/prediction interval widths or prediction variance) as reliability indicators, or estimating 

errors based on the covariance among data points (Efron 2004).  Several other methods are based 

on heuristics that try to exploit local information of individual data points in order to directly 

capture the actual variability of underlying data, e.g., using prediction errors (Briesemeister et al. 

2012), prediction variance of the nearest neighbors of the focal data point (Clark 2009), or the 

density of the input space in close proximity to the focal data point (Bosnić and Kononenko 2008a), 

as surrogates of IPR.  These approaches are based on intuition that the uncertainty of individual 

predictions should be higher around data points with high prediction errors or high prediction 

variance, or for points around which there is not much training data available.  One can see that 

some of these heuristics – in particular, density-based – would not be very useful in heteroscedastic 

settings (such as the one illustrated by Fig. 1).  Somewhat similarly, Shrestha and Solomatine 

(2006) propose to partition the input space into different clusters and then construct prediction 

intervals based on the empirical distributions of the errors associated with instances in the same 

cluster.  In terms of specific IPR indicators, Briesemeister et al. (2012) designed two statistics 
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based on the local properties of training data, while another related study (Bosnić and Kononenko 

2008b) proposed several empirical measures based on sensitivity analysis.   

For our computational experiments, we use nine commonly used indicator-based reliability 

approaches as baselines for comparison: VarBag (Breiman 1996), VarA, MSE (Briesemeister et 

al. 2012), VarP, AvgDiff (Bosnić and Kononenko 2008a), AvgDist (Sheridan et al. 2004), LCV 

(Demut 2010), SAV and SAB (Bosnić and Kononenko 2008b).  The relevant notation and the 

formal definitions of these approaches are provided in Tables 1 and 2, respectively; note that all 

measures are calculated for a given individual data point (𝑥, 𝑦), where 𝑥 represents an input feature 

vector and 𝑦 is an outcome (target) value.  We narrowed down our choice to this particular set of 

approaches as most promising baseline candidates due to their potential flexibility for capturing 

IPR in heteroscedastic environments and for their advantageous performance reported in prior 

studies and observed in our pilot experiments.   

Finally, evaluation is necessary to test and compare the effectiveness of different methods for 

IPR estimation.  As observed in prior literature, for an IPR indicator to be meaningful and useful, 

the estimates that it produces should be “aligned” with actual individual prediction errors; i.e., 

predictions estimated to be more reliable should exhibit smaller errors (and vice versa).  Based on 

this intuition, previous studies typically use the correlation coefficient (between the reliability 

estimates and actual prediction errors) as the measure of “alignment” to evaluate the performance 

of proposed IPR indicators for numeric prediction models (Bosnić and Kononenko 2009, 

Briesemeister et al. 2012), where higher correlation indicates better IPR estimation performance. 

In summary, the general structure and contribution of many existing individual prediction 

reliability estimation studies can be outlined as: (i) defining some reliability indicator; (ii) 

demonstrating how it can be computed/derived; and (iii) showing its quality by showing that its 

values are well “aligned” with the actual outcome prediction errors (using some “alignment” 

measure, typically correlation coefficient).  Our study follows the same general structure to provide 

further improvements to the current state of the art in this area, as discussed in the next section.   
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Table 1. Common Notations for Describing Reliability Estimation Methods 

Symbol Definition 

𝒙 input vector (of different features) of a given example 

𝒚 outcome value of a given example 

𝒙𝒊 input vector of ith nearest neighbor in heuristic-based methods 

𝒚𝒊 actual outcome of ith nearest neighbor in heuristic-based methods 

𝒚ෝ𝒊 predicted outcome of ith nearest neighbor in heuristic-based methods 

𝜺𝒊 𝜀௜ ൌ  𝑦௜ െ 𝑦ො௜ prediction error of ith nearest neighbor in heuristic-based methods 

𝒎 number of random samples in bootstrapping-based methods 

𝑴𝒋 prediction for 𝑥 made by the model learned from the jth sample in bootstrapping-based methods 

𝒏 number of nearest neighbors selected in heuristic-based methods 

𝒅ሺ𝒙𝒊,𝒙ሻ distance between the example 𝑥 and its  ith nearest neighbor in heuristic-based methods 

𝒚ෝି𝒊 leave-one-out prediction of ith nearest neighbor in heuristic-based methods 

𝝉 sensitivity parameters ( 𝜏 ∈ [0,1] ) 

𝑺 set of sensitivity parameters. An example of 𝑆 = {0.01, 0.1, 0.5, 1} 

𝒕𝒎𝒂𝒙 / 𝒕𝒎𝒊𝒏 Maximum/minimum value of outcome in the training data 

𝒚ෝ𝝉 
predicted outcome of 𝑥 using models trained using training data (𝑋, 𝑌) plus augmented sample 
of ( 𝑥, 𝑦 ൅  𝜏 ∗ ሺ𝑡௠௔௫ െ 𝑡௠௜௡ሻ) in sensitivity based methods 

𝒚ෝି𝝉 
predicted outcome of x using models trained using training data (𝑋, 𝑌) plus augmented sample 
of ( 𝑥, 𝑦 െ  𝜏 ∗ ሺ𝑡௠௔௫ െ 𝑡௠௜௡ሻ) in sensitivity based methods 

Table 2. Description of Baseline Reliability Estimation Methods 

Baseline Calculation and Description 

VarBag 
ଵ

௠
∑ ሺ𝑀௝ െ 𝑦ොሻଶ௠
௝ୀଵ ,𝑦ො ൌ

∑ ெೕ
೘
ೕసభ

௠
. Variance of example 𝑥’s predictions 𝑀௝ s made by models 

learned from different random samples. 

VarA 
ଵ

௡
∑ ሺ𝑦ത െ 𝑦௜ሻଶ
௡
௜ୀଵ ,𝑦ത ൌ

ଵ

௡
∑ 𝑦௜
௡
௜ୀଵ . Variance of example 𝑥’s nearest neighbors’ actual values (𝑦௜s). 

VarP 
ଵ

௡
∑ ሺ𝑦ොത െ 𝑦ො௜ሻଶ
௡
௜ୀଵ ,𝑦ොത ൌ

ଵ

௡
∑ 𝑦ො௜
௡
௜ୀଵ . Variance of example 𝑥’s nearest neighbors’ predictions (𝑦ො௜s). 

AvgDiff |
∑ ௬೔
೙
೔సభ

௡
െ 𝑦ො|. Difference between the average of nearest neighbors’ actual values (𝑦௜s) and the 

example 𝑥’s prediction (𝑦ො). 

MSE 
ଵ

௡
∑ 𝜀௜ଶ
௡
௜ୀଵ ,𝜀௜ ൌ  𝑦௜ െ 𝑦ො௜. Mean squared error of example 𝑥’s nearest neighbors’ predictions (yො௜s). 

AvgDist 
ଵ

௡
∑ 𝑑ሺ𝑥௜ , 𝑥ሻ
௡
௜ୀଵ . Average distance between the example 𝑥 and its nearest neighbors (𝑥௜s). 

LCV 
∑ ௗሺ௫೔,௫ሻ∗ா೔
೙
೔సభ
∑ ௗሺ௫೔,௫ሻ
೙
೔సభ

,𝐸௜ ൌ |𝑦௜ െ 𝑦ොି௜|. Weighted average errors of nearest neighbors’ leave-one-out 

predictions (𝑦ොି௜). 

SAV 
∑ ሺ௬ොഓି ௬ොషഓሻഓ∈ೄ

|ௌ|
. Average difference between sensitivity predictions 𝑦ොఛ and  𝑦ොି ఛ over different 

sensitivity parameters in set 𝑆. 

SAB 
∑ ሺ௬ොഓି௬ොሻାሺ ௬ොషഓି௬ොሻഓ∈ೄ

ଶ∗|ௌ|
. Average difference between sensitivity predictions (𝑦ොఛ or 𝑦ොି ఛ) and original 

prediction (𝑦ො). 
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3.    Machine Learning Approach to Individual Prediction Reliability Estimation 

3.1    Proposed Individual Prediction Reliability Indicator: General Overview  

In this study, we propose a novel indicator-based approach to IPR representation and calculation.  

The key motivation for the specific proposed method was the observation that, while the existing 

IPR indicators have been defined in a variety of different ways (e.g., as variance or density of 

certain data, etc.), their performance is always judged by how well the IPR estimates are aligned 

with actual errors of the outcome prediction model.  Therefore, we propose to use a simple and 

intuitive reliability indicator that is designed to be directly related to errors of the outcome 

prediction model, more specifically, an indicator based on expected absolute prediction error for 

a given individual prediction.   

The proposed idea provides a number of significant benefits.  First and foremost, it provides a 

way to reframe IPR estimation as a canonical numeric prediction problem (of the absolute 

prediction error).  That is, while many IPR indicators from prior work are “constructed” based on 

heuristics and/or distributional assumptions, and their performance is validated empirically 

afterwards, in our case the individual actual outcome prediction errors serve as ground truth 

(targets/labels) to the wide variety of existing advanced machine learning techniques that are able 

to directly learn complex relationships between input features and prediction reliability.   

More specifically, prediction uncertainty can come from different sources that are often hard to 

disentangle, e.g., random noise/variability, inappropriate model selection, or suboptimal model 

parameters.  The actual prediction errors, i.e., the discrepancies between observed 𝑦 and prediction 

𝑦ො  from some predictive model, provide the most reliable signals of the level of prediction 

uncertainty.  Higher prediction error typically indicates lower IPR, and prediction errors could 

arguably be used in at least two distinct ways under different contexts.   

In particular, one could use absolute prediction errors, i.e., 𝑒 ൌ |𝑦ො െ 𝑦|, vs. direct prediction 

errors, i.e., 𝑒 ൌ 𝑦ො െ 𝑦; the latter would reflect not only the absolute magnitude of discrepancy, but 

also its direction, in other words, whether 𝑦 is overestimated or underestimated by the outcome 

prediction model.  In this study, we focus on the absolute-error-based IPR indicator for the 



Improving Reliability Estimation for Individual Numeric Predictions 

12 

following key reason.  The situations where the model’s prediction errors are highly imbalanced 

(model under-predicts and over-predicts in numerous portions of the data space) typically reflect 

the fact that the outcome prediction model poorly represents the underlying generative process of 

the data (i.e., the model is biased, poorly fit), and the first goal typically is to improve the overall 

model fit.  These situations often can be readily diagnosed with standard, traditional aggregate 

model evaluation metrics; of course, such situations could be remedied by looking at direct errors 

as well, and there are entire machine learning approaches dedicated to that. 5  However, once the 

outcome prediction model fit is improved using detected systematic direct errors (no significant 

over- or under-prediction), the remaining patterns of direct errors would be impossible to learn 

(essentially being random noise of different magnitudes), yet the key IPR problem as stated in the 

paper would still be highly relevant (as motivated by Fig. 1).  And, insightful and actionable IPR 

information can still be mined from data.   

Thus, abstracting away from the directionality of errors, we propose to view the reliability of a 

given individual prediction as the expected absolute prediction error.  As mentioned earlier, this 

allows us to address the IPR estimation problem as a canonical, meta-algorithmic numeric 

prediction problem, i.e., it can to use any advanced machine learning technique for reliability 

estimation.  More specifically, IPR represented by absolute prediction error, i.e., 𝑒 ൌ |𝑦ො െ 𝑦|, 

could be directly modeled as a function of input variables x, i.e., as 𝑒 ൌ 𝐹ሺ𝑥ሻ, to capture the 

structural relationships between the input space and the prediction reliability for any given 

outcome prediction model.  Building machine learning model F (i.e., the reliability estimator) does 

require labeled training data {(x, e)}.  It is important to point out that this data usually is readily 

available, because the outcome prediction models (i.e., models predicting 𝑦ො ) are typically 

evaluated on some hold-out test data {(x, y)} which can then be straightforwardly reused to 

construct the ground truth for reliability estimation; i.e., every data point (x, y) together with 

                                                            
5 In cases where prediction errors are not balanced (i.e., when the outcome prediction model is significantly biased), there are 
substantial opportunities to improve the outcome predictive models themselves first, before performing reliability estimation.  In 
fact, some boosting-based machine learning techniques, e.g., XGBoost (Chen and Guestrin 2016), use this idea: they build an 
ensemble of models sequentially one-by-one and take advantage of the unbalanced direct prediction errors from models learned in 
earlier stages iteratively to improve the ultimate outcome prediction performance of the entire ensemble model.   
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corresponding outcome prediction 𝑦ො can be converted to (x, e), where 𝑒 ൌ |𝑦ො െ 𝑦|.  

Taking the data shown in Fig. 1 as an example, the absolute prediction error (and, hence, the 

IPR) of the best outcome prediction model is consistently higher in certain areas.  This is illustrated 

in Fig. 3a, where x axis still represents the input features, while vertical axis now represents 

absolute error (i.e., e) of the outcome prediction model.  As the figure shows, the absolute 

prediction error is much higher within interval 𝑥 ∈ [-0.5, 0.5] than elsewhere, which can be learned 

by machine learning techniques.  For example, using the data plotted in Fig. 3a, a regression tree 

model can learn to predict 𝑒 from 𝑥, and we show the pointwise prediction errors estimated from 

this regression tree in Fig. 3b.  Each blue dot in Fig. 3b represents an estimated absolute prediction 

error for given 𝑥, which shows that the prediction of the errors, i.e., the IPR indicators (𝑒̂), are 

quite informative.  As can be seen in Fig. 3b, estimated reliability is able to accurately differentiate 

the levels of outcome model’s prediction uncertainty across different intervals, i.e., the uncertainty 

is lower for 𝑥 ∈ [-2.0, -0.5] and 𝑥 ∈ [0.5, 2.0] and higher for 𝑥 ∈ [-0.5, 0.5].   

 

 

 

 

 

                   (a) Actual absolute prediction error                        (b) Regression-tree-based error estimation 

Figure 3. Pointwise Prediction Error Estimation of Linear Regression Model from Fig. 1.     
(X axis: input variable. Y axis: absolute prediction error. Black dots: actual abs. prediction error. Blue dots: estimated abs. prediction error.) 

It is important to reiterate that reframing IPR estimation as a data-driven numeric prediction 

problem makes the proposed approach general-purpose (i.e., reliability estimation can be done for 

any outcome prediction model) and alleviates the need for distributional modeling assumptions.  

An added benefit of the proposed IPR indicator is its clear interpretability to end-users and 

decision makers, which may not be the case with some existing approaches that require 

probabilistic assumptions (e.g., distribution-based approaches) and non-intuitive quantifications 
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(e.g., density-based heuristic indicators).  Specifically, the reliability score of a given prediction 

simply represents the expected absolute error for this prediction, along the lines of “for given x, 

the outcome prediction model is expected to be off by this much, on average”.   

Finally, the proposed approach also allows for a more precise and informative evaluation.  As 

mentioned earlier, a popular reliability evaluation metric has been the correlation between IPR 

values and actual prediction errors.  Even though correlation coefficient is not a very precise 

measure in the sense that it captures only very high-level patterns (general trends), it has been 

widely used largely because the existing IPR indicators have been defined in highly differing ways 

(as variance, density, or average of certain data, etc.) – a more direct comparison to actual 

prediction errors was not feasible.  In other words, even with high correlation, it is possible that 

the magnitude of IPR estimates might be significantly different than the one of the actual errors, 

thus, reducing diagnosticity (or interpretability) of IPR indicators.  In contrast, the proposed IPR 

indicator (i.e., expected absolute prediction error) is, by design, “on the same scale” as the ground 

truth (i.e., actual absolute prediction error) against which the reliability is judged.  This allows for 

an even more precise performance measurement (going well beyond correlation coefficient), e.g., 

using canonical numeric accuracy measures such as root mean squared error (RMSE).   

3.2    Estimating and Evaluating the Proposed Reliability Indicator: ML-Based Framework 

In this subsection, we more formally describe the details of machine-learning-based framework, 

which can be used for estimating and evaluating the proposed absolute-prediction-error-based IPR 

indicator.  We also use this framework for the computational experiments in our study.   

As a quick summary, the proposed framework follows a two-stage process.  Because IPR 

estimation is done for some given outcome prediction model, the overarching goal of Stage 1 is to 

use the outcome prediction model (build it first, if necessary) and produce the data about its errors, 

which is typically achieved by deploying the outcome prediction model on a representative, hold-

out data sample (i.e., test data).  This data then serves as the ground truth for Stage 2, where the 

actual IPR estimation is done – i.e., the actual absolute prediction errors from Stage 1 are used as 

outcome variables to build an error prediction model using best machine learning practices.  The 
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overview of the entire framework is depicted in Fig. 4. 

In terms of data, as depicted in the first row of Fig. 4 and as is typical in predictive modeling, 

we assume the existence of two datasets (often based on a random split of an underlying database 

with known outcome values) ሼሺ𝑥௢,𝑦௢ሻሽ and ሼሺ𝑥௧௘௦௧ ,𝑦௧௘௦௧ሻሽ , where the former is used for outcome 

prediction model learning and the latter for outcome model evaluation.  In both datasets, for each 

data point, x represents the input feature vector, and y represents the corresponding outcome 

variable.  In Stage 1, given ሼሺ𝑥௢,𝑦௢ሻሽ, outcome prediction model 𝑓 is built using any desired 

numeric prediction modeling technique, e.g., Neural Network, Regression Tree, Random Forest, 

etc., as is shown in the second row of Fig. 4.6  This is a standard model learning process where the 

best machine-learning practices and procedures, such as cross-validation method (Kohavi 1995, 

Picard and Cook 1984), can be used to properly build and fine-tune outcome prediction models.  

In our experiments (discussed later in the paper), we use multiple different machine learning 

techniques to explore the effectiveness of the proposed prediction reliability approach in 

conjunction with various outcome prediction models.   

After model 𝑓 is trained, naturally it can be deployed for outcome prediction purposes, i.e., to 

make outcome predictions for any input 𝑥 as 𝑓ሺ𝑥ሻ.  Stage 1 concludes by deploying f on outcome 

evaluation data ሼሺ𝑥௧௘௦௧,𝑦௧௘௦௧ሻሽ, i.e., prediction for each observation ሺ𝑥௧௘௦௧ ,𝑦௧௘௦௧ሻ is constructed as 

𝑦ො௧௘௦௧ ൌ 𝑓ሺ𝑥௧௘௦௧ሻ, and corresponding (absolute) prediction error is derived as 𝑒 ൌ |𝑦ො௧௘௦௧ െ 𝑦௧௘௦௧|.  

This newly generated data ሼ𝑒ሽ – the set of actual prediction errors of 𝑓 on the outcome evaluation 

dataset – has traditionally been used for the final, authoritative evaluation of model f performance 

on hold-out data.  However, it also carries specific information about the performance on 

individual predictions (i.e., actual errors) by model ƒ and, thus, we use this information in the form 

of labeled error learning dataset ሼሺ𝑥௧௘௦௧, 𝑒ሻሽ  in Stage 2 for building models for IPR estimation.   

Stage 2 represents our proposed machine-learning approach to IPR estimation.  As discussed 

earlier, we propose to use machine-learning techniques to estimate absolute prediction errors 

                                                            
6 In our study, during Stage 1, we use outcome prediction models built using machine learning techniques, as is done in many 
advanced real-world applications. However, any outcome-predicting model can be used in this framework, e.g., an already existing 
rule-based expert system or some black-box approach which may not require separate outcome learning data at this point.  
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(representing IPR) of any given outcome prediction model directly as a function of input features 

x.  The ground truth labels for this machine learning task are obtained from Stage 1, which results 

in the labeled error learning dataset ሼሺ𝑥௧௘௦௧, 𝑒ሻሽ , as discussed above and shown in Fig. 4.  

Following standard machine-learning practices, dataset ሼሺ𝑥௧௘௦௧, 𝑒ሻሽ  is randomly split into training 

dataset ሼሺ𝑥௧ , 𝑒௧ሻሽ  and validation dataset ሼሺ𝑥௩, 𝑒௩ሻሽ .  Based on training dataset ሼሺ𝑥௧ , 𝑒௧ሻሽ , to 

encapsulate the underlying relationships between input feature vector 𝑥௧ and the absolute error 𝑒௧, 

error prediction model 𝑓௘ is constructed as 𝑒̂௧ ൌ 𝑓௘ሺ𝑥௧ሻ, where 𝑒̂௧ denotes the model prediction.  

Model 𝑓௘  could be produced by any available machine learning technique using best model-

building and fine-tuning practices (e.g., cross-validation), and the best choice of the technique 

ultimately will depend on the context of each specific prediction problem, e.g., complexity of 

underlying relationships in data, availability of the data, etc.  In our experiments, we use numerous 

machine learning techniques to explore their performance under different contexts.   

Once error prediction model 𝑓௘ is trained, it can be deployed for reliability estimation purposes, 

and Stage 2 concludes by deploying 𝑓௘ to error validation data ሼሺ𝑥௩, 𝑒௩ሻሽ, as shown in Fig. 4.  In 

particular, the actual absolute prediction error 𝑒௩ of outcome prediction model 𝑓 for any data point 

ሺ𝑥௩ ,𝑦௩ሻ, i.e., 𝑒௩ ൌ |𝑦ො௩ െ 𝑦௩|, would be estimated by 𝑓௘  as 𝑒̂௩ ൌ 𝑓௘ሺ𝑥௩ሻ.  In other words, 𝑓௘ሺ𝑥௩ሻ 

represents the proposed IPR indicator for the corresponding individual outcome prediction 𝑓ሺ𝑥௩ሻ, 

for any input 𝑥௩.  In summary, based on the proposed approach and framework, for any given input 

𝑥, the two models (𝑓 and 𝑓௘) would be able to provide the essential prediction-related information: 

the outcome prediction as 𝑓ሺ𝑥ሻ and the estimated reliability of this prediction as 𝑓௘ሺ𝑥ሻ. 

Finally, error validation dataset ሼሺ𝑥௩, 𝑒௩ሻሽ can also be used to properly evaluate the performance 

of error prediction model 𝑓௘, as this data has been used to build neither outcome prediction nor 

IPR estimation models.  Thus, as shown in Fig. 4, the final evaluation of reliability estimation 

performance is done by comparing the obtained IPR estimates {𝑒̂v} with actual prediction errors 

{𝑒௩}.  As discussed earlier, for an IPR indicator to be meaningful, the IPR estimates ideally should 

be “aligned” with actual errors of the outcome prediction model; thus, one relevant and widely 

used IPR estimation performance metric is correlation coefficient, i.e., 𝑐𝑜𝑟𝑟ሺሼ𝑒௩ሽ, ሼ𝑒̂௩ሽሻ; a higher 
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correlation value indicates better performance.  Importantly, as the proposed IPR indicator has 

been designed to be “on the same scale” as the ground truth, it allows to use more precise numeric 

prediction accuracy measures as well, such as root mean squared error, i.e., 𝑅𝑀𝑆𝐸ሺሼ𝑒௩ሽ, ሼ𝑒̂௩ሽሻ ൌ

 ඥ∑ ሺ𝑒௩ െ 𝑒̂௩ሻଶ/|ሼ𝑒௩ሽ|௩ ), where a lower RMSE value indicates better performance.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Two-Stage Machine-Learning-Based Framework for Prediction Reliability Estimation 

4.    Experiments 

4.1    Experimental Setup 

We demonstrate the effectiveness of our approach through comprehensive computational 

experiments following the general two-stage framework described in Section 3.2 and Fig. 4.   

Seven public data sets from UCI Machine Learning Repository7 (as summarized in Table 3) are 

used to test the performance of the proposed approach.  Selected data sets vary by application 

domain, size (number of records), and complexity (number of input attributes).  For Stage 1, each 

data set is randomly split into two parts, i.e., outcome learning data and outcome evaluation data, 

with percentages of 40% and 60%, respectively.  For Stage 2, the latter part is used as error learning 

data and is further randomly split into equal-sized (i.e., 50%-50%) error training and error 

validation datasets.  Note that we do the performance evaluation 30 times for each dataset (by 

generating a different random split into outcome learning, error learning, and error validation 
                                                            
7 https://archive.ics.uci.edu/ml/datasets.html 
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datasets).  All results are based on the average performance of the 30 runs, and all techniques (ML-

based and baselines) were evaluated on the same evaluation data within each run. 

For Stage 1, i.e., to build outcome prediction models, we chose seven machine learning 

techniques widely used for predicting numeric outcomes, i.e., KNN (k nearest neighbors), NN 

(neural network), LR (linear regression), RT (regression tree), RF (random forest), SVR (support 

vector regression), and XGB (extreme gradient boosting).  The use of different predictive modeling 

techniques highlights the general-purpose applicability of the proposed reliability estimation 

approach for use in conjunction with a wide variety of outcome prediction models.  For Stage 2, 

i.e., to build absolute error prediction models, we used the same set of machine learning techniques 

to explore whether some of them might be more advantageous for the reliability estimation task.  

Table 3. Overview of Data Sets Used in Computational Experiments 

Dataset #Obs #Attributes Output description Output range 
Power Plant 9568 4 Hourly electrical energy output. [420, 495] 
ISE 536 7 Istanbul Stock Exchange 100 index. [-8.5, 10] 
Housing 506 13 Value of houses in $1000s. [6, 50] 
Bike Rental 17389 16 Daily count of rental bikes. [1, 977] 
Parkinsons 5875 26 Parkinson’s disease symptom score. [7, 29] 
Posts Comments 40949 54 Log of number of Facebook posts comments. [0, 8] 
News Popularity 39797 58 Log of number of total shares of news. [3, 13] 

To benchmark the proposed approach, we use nine baseline algorithms for comparison 

(summarized in Table 2): one bootstrapping-based and eight heuristic-based reliability estimators.  

For parameter setting, specifically, in our experiments, we set m = 20 (number of random samples 

generated from original data in bootstrapping) and n = 20 (number of nearest neighbors chosen to 

calculate those heuristic-based baselines).  The reliability estimation performance of different 

approaches is evaluated using both correlation-based and predictive-accuracy-based metrics, i.e., 

correlation coefficient and RMSE; as mentioned earlier, higher correlation and lower discrepancy 

between actual and estimated prediction errors indicate better reliability estimation.  

For expositional completeness, we first present the predictive accuracy measured by RMSE of 

different outcome prediction models (i.e., models built in Stage 1), as shown in Table 4, where 

each row and column represents each outcome prediction model and dataset, respectively.  Note 

that, for each technique, the results represent the best performance of each model achieved after 
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optimizing model parameters, e.g., the number of nearest neighbors in KNN, depth of the tree in 

RT and RF, number of neurons and hidden layers in NN, number of estimators and size of 

subsample in XGB, length scale and gamma parameters of kernel functions in SVR, and many 

other parameters.  Best performance, i.e., lowest RMSE, on each dataset is highlighted in bold, 

which shows that XGB generally tends to perform well on different data sets, followed by RF and 

NN.  The one exception is the simple ISE dataset, where arguably the simplest model – linear 

regression – is sufficient to capture predictive relationships in the data.   

Table 4. Predictive Accuracy (RMSE) of Different Outcome Prediction Models. 
(Average performance based on 30 runs; best performance on each data set is shown in bold.) 

Model Power Plant ISE Housing Bike Rental Parkinsons Posts Comments News Pop 
KNN 3.985 1.548 6.040 0.896 0.329 0.701 0.882 
LR 4.578 1.404 5.600 1.072 0.378 0.814 0.874 
NN 4.285 1.431 4.914 0.431 0.364 0.647 0.869 
RF 3.775 1.524 4.643 0.369 0.277 0.509 0.864 
RT 4.415 1.688 5.696 0.501 0.382 0.555 0.888 

SVR 4.535 1.526 7.095 0.906 0.400 0.634 0.889 
XGB 3.574 1.514 4.601 0.341 0.226 0.493 0.852 

The next two subsections discuss the results of IPR estimation (i.e., Stage 2) experiments.   

4.2    Experimental Results: Performance Comparison Based on Correlation  

We first focus on the performance comparisons in terms of correlation coefficient – the widely 

used metric for evaluating IPR indicators, as discussed earlier.  We first show the detailed 

performance of each machine-learning-based method for our proposed absolute-error-based IPR 

indicator as well as each baseline method, and then compare the effectiveness of these two classes 

of methods using summarized results.   

In particular, Table 5 compares the reliability estimation performance among seven machine 

learning techniques.  The bold numbers represent best performance for a given outcome prediction 

model in terms correlation coefficient.  A closer look at the results shows that the XGB approach 

produced the best (or near best) reliability performance among the ML-based approaches.  

Specifically, in the majority (33 out of 49) of settings that were explored XGB outperforms other 

techniques, followed closely by RF which performs the best in the rest (15 out of 49) of the settings.  

An interesting pattern observed from the results is that RF is better than or competitive with XGB 

only on data with simpler structure (having fewer input features), e.g., Housing, ISE, and Power 
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Plant; that is, XGB consistently has the edge over all approaches on more complex datasets. 

Table 5. Reliability Estimation Performance of Machine-Learning-Based Methods (Correlation Coefficient) 

(Average performance based on 30 runs; best result for each outcome prediction model on each data shown in bold.) 

                             Outcome    
Reliability        Prediction    
Estimation 

KNN LR NN RF RT SVR XGB 

Power Plant 

KNN 0.253 0.336 0.304 0.215 0.240 0.337 0.202 
LR 0.071 0.089 0.104 0.074 0.077 0.121 0.062 
NN 0.094 0.194 0.156 0.099 0.105 0.201 0.094 
RF 0.291 0.413 0.374 0.219 0.311 0.416 0.191 
RT 0.059 0.182 0.137 0.068 0.097 0.175 0.046 

SVR  0.160  0.286 0.271  0.157  0.185  0.265 0.155  
XGB 0.278 0.407 0.373 0.229 0.301 0.415 0.210 

ISE 

KNN 0.122 0.099 0.089 0.135 0.182 0.150 0.123 
LR 0.015 0.026 0.020 0.040 0.000 0.000 0.015 
NN 0.043 0.052 0.047 0.107 0.115 0.080 0.046 
RF 0.123 0.163 0.129 0.173 0.231 0.183 0.160 
RT 0.045 0.075 0.112 0.062 0.157 0.097 0.199 

SVR 0.058 0.035 0.100 0.028 0.103 0.083 0.023 
XGB 0.110 0.100 0.066 0.133 0.199 0.141 0.111 

Housing 

KNN 0.419 0.384 0.333 0.327 0.339 0.454 0.306 
LR 0.381 0.326 0.340 0.308 0.293 0.442 0.326 
NN 0.490 0.484 0.357 0.310 0.321 0.635 0.341 
RF 0.538 0.500 0.457 0.433 0.424 0.638 0.440 
RT 0.398 0.409 0.360 0.320 0.298 0.518 0.350 

SVR 0.301 0.318 0.279 0.253 0.264 0.398 0.227 
XGB 0.522 0.505 0.459 0.431 0.417 0.636 0.453 

Bike Rental 

KNN 0.523 0.490 0.392 0.460 0.408 0.563 0.447 
LR 0.460 0.382 0.342 0.398 0.349 0.527 0.396 
NN 0.557 0.567 0.345 0.405 0.357 0.617 0.400 
RF 0.742 0.858 0.482 0.499 0.462 0.840 0.488 
RT 0.684 0.798 0.365 0.410 0.361 0.801 0.419 

SVR 0.479 0.441 0.370 0.443 0.383 0.541 0.434 
XGB 0.748 0.865 0.494 0.505 0.480 0.844 0.498 

Parkinsons 

KNN 0.508 0.478 0.476 0.484 0.538 0.560 0.419 
LR 0.267 0.205 0.235 0.257 0.279 0.285 0.237 
NN 0.285 0.232 0.255 0.277 0.307 0.345 0.226 
RF 0.496 0.377 0.430 0.498 0.456 0.404 0.401 
RT 0.240 0.209 0.239 0.283 0.254 0.248 0.242 

SVR 0.424 0.223 0.255 0.246 0.196 0.428 0.283 
XGB 0.637 0.653 0.664 0.625 0.714 0.697 0.575 

Comments 

KNN 0.528 0.519 0.478 0.428 0.438 0.495 0.420 
LR 0.489 0.556 0.449 0.374 0.395 0.456 0.368 
NN 0.539 0.599 0.451 0.460 0.459 0.506 0.458 
RF 0.634 0.672 0.622 0.532 0.541 0.611 0.525 
RT 0.574 0.589 0.566 0.496 0.512 0.551 0.491 

SVR 0.549 0.526 0.492 0.435 0.448 0.491 0.427 
XGB 0.640 0.676 0.629 0.540 0.549 0.618 0.527 

News Pop 

KNN 0.185 0.197 0.201 0.204 0.182 0.183 0.209 
LR 0.203 0.229 0.227 0.226 0.200 0.204 0.233 
NN 0.205 0.226 0.232 0.232 0.207 0.206 0.237 
RF 0.213 0.227 0.236 0.243 0.221 0.215 0.246 
RT 0.175 0.181 0.194 0.199 0.179 0.171 0.202 

SVR 0.052 0.175 0.198 0.179 0.179 0.181 0.181 
XGB 0.229 0.242 0.251 0.258 0.236 0.233 0.262 

Similarly, in Table 6 we show the comparison among nine baseline techniques.  Although no 

one baseline predominantly outperforms others, MSE (heuristic-based) and VarBag 

(bootstrapping-based) tend to have higher correlation coefficient with actual errors in 20 and 12 

(out of 49) settings, respectively.  



Improving Reliability Estimation for Individual Numeric Predictions 

21 

Table 6. Reliability Estimation Performance of Heuristic-Based Methods (Correlation Coefficient) 
(Average performance based on 30 runs; best result for each outcome prediction model on each data shown in bold.) 

 
                            Outcome   
Reliability        Prediction   
Estimation 

KNN LR NN RF RT SVR XGB 

Power Plant 

VarBag 0.232 0.030 0.018 0.187 0.102 0.123 0.184 
VarA 0.173 0.104 0.139 0.133 0.136  0.150 0.117 
VarP 0.058 -0.001 0.002 0.096 0.070  0.025 0.091 

AvgDiff 0.025 0.023 0.015 0.014 0.044 0.009 0.018 
MSE 0.187 0.231 0.173 0.124 0.160 0.225 0.098 

AvgDist 0.028 0.002 -0.007 -0.010 0.018 0.045 -0.010 
LCV -0.026 -0.045 0.141 -0.015 -0.027 -0.016 -0.009 
SAV -0.003 0.012 0.132 -0.006 0.024 0.103 -0.078 
SAB 0.017 0.002 0.180 -0.001 0.012 0.001 0.111 

ISE 

VarBag 0.166 0.342 0.321 0.253 0.250 0.227 0.296 
VarA 0.107 0.093 0.084 0.112 0.152 0.100 0.122 
VarP 0.084 0.153 0.132 0.126 0.174 0.167 0.137 

AvgDiff -0.024 -0.023 -0.001 -0.010 0.024 0.008 0.005 
MSE 0.100 0.075 -0.087 0.066 0.078 0.073 0.071 

AvgDist 0.273 0.252 0.261 0.284 0.318 0.315 0.287 
LCV 0.040 0.024 0.094 -0.016 -0.005 0.013 -0.009 
SAV 0.007 0.259 0.007 0.082 0.181 0.311 0.078 
SAB 0.020 -0.064 0.020 0.023 -0.003 0.004 -0.046 

Housing 

VarBag 0.396 0.342 0.404 0.418 0.385 0.266 0.437 
VarA 0.373 0.326 0.349 0.306 0.280 0.397 0.306 
VarP 0.272 0.130 0.329 0.294 0.256 0.108 0.305 

AvgDiff -0.316 -0.323 -0.417 -0.360 -0.268 -0.318 -0.373 
MSE 0.368 0.353 0.245 0.303 0.232 0.452 0.271 

AvgDist 0.178 0.204 0.130 0.071 0.027 0.174 0.082 
LCV -0.148 0.006 0.240 -0.061 -0.074 -0.358 -0.033 
SAV 0.007 0.143 0.106 0.012 0.162 0.255 0.122 
SAB -0.123 -0.037 -0.002 -0.002 0.132 0.053 0.217 

Bike Rental 

VarBag 0.445 0.052 0.295 0.376 0.323 0.299 0.376 
VarA 0.523 0.461 0.242 0.241 0.180 0.505 0.261 
VarP 0.395 0.038 0.234 0.221 0.177 0.390 0.253 

AvgDiff 0.149 0.049 0.172 0.249 0.161 0.162 0.275 
MSE 0.479 0.463 0.305 0.384 0.265 0.522 0.272 

AvgDist 0.052 0.025 0.172 0.233 0.238 0.004 0.202 
LCV -0.014 0.014 0.035 0.072 0.073 0.078 0.011 
SAV -0.014 0.022 0.188 -0.002 0.233 0.169 0.225 
SAB 0.052 -0.012 -0.131 -0.021 -0.003 0.046 0.212 

Parkinsons 

VarBag 0.470 0.053 0.055 0.293 0.022 0.102 0.399 
VarA 0.531 0.413 0.446 0.315 0.423 0.434 0.361 
VarP 0.276 -0.012 0.134 0.149 0.116 0.124 0.263 

AvgDiff 0.120 0.013 -0.026 0.184 0.162 0.013 0.192 
MSE 0.557 0.552 0.452 0.532 0.615 0.570 0.445 

AvgDist -0.085 -0.045 -0.080 -0.048 -0.010 -0.100 -0.069 
LCV 0.112 -0.007 -0.107 0.059 0.164 0.188 0.054 
SAV -0.002 -0.053 -0.047 -0.157 -0.163 0.132 -0.026 
SAB -0.082 0.001 -0.043 -0.048 0.014 0.064 0.034 

Comments 

VarBag 0.384 0.321 0.263 0.310 0.283 0.238 0.309 
VarA 0.470 0.379 0.404 0.330 0.353 0.410 0.318 
VarP 0.346 0.276 0.346 0.292 0.310 0.297 0.279 

AvgDiff -0.213 -0.130 -0.137 -0.188 -0.201 -0.178 -0.178 
MSE 0.473 0.493 0.393 0.326 0.383 0.379 0.317 

AvgDist 0.230 0.361 0.214 0.159 0.171 0.257 0.149 
LCV -0.083 0.006 0.043 -0.065 -0.051 -0.02 -0.075 
SAV -0.045 0.365 0.320 0.429 0.251 0.312 0.279 
SAB -0.095 -0.047 0.227 0.067 0.100 -0.062 0.237 

News Pop 

VarBag 0.135 0.063 0.050 0.107 0.047 0.077 0.130 
VarA 0.137 0.139 0.155 0.146 0.130 0.134 0.150 
VarP 0.125 0.132 0.129 0.111 0.068 0.119 0.125 

AvgDiff -0.085 -0.116 -0.129 -0.125 -0.106 -0.087 -0.128 
MSE 0.135 0.142 0.142 0.128 0.130 0.115 0.103 

AvgDist 0.106 0.125 0.119 0.120 0.106 0.108 0.116 
LCV -0.016 0.001 0.172 -0.007 -0.035 -0.042 0.148 
SAV -0.005 0.083 0.080 0.143 0.026 0.05 0.182 
SAB 0.068 0.008 0.007 0.050 -0.011 0.046 0.095 
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Another observation is that VarBag is more competitive on data with less complex structure 

(having fewer input features), e.g., Power Plant, ISE, Housing, and Bike Rental, while on data sets 

like Parkinsons, Posts Comments, and News Popularity, heuristic-based estimators like MSE and 

VarA generally perform better. 

We summarize the comparison of correlation coefficient results between ML-based reliability 

estimators and baselines in Table 7.  Specifically, we compare the best baseline (BL) technique 

(chosen among the nine baseline techniques discussed earlier) and the best machine learning (ML) 

model (chosen from the seven ML techniques used earlier) in terms of correlation.  The bold and 

red numbers represent significantly higher correlation coefficients from ML-based methods, and 

the bold and blue numbers represent better results from baselines.  The results show that, in 42 out 

of 49 (85.7%) predictive task configurations in our experiments, the best ML-based estimator is a 

better IPR indicator (exhibiting higher correlation with actual prediction errors), and in 39 out of 

these 42 cases the advantage is statistically significant, emphasizing the advantages of using the 

proposed approach over baselines for IPR estimation.   

Table 7. Comparison of Reliability Estimation Performance (Correlation Coefficient) 
(Average performance based on 30 runs; better result on each data set is shown in bold; red bold: machine learning technique is 

significantly better; blue bold: baseline is significantly better) 
Outcome 
prediction 
model   

KNN LR NN RF RT SVR XGB 

Prediction 
reliability 
estimator  

Best 
BL 

Best 
ML 

Best 
BL 

Best 
ML 

Best 
BL 

Best 
ML 

Best 
BL 

Best 
ML 

Best 
BL 

Best 
ML 

Best 
BL 

Best 
ML 

Best 
BL 

Best 
ML 

Power Plant 0.23 0.29*** 0.23 0.41*** 0.18 0.37*** 0.19 0.23*** 0.16 0.31*** 0.23 0.42***  0.18 0.21* 
ISE 0.27*** 0.12 0.34*** 0.16 0.32*** 0.13 0.28*** 0.17 0.32*** 0.23 0.32*** 0.18  0.30*** 0.16 
Housing 0.40 0.54*** 0.36 0.51*** 0.42 0.46*** 0.42 0.43 0.39 0.41 0.45 0.64*** 0.44 0.45 
Bike Rental 0.52 0.75*** 0.46 0.87*** 0.31 0.50*** 0.38 0.51*** 0.32 0.48*** 0.52 0.84*** 0.38 0.50*** 
Parkinsons 0.56 0.64*** 0.55 0.65*** 0.45 0.66*** 0.53 0.63* 0.62 0.71*** 0.57 0.70*** 0.45 0.58*** 
Comments 0.47 0.64*** 0.50 0.68*** 0.40 0.63*** 0.43 0.54*** 0.38 0.55*** 0.41 0.62*** 0.32 0.53*** 
News Pop 0.14 0.23*** 0.14 0.24*** 0.17 0.25*** 0.15 0.26*** 0.13 0.24*** 0.13 0.23*** 0.18 0.26*** 
                                                                                                                                          *** p<0.001, ** p<0.01, * p<0.05 

Also note that ML-based IPR estimators were outperformed by baselines only on the ISE 

dataset, i.e., the simple dataset (500+ observations and 7 input features) with significantly less 

complex predictive relationships, where a simpler outcome prediction model like linear regression 

was sufficient to guarantee high prediction accuracy, as mentioned earlier.  In other words, the 

heuristic-based IPR estimators may be sufficient for simpler datasets; however, more sophisticated 
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approaches are advantageous when more complex predictive settings must be considered. 

4.3    Experimental Results: Performance Comparison Based on RMSE  

As discussed in Section 3.1, while correlation coefficient is able to capture general variability 

patterns, it is not designed to reflect the situations where the magnitude of IPR estimates might be 

significantly different than that of the actual errors, reducing our ability to make more precise 

judgements about IPR estimation performance.  The proposed absolute-prediction-error-based IPR 

indicator provides for more precise and informative performance evaluation, due to being “on the 

same scale” as the ground truth, which allows us to bring in standard numeric prediction accuracy 

measures – specifically, root mean squared error (RMSE) – and provide a much clearer picture 

of true IPR estimation performance, as discussed below. Here we follow the same structure as in 

the previous subsection, where we first show the detailed performance of each machine-learning-

based method for our proposed absolute-error-based reliability indicator, followed by detailed 

performance of each baseline method, and then compare the effectiveness of these two classes of 

methods using summarized results.  

In Table 8, we compare the IPR estimation performance in terms of RMSE among machine 

learning methods, bold numbers representing best performance for each outcome prediction 

model.  The results show similar patterns as in the correlation coefficient comparisons.  In 

particular, XGB still performs the best, i.e., exhibits lower discrepancy with actual prediction 

errors, among all machine learning techniques in most cases.  Specifically, in 29 out of 49 cases, 

XGB produces most accurate reliability estimation, followed by RF and KNN which perform 

better in the rest 14 and 6 cases, respectively.  Also, detailed results show that RF and KNN tend 

to outperform XGB on datasets with fewer input features, i.e., Power Plant, ISE, and Housing, 

while XGB is more advantageous on more complex datasets.  

As mentioned earlier, RMSE should be calculated when IPR indicator and actual prediction 

error are on the same scale.  However, this is not the case for heuristic-based IPR indicators, and 

computing RMSE based on raw values of heuristic-based indicators would put them at a significant 

disadvantage in terms of their performance comparison with the proposed approach.   
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Table 8. Reliability Estimation Performance of Machine-Learning-Based Methods (RMSE) 
(Average performance based on 30 runs; best result for each outcome prediction model on each data shown in bold.) 

 
                        Outcome    
Reliability    Prediction 
Estimation 

KNN LR NN RF RT      SVR XGB 

Power Plant 

KNN 2.606 2.613 2.552 2.520 2.806 2.680 2.407 
LR 2.680 2.759 2.658 2.566 2.875 2.902 2.446 
NN 2.683 2.728 2.642 2.565 2.862 2.790 2.442 
RF 2.590 2.535 2.498 2.530 2.756 2.594 2.417 
RT 2.693 2.739 2.654 2.576 2.890 2.824 2.456 

SVR 2.684 2.672 2.599 2.566 2.858 2.839 2.450 
XGB 2.598 2.550 2.501 2.524 2.768 2.595 2.415 

ISE 

KNN 1.014 0.909 0.954 1.018 1.133 1.043 1.019 
LR 1.049 0.931 0.973 1.043 1.179 1.075 1.051 
NN 1.037 0.925 0.962 1.024 1.146 1.053 1.034 
RF 1.033 0.912 0.958 1.014 1.115 1.031 1.020 
RT 1.073 0.942 0.981 1.054 1.161 1.081 1.055 

SVR 1.024 0.918 0.961 1.026 1.146 1.039 1.025 
XGB 1.059 0.940 0.995 1.047 1.150 1.061 1.054 

Housing 

KNN 4.292 3.750 3.429 3.346 4.023 5.025 3.372 
LR 4.377 3.869 3.433 3.397 4.125 5.011 3.395 
NN 4.076 3.536 3.342 3.367 4.033 4.308 3.324 
RF 3.924 3.477 3.206 3.200 3.906 4.179 3.164 
RT 4.408 3.700 3.451 3.395 4.086 4.868 3.276 

SVR 4.503 3.919 3.522 3.425 4.171 5.169 3.527 
XGB 4.046 3.526 3.295 3.275 4.041 4.315 3.259 

Bike Rental 

KNN 0.532 0.580 0.269 0.247 0.327 0.527 0.228 
LR 0.553 0.615 0.275 0.255 0.335 0.541 0.234 
NN 0.518 0.550 0.275 0.255 0.334 0.501 0.234 
RF 0.417 0.342 0.256 0.240 0.317 0.339 0.222 
RT 0.454 0.402 0.272 0.254 0.334 0.376 0.231 

SVR 0.558 0.604 0.276 0.254 0.338 0.546 0.233 
XGB 0.414 0.335 0.254 0.240 0.314 0.337 0.221 

Parkinsons 

KNN 0.188 0.210 0.205 0.144 0.198 0.217 0.131 
LR 0.207 0.229 0.223 0.159 0.219 0.244 0.140 
NN 0.206 0.228 0.223 0.158 0.217 0.239 0.141 
RF 0.188 0.216 0.207 0.139 0.206 0.234 0.130 
RT 0.207 0.228 0.222 0.157 0.220 0.246 0.140 

SVR 0.201 0.233 0.225 0.160 0.227 0.238 0.139 
XGB 0.169 0.180 0.176 0.124 0.173 0.188 0.115 

Comments 

KNN 0.442 0.526 0.407 0.333 0.362 0.400 0.324 
LR 0.455 0.471 0.415 0.343 0.372 0.408 0.333 
NN 0.443 0.517 0.462 0.329 0.360 0.427 0.318 
RF 0.401 0.459 0.362 0.311 0.338 0.360 0.303 
RT 0.425 0.496 0.382 0.320 0.346 0.382 0.311 

SVR 0.440 0.495 0.412 0.337 0.364 0.393 0.327 
XGB 0.399 0.462 0.360 0.310 0.336 0.358 0.301 

News Pop 

KNN 0.593 0.577 0.574 0.569 0.581 0.614 0.566 
LR 0.591 0.573 0.570 0.566 0.579 0.611 0.563 
NN 0.591 0.574 0.570 0.565 0.578 0.613 0.562 
RF 0.589 0.573 0.569 0.563 0.576 0.609 0.561 
RT 0.594 0.579 0.574 0.569 0.581 0.615 0.566 

SVR 0.604 0.586 0.584 0.575 0.591 0.621 0.575 
XGB 0.587 0.571 0.567 0.561 0.574 0.607 0.558 

Therefore, we take a broader view of the heuristic-based indicators by observing that some of 

them are calculated by aggregating (e.g., as variance) a certain set of discrepancies (errors), and 

we aggregated these discrepancies by averaging their absolute values to provide the best-effort 

estimation of an absolute prediction error.  In particular, only five (i.e., VarBag, VarA, VarP, 

AvgDiff, MSE) out of nine baseline IPR indicators could be converted to estimates of absolute 
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prediction errors8 (i.e., VarBag.AE, VarA.AE, VarP.AE, AvgDiff.AE, MSE.AE) and, thus, could 

be used for RMSE comparisons.  The other baselines are heuristics that provide a numeric index 

indicating the degree of prediction reliability but have no direct connection to prediction errors. 

As a result, in Table 9 we provide the comparison of reliability estimation performance in terms 

of RMSE among the four aforementioned baselines.  As with performance comparisons based on 

correlation coefficient, no single heuristic-based indicator dominates all others, but MSE.AE and 

VarA.AE provide best performance in 24 and 21 (out of 49) settings, respectively. 

Table 9. Reliability Estimation Performance of Heuristic-Based Methods (RMSE) 
(Average performance based on 30 runs; best result for each outcome prediction model on each data shown in bold.) 

 
                        Outcome    
Reliability    Prediction   
Estimation 

KNN LR NN RF RT SVR XGB 

Power Plant 

VarBag.AE 3.977 4.569 4.366 3.741 4.078 4.535 3.609 
VarA.AE 2.822 2.877 2.815 2.964 2.967 2.894 2.941 
VarP.AE 2.865 3.149 3.151 2.798 3.241 3.310 2.783 

AvgDiff.AE 3.301 3.345 3.446 3.072 3.358 3.391 3.260 
MSE.AE 2.641 2.646 2.791 3.038 2.858 2.778 2.993 

ISE 

VarBag.AE 2.090 2.087 2.087 2.088 2.089 1.534 2.088 
VarA.AE 1.021 0.936 0.961 1.020 1.091 1.022 1.019 
VarP.AE 1.185 1.003 1.033 1.099 1.297 1.191 1.081 

AvgDiff.AE 1.031 0.915 1.154 1.164 1.176 1.166 1.170 
MSE.AE 1.031 0.915 0.961 1.164 1.176 1.066 1.215 

Housing 

VarBag.AE 6.011 5.693 5.356 4.699 4.981 7.085 4.647 
VarA.AE 4.436 3.804 4.261 4.557 5.111 5.036 4.657 
VarP.AE 4.439 3.859 4.124 4.377 5.184 6.033 4.546 

AvgDiff.AE 4.858 4.026 4.095 4.408 5.263 5.773 4.274 
MSE.AE 4.536 3.833 3.690 3.953 4.564 5.239 4.238 

Bike Rental 

VarBag.AE 0.902 1.072 0.235 0.367 0.414 0.902 0.343 
VarA.AE 0.552 0.578 0.862 0.915 0.882 0.587 0.921 
VarP.AE 0.605 0.823 0.826 0.895 0.849 0.626 0.895 

AvgDiff.AE 0.758 0.809 0.695 0.739 0.738 0.716 0.734 
MSE.AE 0.542 0.584 0.282 0.302 0.361 0.538 0.278 

Parkinsons 

VarBag.AE 0.330 0.378 0.272 0.275 0.381 0.399 0.229 
VarA.AE 0.170 0.182 0.181 0.184 0.175 0.305 0.181 
VarP.AE 0.281 0.326 0.251 0.260 0.356 0.390 0.197 

AvgDiff.AE 0.718 0.702 0.702 0.913 0.718 0.692 0.184 
MSE.AE 0.173 0.187 0.210 0.136 0.173 0.398 0.131 

Comments 

VarBag.AE 0.701 0.863 0.536 0.504 0.525 0.608 0.493 
VarA.AE 0.446 0.452 0.451 0.491 0.496 0.631 0.495 
VarP.AE 0.521 0.598 0.449 0.459 0.473 0.515 0.462 

AvgDiff.AE 0.498 0.523 0.452 0.500 0.482 0.575 0.462 
MSE.AE 0.447 0.529 0.435 0.349 0.365 0.629 0.339 

News Pop 

VarBag.AE 0.883 0.872 0.903 0.859 0.878 0.882 0.849 
VarA.AE 0.601 0.582 0.579 0.574 0.586 0.841 0.571 
VarP.AE 0.808 0.744 0.665 0.687 0.751 0.840 0.658 

AvgDiff.AE 0.605 0.733 0.590 0.690 0.723 0.850 0.714 
MSE.AE 0.602 0.585 0.585 0.590 0.589 0.839 0.605 

 

Finally, we summarize the comparison of error estimation accuracy (RMSE) between ML-

based estimators and baselines in Table 10.  Similar to Table 7, we compare RMSE of the best 

                                                            
8 Formal calculations of these estimators can be found in Appendix B of the Online Supplement. 



Improving Reliability Estimation for Individual Numeric Predictions 

26 

baseline (BL) technique chosen among the four baselines discussed earlier and the best machine 

learning (ML) model of the seven machine learning techniques used earlier.  Significantly lower 

RMSEs from machine learning based methods are highlighted in bold and red, while significantly 

lower RMSEs from baselines are highlighted in bold and blue.  The results show that, in 40 out of 

49 (81.6%) predictive settings in our experiments, ML approaches constitute better IPR indicators, 

i.e., exhibit lower discrepancy with actual prediction errors as measured by RMSE.  Furthermore, 

in 35 out of 49 cases, best ML-based IPR indicators provide statistically significantly better 

performance than the heuristic approaches.  In contrast, only in 1 out of 49 settings, baselines were 

statistically significantly better than ML-based approaches.  Even on the simpler ISE dataset 

(where heuristic-based approaches demonstrated better correlation performance), with a more 

precise performance evaluation using RMSE no statistically significant performance differences 

are observed between ML-based approaches and baselines.  In aggregate, all the experimental 

results indicate substantial advantages of using machine learning techniques to estimate IPR. 

Table 10. Comparison of Reliability Estimation Performance (RMSE) 
(Average performance based on 30 runs; better result on each data set is shown in bold; red bold: machine learning technique is 

significantly better; blue bold: baseline is significantly better) 
Outcome 
prediction 
model   

KNN LR NN RF RT SVR XGB 

Prediction 
reliability 
estimator  

Best 
BL 

Best 
ML 

Best 
BL 

Best 
ML 

Best 
BL 

Best 
ML 

Best 
BL 

Best 
ML 

Best 
BL 

Best 
ML 

Best 
BL 

Best 
ML 

Best 
BL 

Best 
ML 

Power Plant 2.64 2.59 2.65 2.54*** 2.79 2.50*** 2.80 2.52*** 2.86 2.76** 2.78 2.60** 2.78 2.41*** 
ISE 1.02 1.01 0.92 0.91 0.96 0.95 1.02 1.01 1.09 1.12 1.02 1.03 1.02 1.02 
Housing 4.44 3.92* 3.80 3.48* 3.70 3.21* 3.95 3.20*** 4.56 3.91* 5.04 4.18*** 4.24 3.16*** 
Bike Rental 0.54 0.41*** 0.58 0.34*** 0.24*** 0.25 0.28 0.24*** 0.35 0.31*** 0.54 0.34*** 0.27 0.22*** 
Parkinsons 0.17 0.17 0.18 0.18 0.18 0.18 0.14 0.12* 0.17 0.17 0.31 0.19*** 0.13 0.12*** 
Comments 0.45 0.40*** 0.45 0.46 0.44 0.36*** 0.35 0.31*** 0.37 0.34*** 0.52 0.36*** 0.34 0.30*** 
News Pop 0.60 0.59*** 0.58 0.57*** 0.58 0.57*** 0.57 0.56*** 0.59 0.57*** 0.84 0.61*** 0.57 0.56*** 

                                                                                                                                                  *** p<0.001, ** p<0.01, * p<0.05 

5.    Conclusions 

Estimating individual prediction reliability (IPR) is important for both interpretation and 

application of predictive models and could be used for several purposes.  It provides extra 

information on the error of individual predictions and, thus, gives practitioners more confidence 

in making decisions.  Going beyond global prediction performance, it also gives a finer-grained 

evaluation even for presumably well-trained predictive models.  For example, even when the 
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outcome prediction model is relatively accurate in general, it may be important to know that, under 

some circumstances, some predictions objectively can be expected to be much worse than others.  

More generally, IPR can be used as part of the criteria for identifying most advantageous data 

points (e.g., points not only with most advantageous predicted outcomes, but also with most 

reliable predictions) among many candidates for subsequent actions or analysis. 

While the awareness of how reliable the specific individual predictions are can be important in 

many complex real-world numeric predictive modeling applications, this issue has been under-

explored in research literature.  In this study, we propose to estimate IPR for any given numerical 

outcome prediction model by using machine learning techniques.  Specifically, we reconceptualize 

the reliability estimation problem to a numeric prediction problem by proposing to use absolute 

prediction error as a simple IPR indicator due to its merits of higher interpretability and easy 

evaluation.  The study also describes a general-purpose framework for implementing the proposed 

reliability estimation approach, which takes can take advantage of any state-of-the-art machine 

learning methods to directly learn the relationships between input features of a given data point 

and absolute prediction errors (i.e., reliability indicators) obtained from the outcome prediction 

model.  In addition to providing an intuitive reliability indicator, the proposed machine-learning-

based approach is general-purpose (i.e., reliability estimation can be done for any outcome 

prediction model), reduces the need for statistical modeling assumptions that some distributional 

approaches require, and allows for more precise and informative performance evaluation.  

The general-purpose framework was also used in comprehensive computational experiments 

designed to test the proposed approach.  Specifically, we observed that machine learning methods 

can significantly improve IPR estimation, especially in more complex settings, i.e., on datasets 

that are larger both in the number of examples and input features.  We compared the proposed 

approach with numerous heuristic approaches used in prior work on seven different public datasets 

based on two different evaluation metrics.  The performance advantages of the proposed machine-

learning-based approach (over heuristic-based indicators) can be observed across different 

outcome prediction models, which further emphasizes the generality of the proposed approach.   
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In addition to introducing a machine-learning-based approach to estimating IPR and 

demonstrating its effectiveness, this study provides a number of directions for future research.  One 

such direction would be to understand the impact of dataset characteristics on the performance of 

simpler (heuristic-based) vs. more complex (machine-learning-based) reliability estimators.  

Another direction would be to explore the impact of different sources of prediction uncertainty, 

e.g., whether low reliability of an individual prediction is due to noisy data, model misfit, etc.  

Revisiting the possibilities of designing additional, more sophisticated and accurate reliability 

indicators of different types (indicator-based vs. distribution-based) and levels of applicability 

(general-purpose vs. building specifically on the strengths of some specific outcome prediction 

model) also represent important direction for follow-up investigations. Advancing our 

understanding of these issues should not only make reliability estimation increasingly relevant and 

valuable in real-world predictive modeling applications, but should also lead to deeper, more 

significant developments of reliability estimation theory. 
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