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Abstract

We analyze how dynamic moral hazard affects corporate investment. In our model,

the owners of a firm hold a real option to increase capital. They also employ a manager

who controls the firm’s productivity, but is subject to moral hazard. Although this

conflict reduces capital productivity, both over- and under-investment can occur. When

moral hazard is severe, the firm invests at a lower threshold in productivity than in

the first-best because investment is a substitute for effort. When the growth option is

large, the investment threshold is higher than in the first-best. We also discuss how

investment affects pay-performance sensitivity.
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1 Introduction

How firms make real investment decisions is a central topic in the study of corporate fi-

nance. As the investments of individual firms are typically lumpy and (partially) irreversible,

they are well described as real options. In the standard real options model, cash flows of a

firm are generated without any agency conflicts. In reality, cash flow growth often requires

managerial effort and when this effort is costly and unobservable, a moral hazard problem

arises. We investigate how this moral hazard problem affects investment timing decisions.

In a standard option model, the optimal time to invest is given by the moment at which

productivity reaches a threshold such that the benefit of investment equals the direct cost

plus the opportunity cost of investment. In our model, moral hazard affects these costs and

benefits. On the one hand, for a given level of productivity, moral hazard will decrease the

benefit of investment, raising the investment threshold. On the other hand, moral hazard

will decrease the opportunity cost of investing, lowering the investment threshold. We show

that when the moral hazard problem is severe or the size of the investment option is small,

the agency conflict decreases the opportunity cost more than the benefit and hence causes

the firm to investment at a lower threshold in productivity – a type of over-investment. In

contrast, when the moral hazard problem is moderate or the size of the investment option

is large, the opposite is true and the agency problem causes the firm to invest at a higher

threshold in productivity – a type of under-investment.

Empirical evidence indicates that firms often either under- or over-invest relative to

some first-best benchmark. For example, Bertrand and Mullainathan (2003) find that when

external governance becomes weaker due to the passage of anti-takeover legislation, firms

invest less in new plants. In contrast, Blanchard, Lopez-de Silanes, and Shleifer (1994)

document that when firms receive an exogenous cash windfall, they increase investment even
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when they have a low marginal Tobin’s Q. To explain these findings, two main themes have

developed in the theoretical literature on firm investment under agency conflicts. Grenadier

and Wang (2005), DeMarzo and Fishman (2007), and DeMarzo, Fishman, He, and Wang

(2012) argue that moral hazard in effort induces firms to curtail investment. While Jensen

(1986), Stulz (1990), Harris and Raviv (1990), Hart and Moore (1995), and Zwiebel (1996)

posit that firms over-invest because managers have a preference for “empire-building.” Along

similar lines, Roll (1986) and Bernardo and Welch (2001) show that over-investment may

occur because managers are over-confident. We show that moral hazard in effort can also

cause a form of over-investment; a firm plagued with a severe problem of incentivizing a

manager to work will exercise investment options at a lower threshold in productivity than

identical firms without a moral hazard problem.

To arrive at this result, we construct a continuous-time dynamic moral hazard model in

which an investor contracts a manager to run a firm. This manager can exert effort to increase

the growth rate of capital productivity. For example, the manager might need to work to

increase market share or improve operational efficiency. This effort is costly to the manager

and hidden to the investors so that the manager can potentially gain utility by exerting less

effort than would be optimal from the perspective of the investor. In order to incentivize

the manager to exert effort, the optimal contract will expose her to firm performance. This

exposure is costly because it reduces risk sharing between the manager and the investor. In

addition to increasing productivity by contracting with the manager, the investor has an

option to irreversibly increase the firm’s capital.

An important feature of our model is that capital and managerial effort are complements

in the firm’s production function. When the manager exerts more effort, productivity in-

creases at a faster rate, and capital becomes more productive. Similarly, when the firm has
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more capital, managerial effort leads to more growth in cash flow. We view this assumption

as consistent with an essential characteristic of a manager’s role within a firm, in that man-

agers manage, rather than replace, capital. However, the complementarity of managerial

effort and capital in the firm’s production function does not necessarily mean the firm will

invest less when the price of managerial effort rises. Indeed, if the price of managerial effort

rises due to an increase in the cost of incentives, the firm may invest more and decrease

incentives. In this sense, investment serves as a substitute for managerial effort as a means

of increasing cash flow. It is important to note that this substitution effect is not driven by

the manager’s preferences for investment. In fact, the manager in our model is indifferent

between any particular investment policy.

In addition to implications for the investment behavior of firms, our model also generates

results for the manager’s compensation and incentives. The power of incentives and pay-

performance sensitivity are closely related to the size of the growth opportunity. All else

equal, the productivity of managerial effort is increasing in the size of the growth option, and

hence so is the power of incentives as measured by the sensitivity of the manager’s wealth

to firm output, or output-based pay-performance sensitivity. However, increasing the size

of the growth option also changes the sensitivity of firm value to output. Consequently,

there is a wedge between value-based pay-performance sensitivity and incentives. Value-

based pay-performance sensitivity can actually decrease with the size of the growth option.

This result is a caveat for empirical work on the power of incentives. In the presence of

growth opportunities, there could be a negative relationship between actual incentives and

the sensitivity of the manager’s wealth to firm value (rather than output).

Our model further predicts that the manager’s pay-performance sensitivity can increase

or decrease at investment depending on the agency conflicts. When the moral hazard prob-
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lem is less severe, the optimal contract will call for the manager to exert maximal effort

before and after investment. As a result, pay-performance sensitivity, as measured by the

sensitivity of the manager’s wealth to firm value, will actually increase after investment. If,

however, the moral hazard problem is more severe, the optimal contract will call for the

manager to significantly decrease effort after investment, which causes a decrease in pay-

performance sensitivity. An interesting feature of the results of our model is that the effect

of investment on pay-performance sensitivity and the optimal investment policy are closely

linked. On the one hand, when investment leads to an increase in pay-performance sensi-

tivity, it must also be the case that an increase the severity of the moral hazard problem

raises the investment threshold. On the other hand, when investment leads to a decrease in

pay-performance sensitivity an increase the severity of the moral hazard problem lowers the

investment threshold.

It is useful to illustrate the model in terms of some real world examples. First, consider

a startup firm choosing the optimal time to significantly increase production (for example,

during a venture capital funding round or IPO). In this case, the initial capital stock of the

firm is small and, as a consequence, managerial effort is relatively cheap. In other words,

the start-up manager’s moral hazard problem prior to the increase in capital is mild. After

increasing capital, the manager’s moral hazard becomes more pronounced because she has

a larger firm to operate. As a result, increasing the cost of incentives decreases the present

value of the added cash flow from the additional capital more than the value of the small firm,

causing the firm to wait until productivity has reached a higher threshold before increasing

capital. Thus, our model predicts that startup firms with more severe moral hazard problems

delay significant expansions. This prediction applies to late stages of venture funding and

IPOs.
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In the preceding example, the size of the investment option is large relative to the initial

capital stock of the firm, thus moral hazard raises the investment threshold. Now consider

an example in which the investment opportunity is small relative to the capital stock of

the firm. For instance, consider a large mature firm choosing the optimal time to make an

acquisition of a small target. In this setting, the acquisition allows the large firm to grow

cash flows without providing costly incentives for additional managerial effort. This in turn

implies that increasing the cost of incentives has a larger negative effect on the acquiring firm

prior to the acquisition than on the merged firm and thus the acquisition. A prediction of the

model is then that acquiring firms with more severe agency problems undertake acquisitions

at lower thresholds in productivity than they would without the moral hazard problem.

To gain a greater understanding of the forces at work in generating both over- and under-

investment, we generalize the model to allow for many different types of investment. The

existing models of moral hazard and investment largely consider contracts that implement

effort at the first-best level and show that moral hazard decreases or delays investment (e.g.,

Grenadier and Wang (2005); DeMarzo and Fishman (2007); Biais, Mariotti, Rochet, and

Villeneuve (2010); DeMarzo et al. (2012)). We consider a model in the spirit of DeMarzo

et al. (2012), i.e., a neoclassical model of investment, in which we allow optimal effort to

deviate from the first best. In this case, the marginal value of capital is a sufficient statistic for

investment and always decreases with agency problems. Thus, investment decreases with the

severity of the moral hazard problem even when effort is flexible. A similar argument applies

to a setting with partially irreversible but perfectly divisible investment. When we enrich the

model so that the investment technology implies some lumpiness, as is often inherently the

case with firm level investment as argued by Doms and Dunne (1998), Caballero and Engel

(1999), and Cooper, Haltiwanger, and Power (1999) among others, optimal investment is
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determined by the average value of new capital. Unlike the marginal value of capital, the

average value of capital, and hence the effect of moral hazard on investment, increases or

decreases with the severity of the agency problem depending on parameters.

This paper contributes to the growing literature on the intersection of dynamic agency

conflicts and investment under uncertainty. On the dynamic contracting side, Holmstrom

and Milgrom (1987) and Spear and Srivastava (1987) introduced the notion that providing

agents with incentives may take place over many periods. More recently, there has been

a renewed interest in dynamic contracting. Biais, Mariotti, Plantin, and Rochet (2007)

analyze a rich discrete-time model of a dynamic agency conflict and its continuous-time

limit. Much subsequent work builds on the continuous-time approach of Sannikov (2008)

to characterize optimal dynamic contracts in a variety of settings. For example, DeMarzo

and Sannikov (2006) consider the design of corporate securities when the manager may

divert cash. Piskorski and Tchistyi (2010, 2011) derive the optimal design of mortgages

when lenders face stochastic interest rates or house prices are stochastic. He (2009) studies

optimal executive compensation when firm size follows a geometric Brownian motion. Most

closely related to our model of the dynamic agency problem is the capital structure model

of He (2011), which allows for a risk-averse agent.

On the investment side, DeMarzo and Fishman (2007), Biais et al. (2010), and DeMarzo

et al. (2012) consider dynamic moral hazard with investment. One important distinction

between our paper and both Biais et al. (2010) and DeMarzo et al. (2012) is that their

setups yield first-best effort even under moral hazard, and as such the substitutability of

effort and investment is not present in their models. As consequence moral hazard curtails

investment in these models. Szydlowski (2013) studies a capital budgeting problem in which

a firm employs a manager who can run multiple projects. In his model, investors sometimes
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direct the manager to take on negative NPV projects as less inefficient form of punishment

than termination.1

The investment technology we consider is based on the classic real options models of

Brennan and Schwartz (1985) and McDonald and Siegel (1986). Dixit and Pindyck (1994)

offer a comprehensive guide to the real options literature. Two papers that use a similar

model to ours to evaluate the effects of agency problems on real options investment are

Grenadier and Wang (2005) and Philippon and Sannikov (2007). Grenadier and Wang

consider a real option exercise problem in the presence of a static moral hazard problem

and find that when there is an additional adverse selection over managerial ability, real

option exercise is delayed. We consider a dynamic moral hazard problem and find that

the real option exercise threshold may either increase or decrease. Philippon and Sannikov

consider real options in a dynamic moral hazard setting similar to ours. In their model,

cash flows follow an i.i.d process, and as a result, there is no real option problem under

the first-best. That is, the firm always immediately invests in the first-best case, as the

investment is assumed to be positive net present value. Introducing the agency problem

in their setting induces a valuable option to wait to invest until the agent has sufficiently

high continuation utility and the firm is very unlikely to be liquidated. Consequently, moral

hazard can only delay investment in their setting. In contrast, we model cash flows that

grow in expectation and as a consequence optimal managerial effort depends on the level of

cash flows and investment and effort may serve as substitutes. This difference means that in

our model, unlike in that of Philippon and Sannikov, moral hazard can both raise and lower

the investment threshold.

1Hirshleifer and Suh (1992) contains a similar result in a static setting. They show that motivating
managers to exert effort can also provide them with incentives to take on risky projects that shareholders
would reject in the first-best.
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There are also a number of papers that consider the effect different type of agency conflict,

asymmetric information, on option exercise. For example, Grenadier and Malenko (2011),

Morellec and Schürhoff (2011), and Bustamante (2011), and Bouvard (2014) all study how

the time of real option exercise can serve as signal of private information.

The rest of the paper proceeds as follows. Section 2 introduces our model of moral hazard

and real options. Section 3 provides the optimal contract and investment policy. Section

4 discusses the implications of the moral hazard problem for investment, compensation,

and incentives. Section 5 considers a generalization of our basic model to build are greater

understanding of the source of the effect of moral hazard on investment. Section 6 concludes.

2 The Model

In this section we present our model of dynamic moral hazard and real options. It re-

sembles that of He (2011) in that we consider an agent (the firm’s manager) with constant

absolute risk-averse (CARA) preferences who can affect the productivity growth of the firm

by exerting costly hidden effort. In addition, we endow the firm with an irreversible invest-

ment opportunity.

2.1 Technology and Preferences

Time is continuous, infinite, and indexed by t. The risk-free rate is r. A risk-neutral

investor employs a risk-averse manager to operate a firm. Firm cash flows are XtKtdt, where

Kt is the level of capital at time t and Xt is a productivity shock with dynamics given by:

dXt = atµXtdt+ σXtdZt,
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where at ∈ [0, 1] is the manager’s effort and Zt is a standard Brownian motion. Constants µ

and σ represent the (net of effort) drift and volatility of the productivity process. Managerial

effort here corresponds to any action that increases the growth rate — not the current level

— of productivity. For example, the manager may have to exert effort to increase market

share or the operational efficiency of the firm. The firm starts with capital K0 = k > 0

and has a one time expansion option to increase capital to k̂ at cost p. In the notation that

follows, a hat indicates a post investment quantity.

The manager has CARA preferences over consumption. She values a stream of consump-

tion {ct} and effort {at} as:

E

[∫ ∞
0

e−rtu(ct, at)dt|{a}
]
,

where u(c, a) = −e−γ(c−XKg(a))/γ is the manager’s instantaneous utility for consumption

and effort and XKg(a) is the manager’s cost of effort in units of consumption. We assume

the manager’s normalized cost of effort g(a) is continuously differentiable, increasing, and

convex, g(a) ∈ C1([0, 1]), g′(a) ≥ 0, g′′(a) > 0, and g′(0) = 0. When we consider specific

parameterizations of the model, we assume g(a) is a simple quadratic function. In addition,

the manager may save at the risk-free rate r. We assume that the manager begins with zero

savings. The manager’s savings and effort are unobservable to the investor.

The specification for the cost of effort, XKg(a), captures the notion that it is more

costly for the manager to increase productivity and cash flows when the firm is larger or

more productive. For example, suppose the firm operates factories and that the real option

is to build an additional one. On the one hand, the process Xt could represent the volume

of goods produced per factory. In this case, managerial effort represents the implementation
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of a process innovation. While the same such innovation can make identical factories more

productive, so that the amount of engineering effort required should not depend on the

number of factories run by the firm, implementing that innovation requires the manager to

spend a certain amount of time for each factory. Thus, increasing the per factory output of

two factories is more costly to the manager than of a single factory. On the other hand, the

volume of goods produced per factory could be fixed and Xt could represent the profit per

unit. The manager could increase profit margins by, for example, increasing demand through

marketing. In this case, our specification posits that it is more costly for the manager to

increase the profit per unit when the firm produces more units.

2.2 Contracts

A contract consists of a compensation rule, a recommended effort level, and an investment

policy denoted Π = ({ct, at}t≥0, τ). The compensation rule {ct} and recommended effort {at}

are stochastic processes adapted to the filtration of public information, Ft. For simplicity, we

drop the subscript t whenever we are referring to the entire process of either consumption or

effort. The investment policy τ is Ft-stopping time, which dictates when the firm exercises

the option to increase capital. We assume that the investors can directly control investment

and will pay the cost of investment. Note that the time t cash flow to the investor under a

contract Π is given by:

dDt = XtKtdt− ctdt− I(t = τ)p,

where Dt denotes cumulative cash flow to the investor.

Since the agent can privately save, the compensation, ct, specified by the contract need

not be equal to the manager’s time t consumption. Denote the manager’s accumulated
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savings by St and her actual time t consumption and effort by c̃t and ãt, respectively. Given

a contract Π, the manager chooses a consumption and effort plan to maximize her utility

from the contract:

W (Π) = max
{c̃,ã}

E

[∫ ∞
0

−1

γ
e−γ(c̃t−XtKtg(ãt))−rtdt

]
(1)

such that dSt = rStdt+ (ct − c̃t)dt, S0 = 0

dXt = ãtµXtdt+ σXtdZt

Kt = k + (k̂ − k)I(t ≥ τ).

The dynamics of savings St reflect that the difference between compensation ct and con-

sumption c̃t goes to increase (or decrease) savings while the balance grows at the risk-free

rate r. In addition to the dynamics for St given above, we impose the standard transver-

sality condition on the consumption process. The dynamics of productivity, Xt, reflect that

the expected growth rate of productivity depends on the actual effort, ãt, of the manager.

Finally, the time t capital stock of the firm depends on the investment policy set forth in

the contract.

Given an initial outside option of the manager w0, the investor then solves the problem:

B(X0, w0) = max
{c,a},τ

E

[∫ ∞
0

e−rtdDt

]
(2)

such that dXt = ãtµXtdt+ σXtdZt

Kt = k + (k̂ − k)I(t ≥ τ)

w0 ≤ E({c̃,ã},τ)
[∫ ∞

0

−1

γ
e−γ(c̃t−XtKtg(ãt)−rtdt

]
,

where {c̃, ã} solves problem (1).
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We call a contract Π incentive compatible and zero savings if the solutions {c̃t} and {ãt}

to Problem (1) are equal to the payment rule and recommended effort plan given in the

contract. As is standard in the literature, we focus on contracts in which the solution to

problem (1) is to follow the recommended action level and maintain zero savings by virtue

of the following revelation-principle result.

Lemma 1. For an arbitrary contract Π̃, there is an incentive compatible and zero-savings

contract Π that delivers at least as much value to the investor.

3 Solution

The solution follows the now standard martingale representation approach developed by

Sannikov (2008). The first step is to give a necessary and sufficient condition for a contract

to implement zero savings. We then represent the dynamics of the manager’s continuation

utility (the expected present value of her entire path of consumption) as the sum of a deter-

ministic drift component and some exposure to the unexpected part of productivity growth

shocks via the martingale representation theorem. With these dynamics in hand, we charac-

terize the incentive compatibility condition as a restriction on the dynamics of continuation

utility. Given the dynamics of continuation utility and productivity implied by incentive

compatibility, we can represent the investor’s optimal contracting problem as a dynamic

program resulting in a system of ordinary differential equations (ODEs) for investor value

together with boundary conditions that determine the investment policy. In the Appendix,

we provide verification that the solution to this system of ODEs indeed achieves the optimum

investor value.
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3.1 The No-savings Condition

In this subsection, we follow He (2011) to characterize a necessary and sufficient condition

for the manager to choose consumption equal to her compensation and thus maintain zero

savings. In words, the condition states that the manager’s marginal utility for consumption

is equal to her marginal utility for savings. To determine the manager’s marginal utility for

an additional unit of savings, we first consider the impact of an increase in savings on her

optimal consumption and effort plan going forward. Suppose {c̃, ã} solves problem (1) for

a given contract that implements zero savings. Now suppose we simply endow the manager

with savings S > 0 at some time t > 0. How would her consumption and effort plan

respond? Due to the absence of wealth affects implied by the manager’s CARA preferences,

the optimal consumption plan for s ≥ t would be just c̃s + rS, while the effort plan would

remain unchanged. Thus, an increase in savings from zero to S increases the manager’s

utility flow by a factor of e−γrS forever.2 To make this intuition formal, it is useful to define

the manager’s continuation utility for a given contract when following the recommended

effort policy and accumulating savings S up to time t,

Wt(Π, {Xs, Ks}s≤t;S) = max
{c̃t,ãt}

E

[∫ ∞
t

−1

γ
e−γ(c̃s−XsKsg(ãt))−r(s−t)ds|{Xs, Ks}

]
(3)

such that dSs = rSsds+ (c̃s − cs)ds St = S

dXs = ãsµXsds+ σXsdZs

Ks = k + (k̂ − k)I(s ≥ τ).

The definition of continuation utility and the intuition given above lead to Lemma 2.

2Since utility is always negative, the factor e−γrS < 1 represents an increase in utility.
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Lemma 2 (He (2011)). Let Wt(Π, {Xs, Ks}s≤t;S) be the solution to problem (3), then:

Wt(Π, {Xs, Ks}s≤t;S) = e−γrSWt(Π, {Xs, Ks}s≤t; 0). (4)

Equation (4) allows us to determine the manager’s marginal utility for savings under a

contract that implements zero savings:

∂

∂S
Wt(Π, {Xs, Ks}s≤t;S)

∣∣
S=0

= −γrWt(Π, {Xs, Ks}s≤t; 0). (5)

Since we focus on zero-savings contracts, from now on we drop the arguments and refer

simply to continuation utility Wt. For the manager to maintain zero savings, her marginal

utility of consumption must be equal to her marginal utility of savings:

uc(ct, at) = −γrWt

which, together with the CARA form of the utility function, implies the convenient no-

savings condition:

u(ct, at) = rWt. (6)

Thus, for a contract to implement zero savings, the manager’s flow of utility from the contract

must be equal to the risk-free rate r times her continuation utility. This is intuitive; in order

for the manager to have no incentive to save, the contrast must deliver the risk-free yield

of her continuation utility in units of utility flow. For the remainder of the paper, we only

consider contracts that satisfy the no-savings condition given by Equation (6).
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3.2 Incentive Compatibility

Now that we have characterized a necessary and sufficient condition for a contract to

implement zero savings, we turn our attention to the incentive compatibility condition. For

an arbitrary incentive compatible and zero-savings contract, consider the following process:

Ft = Et

[∫ ∞
0

e−rsu(cs, as)ds

]
.

This process is clearly a martingale with respect to the filtration of public information

Ft, thus the martingale representation theorem implies that there exists a progressively

measurable process βt such that:

dFt = βt(−γrWt)e
−rt (dXt − atµXtdt) . (7)

Now note that that Ft is related to the manager’s continuation utility Wt (under the recom-

mended consumption and effort plan) by:

dWt = (rWt − u(ct, at))dt+ ertdFt. (8)

Combining the no-savings condition (6) with Equations (7) and (8) gives the following dy-

namics for the manager’s continuation utility:

dWt = βt(−γrWt) (dXt − atµXtdt) . (9)

The process βt is the sensitivity of the manager’s continuation utility to unexpected shocks

to the firm’s productivity. Since a deviation from the recommended effort policy results
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in an unexpected (from the investor’s perspective) shock to productivity, βt measures the

manager’s incentives to deviate from the contract’s recommended effort policy.

For a given contract, Problem (1) implies that the manager chooses her current effort

to maximize the sum of her instantaneous utility, u(ct, at)dt, and the expected change in

her continuation utility, Wt. The manager’s expected change in continuation utility from

deviating from the recommended effort policy at to ãt is:

E[dWt|ã] = βt(−γrWt)(ã− at)µXtdt.

Thus, incentive compatibility requires that:

at = arg max
ã

{u(ct, ã) + βt(−γrWt)(ã− at)µXt} . (10)

Taking a first order condition for Problem (10) yields:

ua(ct, at) + βt(−γrWt)µXt = 0.

It is straightforward to show that this is a necessary and sufficient condition for the manager’s

optimal effort plan. Note that ua(ct, at) = −uc(ct, at)XtKtg
′(a) and recall that the no-savings

condition is uc(ct, at) = (−γrWt), so that we can solve the first order condition above to

find:

βt =
1

µ
Ktg

′(at). (11)

Intuitively, the sensitivity, βt, that is required for incentive compatibility is the agent’s

marginal cost of effort, XtKtg
′(at), scaled by the marginal impact of effort on output, µXt.

Lemma 3 characterizes incentive-compatible no-savings contracts.
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Lemma 3. A contract is incentive compatible and has no savings if and only if the solution

Wt to Problem (3) has dynamics given by Equation (9), where βt is defined by Equation (11).

It is useful to represent the agent’s continuation utility, Wt, in terms of its certainty

equivalent, Vt = −1/(γr) ln(−γrWt). Applying Ito’s lemma to (9) and combining it with

Lemma 3 yields that the dynamics of Vt under an incentive-compatible no-savings contract

are given by:

dVt =
1

2
γr

(
σ

µ
XtKtg

′(at)

)2

dt+
σ

µ
XtKtg

′(at)dZt. (12)

The drift term in Equation (12) comes from the difference in risk aversion between the

investor and the manager. Since the manager is risk averse, the certainty equivalent of W

must have additional drift for each additional unit of volatility. Since W is a martingale, the

drift term in V is entirely due to this effect. This positive drift will show up in the investor’s

Hamilton-Jacobi-Bellman (HJB) equation as the cost of providing incentives.

3.3 First Best

As a benchmark, we first solve the model assuming effort is observable so that there are

no agency conflicts. In this case, the investor simply pays the manager her cost of effort.

Additionally, if the agent’s promised utility is W , its certainty equivalent, V , can be paid

out immediately. Thus, the investor’s first-best value function, BFB, depends linearly on

the certainly equivalent of W , or BFB(X, V ) = bFB(X)− V , for some function bFB(X). We

refer to this function as the investor’s gross value to indicate that it is equal to the investor’s

value gross of the certainty equivalent owed to the manager. To solve the for the investor’s

first-best value function, we simply maximize the value of cash flows from the firm less the

(direct) cost of effort. The investor’s post-investment gross value function, b̂FB, then solves
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the following HJB equation:

rb̂FB = max
a∈[0,1]

{
Xk̂(1− g(a)) + aµXb̂′FB +

1

2
σ2X2b̂′′FB

}
. (13)

Recall that a hat refers to a post-investment quantity. The first two terms in the brackets in

Equation (13) are instantaneous cash flows and the cost of effort, respectively, and the other

two terms reflect the impact of the dynamics of X on the value function. As all flows are

proportional to X, the solution is also expected to be linear in X and as a result the optimal

effort level given will be constant in X. We can solve Equation (13) to find the investor’s

first-best gross value function:

b̂FB(X) =
1− g(âFB)

r − âFBµ
Xk̂.

Before investment, the firm’s cash flows and the cost of effort are proportional to the

lower level of capital, k. The HJB equation for the pre-investment gross firm value, bFB(X),

is thus:

rbFB = max
a∈[0,1]

{
Xk(1− g(a)) + aµXb′FB +

1

2
σ2X2b′′FB

}
. (14)

Note that b′FB is not constant due to the curvature implied by the option to invest. Conse-

quently, optimal effort prior to investment, aFB, will not necessarily be constant in X. To

solve the first-best gross firm value prior to investment, we must identify a set of boundary

conditions in addition to the HJB equation. At a sufficiently high level of X, denoted by

XFB, the firm pays the investment cost p to increase the capital to k̂. The firm value at
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XFB must satisfy the usual value-matching and smooth-pasting conditions:

bFB(XFB) = b̂FB(XFB)− p,

b′FB(XFB) = b̂′FB(XFB).

Additionally, the firm value is equal to zero as X reaches its absorbing state of zero:

bFB(0) = 0.

3.4 Optimal Contracting and Investment

We now present a heuristic derivation of the optimal contract in the full moral hazard

case. First we characterize the payment rule to the manager. Recall that the no-savings

condition in Equation (6) provides a link between instantaneous utility and continuation

utility. This allows us to express the manager’s compensation as a function of the current

state of the firm (Xt, Kt), the recommended effort level at, and the certainty equivalent of

her continuation utility Wt as follows:

ct = XtKtg(at) + rVt. (15)

The first term in Equation (15) is the manager’s cost of effort in consumption units, while the

second is the risk-free rate times the certainty equivalent of her continuation utility. In other

words, the contract pays the manager her cost of effort plus the yield on her continuation

utility.

The next task is to calculate the value of the firm to the investor before and after the
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investment. This amounts to expressing the investor’s optimization problem given in (2) as

a system of HJB equations. First, we consider the investor’s problem post investment. An

application of Ito’s formula plus the dynamics of Xt and Vt yields the following HJB equation

for the value function B̂ post investment:

rB̂ = max
a∈[0,1]

{
Xk̂(1− g(a))− rV + aµXB̂X +

1

2
σ2X2B̂XX

+
1

2
γr

(
σ

µ
Xtk̂g

′(a)

)2

B̂V +
σ2

µ
X2k̂g′(a)B̂XV +

1

2

(
σ

µ
Xk̂g′(a)

)2

B̂V V

}
. (16)

We guess that B̂(X, V ) = b̂(X)−V . Again, we refer to b̂(X) as the investor’s gross firm value

as it measures the investor’s valuation of the firm gross of the certainty equivalent promised

to the manager. Then B̂V = −1, B̂XV = 0, and B̂V V = 0. This leaves the following HJB

equation for b̂(X):

rb̂ = max
a∈[0,1]

{
ĥ(X, a) + aµXb̂′ +

1

2
σ2X2b̂′′

}
, (17)

where:

ĥ(X, a) = Xk̂(1− g(a))− 1

2
γr

(
σ

µ
Xk̂g′(a)

)2

(18)

is the total cash flow to the firm net of effort and incentive costs. It is instructive to note

the difference between Equations (13) and (17). In the first-best case, the investor only

needs to compensate the manager for her cost of effort, while in the moral hazard case, the

investor must also bear incentive costs given by the second term in ĥ. These are costs for

the risk-neutral investor of providing incentives to a risk-averse agent. The incentive cost of

effort is proportional to the square of the level of cash flows, Xk̂, and thus the value function
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b̂(X) is no longer linear in X as in the first-best case. It is left to specify the boundary

conditions that determine a solution to ODE (17). The first boundary condition is that the

firm, gross of the consumption claim to the agent, must be valueless when productivity is

zero as this is an absorbing state:

b̂(0) = 0. (19)

The second boundary condition obtains by noting that the cost of positive effort goes to

infinity as X goes to infinity, and as a result the optimal effort goes to zero. Thus, the value

function must approach a linear function consistent with zero effort as X goes to infinity:

lim
X→∞

∣∣∣∣∣b̂′(X)− k̂

r

∣∣∣∣∣ = 0. (20)

We now turn to the pre-investment firm value B. We again guess that B(X, V ) =

b(X)− V , where b is the investor’s firm value gross of the certainty equivalent promised to

the manager. A similar argument to the above leads to the HJB equation for b:

rb = max
a∈[0,1]

{
h(X, a) + aµXb′ +

1

2
σ2X2b′′

}
, (21)

where h(X, a) is as ĥ(X, a) in Equation (18) with k̂ replaced by k. Equation (21) is similar

to the post-investment ODE given by Equation (17) but for the level of employed capital.

A solution to ODE (21) is determined by investment-specific boundary conditions. As in

the first-best case, the optimal investment policy will be a threshold X in productivity

at which the investor will increase the capital of the firm. Again the value-matching and
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smooth-pasting conditions apply3:

b(X) = b̂(X)− p (22)

b′(X) = b̂′(X). (23)

Additionally, as X reaches zero, the gross firm value is zero:

b(0) = 0. (24)

We collect our results on the optimal contract in Proposition 1.

Proposition 1. The optimal contract is given by the payment rule (15) and investment time

τ = min{t : Xt ≥ X} such that the investor’s gross firm value before and after investment,

b and b̂, solve (21)-(24) and (17)-(20).

Note that our choice to endow the manager with CARA preferences and the ability to

privately save allows us to additively separate the dependence of the investor’s value on

productivity Xt and the certainty equivalent of the manager’s continuation utility Vt. As a

result, the investment problem reduces to the ODE in (21)-(24). If we had considered a risk-

neutral manager, the resulting investment problem would be substantially more complex,

with two state variables and the optimal investment threshold as a curve in (Xt,Wt) space.

3These conditions derive from the usual value-matching and smooth-pasting conditions on the investor’s
value function B: B(X,V ) = B̂(X,V )− p and BX(X,V ) = B̂X(X,V ).
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4 Implications for Investment, Compensation, and In-

centives

In this section, we discuss the implications of the optimal contract characterized in Propo-

sition 1 for investment, compensation, and incentives. In numerical illustrations of these

implications, we use particular parameterizations of our model and the following function

form for the normalized cost of effort:

g(a) =
1

2
θa2. (25)

Following He (2011), we use a risk-free rate of r = 5% and a standard deviation of produc-

tivity growth of σ = 0.25. We choose a slightly lower upper bound on the growth rate of

productivity of µ = 4%, which reflects the that in our model the growth rate of productivity

is bounded below by 0 due to the non-negativity of effort and the multiplicative specifica-

tion for the effect of effort on productivity, while some calibrations (e.g., Goldstein, Ju, and

Leland (2001)) find negative average growth rates. The parameter of risk aversion γ is set

equal to 1. Investment increases capital from k = 0.5 to k̂ = 1 at cost 10 per unit of new

capital. The cost of effort parameter is θ = 1. We choose parameters for the cost of effort

and investment so that the two are close substitutes.

4.1 Investment and Moral Hazard

In contrast to the extant literature, we find that moral hazard can increase investment.

The key intuition is that effort and investment are (imperfect) substitutes.4 One period

4The substitutability of effort and investment was first emphasized in Holmstrom and Weiss (1985).
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Figure 1. The investment threshold X as a function of the manager’s risk aversion.

of high effort leads to one period of high expected cash flows growth. In a similar way,

an investment in additional capital increases cash flows. A key difference between these

methods of increasing cash flow growth is that effort is unobservable while investment is

contractable. Thus, the relative cost of these two technologies depends on the severity of

the moral hazard problem. Intuitively, when the moral hazard problem is severe, investment

is a relatively cheap way of growing cash flows. Figures 1-3 show the investment threshold

for the moral hazard and first-best cases over a range of parameter values. When the cost

of effort θ, the manager’s risk aversion γ, or the size of the investment option is large, the

moral hazard problem is less severe. In this case, higher effort is not too costly to implement

and the investment threshold is higher for the moral hazard case than for the first best. In

contrast, when any of these parameters are high, implementing high effort is costly relative

to investment and the investment threshold for the moral hazard case is below that of the

first-best case.
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Figure 2. The investment threshold X as a function of the manager’s cost of effort. For
low costs of effort, the investment threshold in the moral hazard setting is above that of the
first best. For high costs of effort, the relationship is reversed.
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Figure 3. The investment threshold X as a function of the size of investment.
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In order to make this intuition precise, we examine the comparative static properties of

firm value before and after investment. Specifically, we consider the following comparative

static:

∂

∂γ

[
b̂(X)− b(X)

]
for X close to X. If this comparative static is negative, then an increase in γ decreases the

difference between the firm’s value before and after investment. In other words, investment

is less attractive and the investment threshold will increase. However, when this comparative

static is positive, an increase in γ increases the profitability of investment and the investment

threshold decreases. To compute the derivative above, we apply the method of comparative

statics developed by DeMarzo and Sannikov (2006). The details of this derivation are given

in the Appendix. The main intuition is that for X very close to the investment boundary,

the difference between the pre- and post-investment firm net of the cost of new capital is

essentially just the difference between cash flows over the final instant before investment.

We can then differentiate cash flow with respect to γ to get:

∂

∂γ

[
b̂(X)− b(X)

]
≈ 1

2
r

(
σ

µ
θX

)2

((kg′(a∗))2 − (k̂g′(â∗))2). (26)

When the right-hand side of Equation (26) is positive, a small increase in the manager’s

risk aversion γ leads to an increase in the difference between b̂(X) and b(X). By the value-

matching condition, this means that the investment threshold must decrease. We formally

state this result in Proposition 2.

Proposition 2. The investment threshold X decreases in γ if the marginal cost of effort at
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the optimum drops by a sufficiently large amount at investment, i.e., if

k̂g′(â∗(X)) ≤ kg′(a∗(X)), (27)

otherwise it increases.

Proposition 2 highlights one of our main findings: increased moral hazed problems do not

necessarily lead to decreased investment. In fact, in our model, an increase in managerial

risk aversion can lead to a decrease in the investment threshold. This result is driven by

the fact that although moral hazard decreases the value of the firm after investment, it also

decreases the value of not investing. Since the investment decision is driven by the difference

between firm value with and without increased capital, in other words the average value

of new capital, moral hazard can decrease the investment threshold. The intuition is that

when the moral hazard problem becomes more severe, the investors optimally demand less

managerial effort when the firm employs more capital. As a result, the sensitivity of firm

value to the incentive cost of effort is less negative for the larger firm.

In light of the condition given in Proposition 2, we now return to a discussion of Figures

1-3. In Panel A of Figure 1, the investment threshold decreases in γ once γ is large. In this

case, a larger γ implies a higher cost of incentives, leading to a larger decrease in effort post

investment. Similar intuition applies to Figure 2 with the cost of effort coefficient θ. In Panel

B of Figure 1, θ is large enough so that any increase in γ leads to a larger reduction in effort

post investment and the investment threshold is decreasing in γ for all γ. Finally, when the

investment opportunity leads to a the large change in capital, as in the right side of Figure

3, the marginal cost of incentives increases post investment, and Proposition 2 implies that

the investment threshold for the agency case will be above that of first-best.
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The preceding discussion shows that depending on parameter values, investment under

moral hazard can occur at lower or higher levels of productivity compared to the first-best

case. Given that the dynamics of the firm under moral hazard and first-best are different,

a lower threshold does not necessarily lead to earlier investment when measured in time.

Similarly, a higher threshold does not necessarily mean a later investment. To analyze the

effect of the agency conflicts on the timing of investment, we now analyze the expected time

to invest. Let τ ∗ denote the stopping time to reach the optimal investment threshold X

under the dynamics of productivity X with equilibrium effort a∗. Then the expected time

to invest starting from X0 is defined as E[τ ∗ |X0 ].

Figure 4 presents a comparison of the expect time to invest under moral hazard and

the first-best case over a range of the manager’s risk aversion, γ, and the initial level of

productivity, X0. In the regions labeled D, investment is delayed by moral hazard; in the

regions labeled A, investment is accelerated. Whenever the threshold on productivity under

moral hazard is above the first-best threshold, i.e., for γ lower than 0.7, the investment is

delayed by moral hazard. Investment is always delayed in this region because the optimal

effort under moral hazard is lower than under the first-best leading to lower expected pro-

ductivity growth. In the region with high γ, investment under moral hazard occurs at a

lower threshold than under the first-best. As a result, investment is accelerated under moral

hazard if the starting productivity X0 is not too low. However, if X0 is sufficiently low,

then the decreased optimal effort under moral hazard dominates the lower threshold, and

investment is delayed. Similar qualitative results obtain for other varying parameter values,

such as θ or k̂/k.

The characteristics of the expected time to investment confirm our interpretation of the

investment threshold as a measure of over- or under-investment. When the threshold is above

28



Investment Timing vs. the Manager’s Risk Aversion

X
0

γ

A

A
D

D

X

XFB

0 1 2 3
1

1.5

2

2.5

Figure 4. The expected time to invest relative to the first-best expected time to invest as
a function of the manager’s risk aversion γ and initial level of productivity X0. D denotes
delayed and A accelerated investment relative to the first-best.

that of the first-best, what we call under-investment, the firm also under-invests in terms

of timing. When the threshold is below that of the first-best, what we call over-investment,

the firm over-invests in terms of timing for higher levels of initial productivity.

4.2 Incentives and Pay-Performance Sensitivity

In this section, we consider the implications of real options for managerial incentives.

Specifically, we examine the effect of the presence and size of growth options on the mea-

surement of pay-performance sensitivity (PPS) as well its behavior at the moment the firm

exercises the growth option. While there has been a robust empirical investigation into the

relation between PPS and firm size, see Murphy (1999) and Frydman and Jenter (2010)

for a review of this literature, there has been less attention paid to the relation between

29



endogenous investment and PPS. Our results provide guidance for future empirical work on

this direction.

The manager’s compensation and incentives depend on the level of effort stipulated by

the optimal contract. Therefore, we begin our inquiry with a discussion of managerial effort.

For interior solutions of effort a, we use the HJB equations (17) and (21) to characterize the

optimal effort policies a∗(X) and â∗(X) by the first-order conditions:

g′(a∗(X)) =
µ3b′(X)

k(µ2 + γrσ2Xkg′′(a∗(X))
, (28)

g′(â∗(X)) =
µ3b̂′(X)

k̂(µ2 + γrσ2Xk̂g′′(â∗(X))
. (29)

In the following analysis, we restrict our attention to parameter values such that the maxima

a∗(X) and â∗(X) satisfy the second-order conditions.5 Optimal effort is time-varying with

productivity Xt, depends on the primitive parameters of the model, and on the presence of

growth opportunities. Figure 5 illustrates some of the key properties of the optimal effort for

our baseline parameter values. Efforts in young (pre-investment), mature (post-investment),

and small no-growth (permanently small) firms are plotted at two levels of the cost of effort,

θ. Effort implemented in the mature and no-growth firms decreases and goes to zero as X

approaches infinity. This is because the cost of providing incentives grows more in X than

does the benefit of effort. A related effect makes effort decrease in response to exogenous

changes in capital (that is, abstracting from growth options; to see this, compare the efforts

of the no-growth and mature firms).

Effort implemented in the young firm is above that of the mature firm due to two reasons.

First, the young firm employs a low level of capital. This property also manifests itself in

5If the second-order derivative of the objective function is zero (a knife-edge case given its dependence of
X), then the implicit function theorem is not applicable.
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Figure 5. The optimal effort at two levels of the cost of effort: θ = 1 (left) and θ = 2
(right).

the fact that effort (weakly) decreases at the moment of investment. The second reason for

high effort in young firms is due to the presence of growth options. As is standard in real

options models, growth options increase the sensitivity of firm value to productivity shocks

as the firm approaches the investment threshold. As the optimal effort increases in b′(X) (see

Equation (28)), this indicates that effort may increase in X in the young firm. Intuitively,

the prospect of capital investment makes contracting high effort additionally attractive from

the investor’s point of view.

To implement any of the optimal effort levels under moral hazard, the manager needs to

be appropriately incentivized. To determine how investment opportunities affect the power

of incentives, we look at two alternative measures thereof: one implied by our model and

another commonly used in practice. A direct measure of a manager’s incentives in our

model is the sensitivity of her dollar (certainty-equivalent) continuation utility to productiv-
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ity shocks.6 Prior to investment, the optimal contract sets this quantity to

β∗(X) =
1

µ
kg′(a∗(X)) (30)

with an equivalent formula for post-investment incentives β̂∗(X). Note that this expres-

sion follows directly from substituting the optimal effort policy a∗(X) into the incentive

compatibility condition given by Equation (11).

A standard approach to the measurement of pay-performance sensitivity is to compute

the sensitivity of the manager’s wealth to changes in firm value as first proposed by Jensen

and Murphy (1990). This approach is particularly convenient from an empirical point of

view as it is based on firm value changes, which are easy to measure. In contrast, an output-

based PPS measure must isolate that output process which is most directly attributable

to the manager. If firm value is linear in output Xt, this simplification is inconsequential

as value-based PPS would be equivalent to direct, output-based PPS, such as β. However,

growth options can lead to a non-linear relationship between firm value and output. Thus

there can be a wedge between output-based and value-based PPS in firms with growth

opportunities .

In our model, as in He (2011), the manager’s dollar value-based PPS is equal to the

sensitivity of the manager’s dollar continuation value to changes in firm value, b(X). Under

6Given a performance measure Y , a standard way of measuring PPS is ∆Manager’s Wealth/∆Y . The
continous time analog to this measure is dV /dY since V measures the dollar value of the manager’s wealth.
Since dZ · dt = 0 and dZ2 = dt, we have

dV

dY
=
dV

dY

dZ

dZ
=

σ
µXkg

′(a∗(X))

σY
,

where the numerator is the volatility of V given in Equation (12) and σY is the volatility of Y .

32



the optimal contract, this quantity is given by:

φ∗(X) =
β∗(X)

b′(X)
=
g′(a∗(X))k

µb′(X)
. (31)

with an equivalent formula for post-investment value-based PPS φ̂∗(X). Note that while

φ∗(X) is closely related to β∗(X), it is scaled by the slope of the value function in output

b′(X). Thus, the presence of growth options affects φ∗(X) by changing both β∗(X) and

b′(X). As we show in the next proposition, the wedge between β∗ and φ∗ induced by b′(X)

can lead the two measures of PPS to respond in opposite ways to changes in the size of

growth options. Specifically, the comparative static of β∗(X) with respect to k̂ can have the

opposite sign as that for φ∗(X).

Proposition 3. If the cost of effort is increasingly convex, g′′′(a) > 0, and effort is interior,

then

Sign

(
∂β∗(X)

∂k̂

)
6= Sign

(
∂φ∗(X)

∂k̂

)
. (32)

To see the intuition for the result, suppose that optimal effort increases in the size of the

investment opportunity. Since β∗(X) is monotonic in a∗(X), so that the increase in optimal

effort corresponds to an increase in output-based PPS. In contrast, φ∗(X) can decrease in

the size of the investment opportunity. This decrease occurs because b′(X) increases in the

size of investment opportunity meaning that the sensitivity of firm to output increases.7

This sensitivity is not due to the manager’s effort choice and therefore the manager does not

have to be compensated (punished) as much for increases (decreases) in firm value. Thus, in

firms with valuable growth options, it is optimal to set output-based PPS to a relatively low

7Note that φ∗(X) is a ratio of β∗(X) and b′(X). The condition that additional incentives are costly, i.e.,

g(a) is increasingly convex, means that β∗(X) increases less in k̂ than b′(X). This is because the optimal
effort increases by less the more convex the effort cost.
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level. In this case, a low φ∗(X) does not mean that the manager’s incentives are low-powered

but rather that a strong response of firm value to output allows the principal to set a low

value-based PPS.

We emphasize here that although output- and value-based measures of performance can

behave differently, either can be used to implement the optimal contract. Thus, our argument

for the use of output-based PPS is distinct from that of Hölmstrom (1979) which points out

that optimal contracts are always based on the most informative signal of an agents effort

choice. In our setting, both performance measures are equally informative. However, output-

based PPS gives a direct measure of incentives, whereas value-based PPS is composite of

incentives and the effect of investment opportunities on firm value. We believe that this is

related to a broader point: value-based PPS could be a biased measure of incentives whenever

firm value is non-linear in output.

We now proceed to study the behavior of PPS at the moment of investment. When the

firm exercises the growth option two changes occur that both affect PPS. First, an increase in

capital increases both the cost and the benefit of effort. Second, a decrease in the remaining

growth options decreases the benefit of effort. Thus, it is not immediately clear what will

happen to PPS at investment. In the next proposition, we give conditions under which an

increase or a decrease will occur.

Proposition 4. The manager’s power of incentives, measured by either β or φ, increases at

investment if:

g′(â∗(X))k̂ > g′(a∗(X))k

and decreases otherwise.

Proposition 4 states that incentives increase at investment when the drop of the imple-
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mented effort at investment is sufficiently small relative to the inverse of the size of the

growth option. This is the case for firms with low costs of effort (low agency conflicts) and

large growth opportunities.

It is interesting to note that the condition in Proposition 4 is identical to the one given in

Proposition 2 for the negative sign of the effect of risk aversion on the investment threshold.

This means that the response of the manager’s incentives to investment can be linked to the

distortion in investment timing due to agency conflicts. Specifically, our model predicts that

the power of incentives decreases at investment if moral hazard conflicts lower the invest-

ment threshold and increases at investment if moral hazard conflicts raises the investment

threshold. Moreover, this relationship does not depend on whether or not the manager’s

incentives are measured by output- or value-based metrics.

4.3 Examples

We now return to the examples we discuss in the introduction to demonstrate how the

implications of the previous two subsections could manifest in practice. It will be convenient

to rearrange Inequality (27) to the following form

g′(â∗(X))

g′(â∗(X))
≤ k

k̂
. (33)

First, we consider a startup firm with a small amount of initial capital choosing the

optimal time to substantially increase its capital stock and begin production. An example

of this type of investment decision is when a growing private firm goes public in order to

raise financing for a large increase in capital. The IPO literature has treated this decision

as a real option, for example see Pástor and Veronesi (2005), Pástor, Taylor, and Veronesi
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(2009), and Bustamante (2011). In this case, the capital stock after investment is much

larger than before investment, k̂ � k, so that the right-hand side of Inequality (33) is close

to zero. Note that the left-hand side of the inequality, the ratio of the manager’s marginal

cost of effort before and after investment, is always strictly positive. Thus the inequality

is violated and Proposition 2 states that an increase in the severity of the moral hazard

problem raises the investment threshold. Intuitively, if the startup firm is not subject to

a moral hazard problem prior to investment, then a relatively large post-investment moral

hazard problem will delay investment in production. Moreover, Proposition 4 indicates that

while the manager’s effort may decrease after the expansion, PPS increases.

Now we examine the example of one firm considering the acquisition of another firm.

The literature on acquisitions has modeled this decision as a real option, see for example

Lambrecht (2004), Morellec and Zhdanov (2005), and Hackbarth and Miao (2012). Often,

the acquiring firm is much larger than the target firm. In such acquisitions, the capital

stock after investment is not much larger than before investment, k̂ − k � k, so that the

right-hand side of inequality (33) is close to one. The HJB equations together with the

smooth-pasting condition imply that optimal effort always decreases at investment, so that

the left-hand side of Inequality (33) is always strictly below one. Thus, the inequality is

satisfied and an increase in the severity of the moral hazard problem lowers the threshold

at which the acquisition takes place. The intuition here is that the acquisition allows the

firm to grow its cash flows without requiring its manager to work more. This in turn allows

the firm to save on incentive costs, so that when the severity of the moral hazard problem

is more severe, the acquisition is optimally undertaken at a lower threshold in productivity.

Furthermore, Proposition 4 implies that PPS decreases after the acquisition consistent with

Harford and Li (2007) who find that CEO pay becomes “detached” from performance after
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an acquisition.

5 Other Investment Technologies

In this section, we enrich our model to consider other specifications of the investment

problem. The main goal of this exercise is to determine under what conditions an increase

in the severity of the moral hazard problem as measured by the manager’s risk aversion, γ,

leads to increases in investment. To that end, we make the following modifications to the

model of the previous sections. First, productivity now follows a general diffusion of the

form:

dXt = atµ(Xt)dt+ σ(Xt)dZt,

where the drift and volatility terms, µ and σ, are continuously differentiable functions of

productivity X. We maintain the restriction that effort must fall in the interval at ∈ [0, 1];

however, the cost of effort is now given by the general function G(Xt, Kt, at) such that G is

twice continuously differentiable in it arguments and convex in effort at. Next, the firm’s cash

flows are given by a general function π(Xt, Kt), which may exhibit increasing or decreasing

returns to scale, and may depend on either the increment or the level of productivity as well.

Finally, capital accumulates according to:

dKt = (It − δKt)dt,

where δ is capital depreciation and investment It is at the cost C(Xt, Kt, It)dt that may

feature convex adjustment cost, partial reversibility, and stock fixed costs. A contract in

this more general setting is then a triple (at, ct, It) consisting of a recommended effort level
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at, a compensation plan ct, and an investment rule It. In the following subsections we give

a heuristic analysis of the generalized investment model, with formal proofs provided in the

Appendix.

Note that the arguments leading to a characterization of the no-savings condition and

incentive-compatibility conditions did not depend on a specification of the investment tech-

nology. Consequently, continuation utility arising from a contract without savings under

this more general model must be a martingale and satisfy uc(ct, at) = −γrWt. The incentive

compatibility condition is then:

at = arg max
ã

{u(ct, ã) + βt(−γrWt)(ã− at)µ(Xt)} , (34)

which implies that:

βt =
1

µ(Xt)
Ga(Xt, Kt, at)

and

dWt =
σ(Xt)

µ(Xt)
(−γrWt)Ga(Xt, Kt, at)dZt.

The characterization of incentive compatibility given above allows us to proceed to analyze

the effect moral hazard on investment in this more general setting.

For many of the models subsumed by our general setup, the optimal investment policy

is an increasing function of the investor’s marginal value of capital, commonly referred to as

Tobin’s Q. For this class of models, including the neoclassical and capacity choice models,

the effect of the agency problem on optimal investment operates entirely through q. Thus,

to determine the effect of the moral hazard problem on optimal investment in these models,

it is sufficient to determine its effect on the marginal value of capital. We now show that

increasing the severity of the moral hazard problem decreases the marginal value of capital
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and hence curtails investment.

To determine the effect of the moral hazard problem on the investor’s marginal value

of capital, we again apply the method of comparative statics developed in DeMarzo and

Sannikov (2006). Since the dynamics of continuation utility remain essentially unchanged

from the previous sections, the investor’s value function is still additively separable as

B(X,K, V ) = b(X,K) − V . Taking as given the optimal investment and effort policies

I∗ and a∗, an application of Ito’s formula, the envelope theorem, and the Feynman-Kac

formula given in Lemma 4 of the Appendix yields the following expression for the derivative

of the marginal value of capital, bk, with respect to the manager’s risk aversion γ:

bKγ = E

[∫ ∞
0

e−(r+δ)hKγ(Xt, Kt, a
∗(Xt, Kt))dt

∣∣X0, K0

]
, (35)

where h(X,K, a) is defined as in Equation (18) and represents the total cash flow to the firm

net of effort and incentive costs. Equation (35) states that the derivative of the marginal

value of capital with respect to γ is just the expected present value of all future derivatives

of the marginal products of capital with respect to γ. For any given point (X,K, a), it is

straightforward to compute the derivative of the marginal product of capital with respect to

γ to find:

hKγ(X,K, a) = −r
(
σ(X)

µ(X)

)2

Ga(X,K, a)GaK(X,K, a) ≤ 0. (36)

Substituting Inequality (36) into Equation (35) implies the following proposition.

Proposition 5. The investor’s marginal value of capital bK is decreasing in the manager’s

risk aversion γ.

Proposition 5 confirms the intuition of the previous literature (e.g., DeMarzo et al. (2012)

and DeMarzo and Fishman (2007)) that the moral hazard problem decreases the marginal

39



value capital. This in turn implies that if the optimal investment policy can be expressed

as an increasing function of the marginal value of capital otherwise independent of the

severity of the moral hazard problem, then optimal investment decreases the severity of the

moral hazard problem. For example, in the neoclassical model with convex adjustment costs

(CII(X,K, I) > 0), the optimal investment rate equates the marginal value of capital with

the marginal cost of capital:

bK(X,K, a∗) = CI(X,K, I
∗). (37)

Since investment costs are independent of the manager’s risk aversion, we can differentiate

both sides of Equation (37) to find:

I∗γ =
bKγ(X,K, a

∗)

CII(X,K, I∗)
≤ 0,

so that investment decreases with the severity of the moral hazard problem. Similarly, in a

capacity choice model with partial reversibility, as in Abel and Eberly (1996), the optimal

investment policy is to invest (divest) only when the marginal value of capital is greater

(less) than the marginal purchase price of capital. For any given level of productivity X,

increasing the severity of the moral hazard problem through an increase in γ decreases the

marginal value of capital. Thus both the thresholds in productivity at which the firm invests

and divests increase with the severity of the agency problem.

Although the Q-theory and capacity choice models are standard ways to describe aggre-

gate investment patterns, firm-level investment is often lumpy. Moreover, firms often have

a limited quantity of investment opportunities. Our setting captures these two features by

modeling investment as a single real option (a finite number of real options would give qual-
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itatively similar results). This leads to important differences with the literature in the way

in which investment is determined. First, in our model, the marginal value of capital is not

a sufficient statistic for investment, rather investment occurs when the average value of new

capital reaches an upper threshold. Second, the firm has a limited quantity of investment

opportunities. This means that marginal value of capital changes at the moment of invest-

ment so that the average value of new capital is not proportional to the marginal value of

capital. As a result, although moral hazard decreases the marginal value of capital, it can

increase the average value of new capital and thus cause over-investment.

6 Conclusion

We present a model of real options and dynamic moral hazard. We find that the effect

of agency conflicts on investment timing depends on the severity of the conflict. When the

moral hazard problem is less severe, the optimal contract will implement high effort, but

raise the investment threshold. When the moral hazard problem is more severe, the optimal

contract will implement lower effort but will call for a lower investment threshold. The

finding that moral hazard may increase investment is new and provides an alternative to

empire-building or managerial hubris-based explanations of over-investment. Although the

primary real options model we consider is fairly simple, we show that the main intuition

carries over into more realistic settings, so long as the optimal investment path is lumpy.

Our model also admits results on pay-performance sensitivity. Like investment, the

effect of moral hazard on pay-performance sensitivity depends on the severity of the moral

hazard problem. When the moral hazard problem is less severe, pay-performance sensitivity

increases after investment. When the moral hazard problem is more severe, pay-performance
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sensitivity decreases with investment. These results link pay-performance sensitivity, which

is easily measurable, with the nature the distortion on investment timing imposed by moral

hazard, which is more difficult to measure.

Our results provide guidance to future empirical work on pay-performance sensitivity.

We show that in the presence of growth options, there is a wedge between output-based and

value-based measures of incentives. In fact, if the manager’s cost of effort is increasingly

convex, value-based pay-performance sensitivity may decrease even though true incentives

(i.e., output-based pay-performance sensitivity) increase. Thus, it is important to control

for the presence of growth options when using value-based measures of pay-performance

sensitivity as a proxy for the level of incentives. One could take a reduced-form approach to

evaluate this relation. In addition, our model provides a tractable framework for structural

estimation of the quantitative importance of moral hazard distortions to investment.

Our general model could be extended and applied to specific contexts following the real

option literature without agency conflicts, e.g., mergers and acquisitions, real estate devel-

opment, IPOs, and venture-capital financing. In each case, there are important institutional

details that we have omitted from the model for the sake of clarity. However, these details

may provide interesting new results and implications. For example, in mergers and acquisi-

tions, the investment may depend on the productivity of both the bidding and target firms.

An important feature of real estate development that may interact with the agency conflict

we consider is that investment typically requires time-to-build. Finally, in IPOs venture-

capital financing, the manager may have some private information that affects the value

growth option.
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Appendix

A Proofs

Proof of Lemma 1. Consider an arbitrary contract Π = ({ct, at}, τ) and suppose the solution

to the manager’s optimization problem (1) for this contract is given by {c̃t, ãt} and the

manager’s associated value for this contract is W̃0.

Now consider the alternative contract Π̃ = ({c̃t, ãt}, τ). Note that under this contract

the manager again gets utility W̃0 from the consumption effort pair {c̃t, ãt}. We claim that

the solution to manager’s optimization problem (1) is again {c̃t, ãt}. Indeed suppose it is not

and that there is a alternative feasible consumption effort pair {čt, ǎt} such that this policy

yields utility W̌0 > W̃0 to the manager. The consumption effort pair {čt, ǎt} is also feasible

under the original contract Π since:

lim
t→∞

E

[
e−rt

∫ t

0

(cs − čs)ds
]

= lim
t→∞

(
E

[
e−rt

∫ t

0

(ct − c̃t)dt
]

+ E

[
e−rt

∫ t

0

(c̃s − čs)ds
])

= lim
t→∞

E

[
e−rt

∫ t

0

(cs − c̃s)ds
]

+ lim
t→∞

E

[
e−rt

∫ s

0

(c̃s − čs)ds
]

= 0.

Thus, the manager could achieve utility W̌t > W̃t under the original contract Π, a contra-

diction.

Finally note that the investor is achieves the same value under the new contract Π̃ as

under the original contract Π, since effort and investment are unchanged, and the traversality

condition implies that the two consumption streams have the same present value.
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Proof of Lemma 2. Suppose St = S and recall the definition of Wt(Π, {Xs, Ks}s≤t;S) and let

{c̃, ã} solve problem (3). We claim that {c̃− rS, ã} solves problem (3) for St = 0. This plan

gives the manager a utility of Wt(Π, {Xs, Ks}s≤t; 0) = eγrSWt(Π, {Xs, Ks}s≤t;S). Suppose

there is some alternative {č, ǎ} that yields a higher utility to the agent W̌t(Π, {Xs, Ks}s≤t; 0) >

Wt(Π, {Xs, Ks}s≤t; 0). Now consider the plan {č+ rS, ǎ} and note that this plan is feasible

under St = S but under this plan the manager can achieve the following utility:

W̌t(Π, {Xs, Ks}s≤t; 0) = e−γrSW̌t(Π, {Xs, Ks}s≤t; 0)

≥ e−γrSWt(Π, {Xs, Ks}s≤t; 0)

= Wt(Π, {Xs, Ks}s≤t; 0),

which contradicts the optimality of the {c̃, ã}.

Proof of Proposition 1. We show that the candidate policies are indeed optimal for the in-

vestor. Note that the compensation policy ct is pinned down by the no-savings condition.

Define the stopped gain process by:

Gt =

∫ t

0

e−rs(XtKt − ct)dt+ e−rtB(Xt, Vt) + I(t ≥ τ)(e−rt(B̂(Xt, Vt)−B(Xt, Vt))− e−rτp).

When Vt evolves according to (12), Ito’s formula gives the following dynamics:

ertdGt =

[
XtKt −

1

2
θXtKta

2 +−rVt + atµXtBX +
1

2
σ2X2

t BXX

+
1

2
γr

(
σ

µ
Xtk̂g

′(a)

)2

BV +
σ2

µ
X2k̂g′(a)BXV +

1

2

(
σ

µ
Xk̂g′(a)

)2

BV V − rB

]
dt

+

(
BX +

σ

µ
XtKtg

′(at)BV
)
σXtdZt+ I(t = τ)(B̂(Xt, Vt)−B(Xt, Vt)− p),
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where B(Xt, Vt) = B(Xt, Vt) + I(t ≥ τ)(B̂(Xt, Vt)−B(Xt, Vt)). Note that the drift term (the

term in the square brackets) is clearly negative for any alternative policy, while it is zero for

the candidate policy. Now examine the last term. Under the candidate policy, this term is

zero due to the value-matching condition. Under any alternative investment time τ , this term

is negative due to the smooth-pasting condition and the concavity of B̂(Xt, Vt)−B(Xt, Vt).

As a result, the process Gt is a martingale under the proposed contract and a supermartingale

otherwise. The rest of the argument proceeds along the standard lines.

Proof of Proposition 2. The following lemmas aid in the proof of the proposition. For ease

of exposition, we leave their proofs to the end of the main argument.

Lemma 4. Suppose Xt evolves according to dXt = µ(Xt)dt + σ(Xt)dZt. Then for some

bounded functions f : (0, Y ]→ R, r : (0, Y ]→ R+, and Ω: R→ R, a function F : (0, Y ]→ R

solves both:

r(X)F (X) = f(X) + µ(X)FX(X) +
1

2
σ(X)2FXX(X), (A.1)

with a boundary condition F (Y ) = Ω(Y ) and

F (X) = E

[∫ τ

0

e−
∫ t
0 r(Xs)dsf(Xt)dt+ e−

∫ τ
0 r(Xs)dsΩ(Y )

∣∣X0 = X

]
, (A.2)

where τ = inf{t|Xt ≥ Y }.

Lemma 5. b̂XX(X)− bXX(X) 6= 0.

Lemma 6. There exists ε > 0 such that b̂X(X)− bX(X) > 0 for all X ∈ (X − ε,X).

Lemma 7. There exists ε > 0 such that when X ∈ (X−ε,X) we have sign(b̂γ(X)−bγ(X)) =

sign
(
kg′(a∗(X)− k̂g′(â∗(X))

)
.
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We now proceed to the main argument. The first step in determining the sign of Xγ is

to differentiate the smooth-pasting condition with respect to γ to get:

Xγ(b̂XX(X)− bXX(X)) = b̂γX(X)− bγX(X). (A.3)

Lemma 6 together with an application of the one-sided version of l’Hopital’s rule yields the

following expression for Xγ:

Xγ = − b̂Xγ(X)− bXγ(X)

b̂XX(X)− bXX(X)
= lim

X↑X
− b̂Xγ(X)− bXγ(X)

b̂XX(X)− bXX(X)
= lim

X↑X
− b̂γ(X)− bγ(X)

b̂X(X)− bX(X)
, (A.4)

so that determining the sign of Xγ is equivalent to determining the sign of the last limit

above.

If g′(â∗(X))

g′(a∗(X))
< k

k̂
, Lemmas 6 and 7 imply there exists ε > 0 such that:

− b̂γ(X)− bγ(X)

b̂X(X)− bX(X)
< 0

for all X ∈ (X − ε,X), which in turn implies:

lim
X↑X
− b̂γ(X)− bγ(X)

b̂X(X)− bX(X)
≥ 0,

since b̂γ(X)− bγ(X) and b̂X(X)− bX(X) are nonzero and continuous. Thus, Xγ ≤ 0. If

g′(â∗(X))

g′(a∗(X))
< k

k̂
, a similar argument shows Xγ ≥ 0.

Proof of Lemma 4. The proof essentially follows the proof of DeMarzo and Sannikov (2006)
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for Lemma 4. Suppose V solves Equation (A.1) and define the process Ht by:

Ht =

∫ t

0

e−
∫ s
0 r(Xu)duf(Xs)ds+ e−

∫ t
0 r(Xs)dsV (Xs).

An application of Ito’s formula gives the dynamics for Ht:

e
∫ t
0 r(Xs)dsdHt = (f(Xt)+µ(Xt)VX(Xt)+

1

2
σ(Xt)

2VXX(Xt)−r(Xt)V (Xt))dt+σ(Xt)V (Xt)dZt.

By Equation (A.1), the drift in the above dynamics is zero, so that Ht is a martingale. Since

V (X) is bounded on [0, X], Hτ is a martingale and:

V (X0) = H0 = E[Hτ |X0] = E

[∫ τ

0

e−
∫ t
0 r(Xs)dsf(Xt)dt+ e−

∫ τ
0 r(Xs)dsV (Xτ )

∣∣X0

]
= E

[∫ τ

0

e−
∫ t
0 r(Xs)dsf(Xt)dt+ e−

∫ τ
0 r(Xs)dsW (Y )

∣∣X0

]
.

where the last equality follows from the definition of the stopping time τ and the boundary

condition V (Y ) = W (Y ).

Proof of Lemma 5. Assume that b̂XX(X) − bXX(X) = 0. We show that this leads to a

contradiction. First, differentiate the smooth-pasting condition (23) with respect to p to

obtain:

bXp(X) = −(b̂XX(X)− bXX(X))Xp.

b̂XX(X) − bXX(X) = 0 implies that bXp(X) = 0. Next, differentiate the ODE (21) with

respect to X and p to get an ODE for bXp:

(r − a∗(X)µ)bXp = (a∗(X)µ+ σ2)XbXXp +
1

2
σ2X2bXXXp.
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Lemma 4 then implies:

bXp(X) = E
[
e−

∫ τ
0 (r−a∗(X̃s)µ)dsbXp(X)|X̃0 = X

]
= 0,

where X̃ is a process with the following dynamics:

dX̃ = (a∗(X̃)µ+ σ2)X̃dt+ σX̃dZ.

Since bXp(X) = 0, then bp(X) must be a constant inX. By differentiating the value-matching

condition (22) with respect to p, we get:

bp(X) = (b̂X(X)− bX(X))Xp − 1 = −1,

where the second equality follows from the smooth-pasting condition (23). Differentiating

the ODE (21) with respect to p to gives an ODE for bp:

rbp(X) = a(X)µXbXp(X) +
1

2
σ2X2bXXp(X).

Lemma 4 then implies:

bp(X) = E
[
e−rτbp(X)|X0 = X

]
.

In particular,

lim
X→0

bp(X) = lim
X→0

E
[
e−rτbp(X)|X0 = X

]
= 0,

as X = 0 is an absorbing point for the process Xt. This means that bp(X) cannot be a

constant, which is a contradiction.
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Proof of Lemma 6. Suppose there does not exist ε > 0 such that bX(X) < b̂X(X) for all

X ∈ (X − ε,X), then for all ε > 0 there exists X ∈ (X − ε,X) such that bX(X) ≥ b̂X(X).

Now since bX(X) = b̂X(X) and bX and b̂X are continuous, this implies that there exists ε > 0

such that bX(X) ≥ b̂X(X) for all X ∈ (X − ε,X). This implies that for X ∈ (X − ε,X), we

have:

b̂(X)− b(X) = b̂(X)− b(X)−
∫ X

X

(b̂X(x)− bX(x))dx ≥ p,

which is a contradiction to the definition of X.

Proof of Lemma 7. First, we differentiate the HJB equations (17) and (21) with respect to

γ to get:

rb̂γ = ĥγ(X, â
∗(X)) + â∗(X)µXb̂Xγ +

1

2
σ2X2b̂XXγ,

and:

rbγ = hγ(X, a
∗(X)) + a∗(X)µXbXγ +

1

2
σ2X2bXXγ,

subject to bγ(X) = b̂γ(X). For the remainder of the proof of this lemma, we will suppress

the dependence of hγ and ĥγ on a∗ and â∗ to ease notation. Note that ĥγ(X) ≥ ĥγ(X) is

equivalent to g′(â∗(X))

g′(a∗(X))
< k

k̂
.

Let X∗ and X̂∗ be given by the following dynamics:

dX∗ = a∗(X∗)µX∗dt+ σX∗dZ

dX̂∗ = â∗(X̂∗)µX̂∗dt+ σX̂∗dZ.
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Applying Lemma 4 we have:

bγ(X) = E

[∫ τ

0

e−rthγ(X
∗
t )dt+ e−rτ b̂γ(X)

∣∣X∗0 = X

]

and

b̂γ(X) = E

[∫ τ̂

0

e−rtĥγ(X̂
∗
t )dt+ e−rτ̂ b̂γ(X)

∣∣X̂∗0 = X

]
,

where τ = inf{t|X∗t ≥ X} and τ̂ = inf{t|X̂∗t ≥ X}. Subtracting we get:

b̂γ(X)−bγ(X) = E

[∫ τ̂

0

e−rtĥγ(X̂
∗
t )dt−

∫ τ

0

e−rthγ(X
∗
t )dt+ (e−rτ̂ − e−rτ )b̂γ(X)

∣∣X∗0 = X̂∗0 = X

]
.

Now by continuity and the fact that τ̂ , τ
a.s.→ 0 as X̂∗0 , X

∗
0 ,→ X, there exists ε > 0 such

that when X̂∗0 , X
∗
0 ∈ (X − ε,X) we have:

sign(b̂γ(X)− bγ(X)) = sign(ĥγ(X)− hγ(X)) (A.5)

= sign
(
kg′(a∗(X)− k̂g′(â∗(X))

)
, (A.6)

which is the desired result.

Proof of Proposition 3. To consider the effect of the size of investment opportunities on

incentives, we analyze the effect of increasing post-investment capital k̂.

First, consider the effect on pre-investment βt:

dβt

dk̂
=

1

µ
kg′′(a∗(Xt))

da∗(Xt)

dk̂
.
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Consider next the effect of k̂ on φt:

dφt

dk̂
= − µ2

(µ2 + γrσ2Xtkg′′(a∗(Xt)))2
γrσ2Xtkg

′′′(a∗(Xt))
da∗(Xt)

dk̂
.

So:

sign

(
dφt

dk̂

)
= sign

(
−g′′′(a∗(Xt))

da∗(Xt)

dk̂

)
.

This shows that the sign of the effect of k̂ on φt is the same as on βt if g′′′(a∗) < 0 and the

opposite if g′′′(a∗) > 0.

Proof of Proposition 4. The result for β follows directly by comparing pre- and post-investment

βt at the moment of investment. The relation for φ is found similarly using the smooth-

pasting condition (23).
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