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Abstract

Dislocations occur when financial markets, operating under stressful conditions, experience large,

widespread asset mispricings. This study documents systematic financial market dislocations in

world capital markets and the importance of their fluctuations for expected asset returns. Our

novel, model-free measure of these dislocations is a monthly average of six hundred abnormal

absolute violations of three textbook arbitrage parities in stock, foreign exchange, and money

markets. We find that investors demand economically and statistically significant risk premiums

to hold financial assets performing poorly during market dislocations.

JEL classification: G01; G12
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1 Introduction

Financial market dislocations are circumstances in which financial markets, operating under

stressful conditions, cease to price assets correctly on an absolute and relative basis. The goal

of this empirical study is to document the aggregate, time-varying extent of financial market

dislocations in world capital markets and to investigate whether their fluctuations affect expected

asset returns.

The investigation of financial market dislocations is of pressing interest. When “massive” and

“persistent,” these dislocations pose “a major puzzle to classical asset pricing theory” (Fleck-

enstein et al., 2010). The turmoil in both U.S. and world capital markets in proximity of the

2008 financial crisis is commonly referred to as a major “dislocation” (e.g., Matvos and Seru,

2011). Policy makers have recently begun to treat such dislocations as an important, yet not

fully-understood source of financial fragility and economic instability when considering macro-

prudential regulation (Kashyap et al., 2010; Hubrich and Tetlow, 2011). Lastly, the recurrence of

severe financial market dislocations over the last three decades (e.g., Mexico in 1994-1995; East

Asia in 1997; LTCM and Russia in 1998; Argentina in 2001-2002) has prompted institutional

investors to revisit their decision-making and risk-management practices.

Financial market dislocations are elusive to define, and difficult to measure. The assessment

of absolute mispricings is subject to considerable debate and significant conceptual and empirical

challenges (O’Hara, 2008). The assessment of relative mispricings stemming from arbitrage par-

ity violations is less controversial. According to the law of one price – a foundation of modern

finance – arbitrage activity should ensure that prices of identical assets converge, lest unlimited

risk-free profits may arise. Extant research reports frequent deviations in several arbitrage pari-

ties in the foreign exchange, stock, bond, and derivative markets, both during normal times and

in correspondence with known financial crises; less often these observed deviations provide ac-
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tionable arbitrage opportunities.1 An extensive literature attributes these deviations to explicit

and implicit “limits” to arbitrage activity.2

In this paper, we propose and construct a model-free measure of financial market dislocations

based on innovations in daily observed violations of six hundred permutations of three textbook

no-arbitrage conditions. The first one, known as the Covered Interest Rate Parity (CIRP), is a

relationship between spot and forward exchange rates and the two corresponding nominal interest

rates ensuring that riskless borrowing in one currency and lending in another in international

money markets while hedging currency risk generates no riskless profit (e.g., Bekaert and Hodrick,

2009). The second one, known as the Triangular Arbitrage Parity (TAP), is a relationship

between exchange rates ensuring that cross-rates (e.g., yen per British pounds) are aligned with

exchange rates quoted relative to a “vehicle currency” (e.g., the dollar or the euro; Kozhan and

Tham, 2010). The third one, known as the American Depositary Receipt Parity (ADRP), is a

relationship between exchange rates, local stock prices, and U.S. stock prices ensuring that the

prices of cross-listed and home-market shares of stocks are aligned (e.g., Gagnon and Karolyi,

2010). Focus on these parities allows us to document systematic market dislocations in multiple

stock, foreign exchange, and money markets spanning nearly four decades (1973-2009).

Our aggregate measure of monthly financial market dislocations is a cross-permutation, equal-

weighted average of abnormal individual deviations from their arbitrage parities. Each parity’s

1A comprehensive survey of this vast literature is beyond the scope of this paper. Recent studies find violations
of the triangular arbitrage parity (Marshall et al., 2008; Kozhan and Tham, 2010), covered interest rate parity
(Akram et al., 2008; Coffey et al., 2009; Griffoli and Ranaldo, 2011), cross-listed stock pairs parity (Pasquariello,
2008; Gagnon and Karolyi, 2010), Siamese twins parity (Mitchell et al., 2002), closed-end fund parity (Pontiff,
1996), exchange-traded fund parity (Chacko et al., 2012), TIPS-Treasury arbitrage parity (Campbell et al., 2009;
Fleckenstein et al., 2010), off-the-run Treasury bond-note parity (Musto et al., 2011), CDS-bond yield parity
(Duffie, 2010; Garleanu and Pedersen, 2011), convertible bond parity (Mitchell and Pulvino, 2010), futures-cash
parity (Roll et al., 2007), and put-call parity (Lamont and Thaler, 2003; Ofek et al., 2004).

2Arbitrage activity may be impeded by such financial frictions as transaction costs, taxes, holding costs, short-
sale and other investment restrictions (surveyed in Gagnon and Karolyi, 2010), information problems (Grossman
and Miller, 1988), agency problems (De Long et al., 1990; Shleifer and Vishny, 1997), risk factors (e.g., Pontiff,
1996, 2006), execution risk (Stein, 2009; Kozhan and Tham, 2010), noise trader risk (e.g., Shleifer, 2000), supply
factors (Fleckenstein et al., 2010), fire sales (Kashyap et al., 2010; Shleifer and Vishny, 2011), competition (Kondor,
2009), margin constraints (Garleanu and Pedersen, 2011), funding liquidity constraints and slow-moving capital
(e.g., Brunnermeier and Pedersen, 2009; Duffie, 2010; Gromb and Vayanos, 2010).
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individual arbitrage deviation is computed as the standardized absolute log difference between

actual and theoretical prices. Absolute arbitrage parity violations are common, mostly (but not

always) positively correlated, and often economically large over our sample period.3 At each

point in time, individual deviations are standardized using exclusively their current and past

realizations. This procedure ensures comparability of innovations in absolute deviations across

different parities without introducing a look-ahead bias in the measure. The resulting market

dislocation index (MDI) is higher the greater-than-normal marketwide arbitrage parity violations.

The index is easy to calculate and displays sensible properties as a gauge of aggregate financial

market dislocations. It exhibits cycle-like dynamics – e.g., rising and falling in proximity of

well-known episodes of financial turmoil in the 1970s, 1980s, and 1990s – and reaches its height

during the most recent financial crisis. It is higher during U.S. recessions, in the presence of

greater fundamental uncertainty, lower systematic liquidity, and greater financial instability, but

also in calmer times. Yet, a wide array of state variables can only explain up to 42% of its

dynamics. These properties suggest MDI to be a good candidate proxy for the many frictions

and barriers affecting the ability of global financial markets to correctly price traded assets.

Accordingly, it seems natural to conjecture the risk of financial market dislocations to be

important for asset pricing. As observed by Fleckenstein et al. (2010), sizeable and time-varying

arbitrage parity violations indicate the presence of forces driving asset prices that are absent

in standard, frictionless asset pricing models. A copious literature relates several frictions to

(and biases in) investors’ trading activity to asset prices.4 The direct measurement of these

forces is however notoriously difficult. Studying the extent of arbitrage parity violations across

assets and markets may help us establish these forces’ empirical relevance for asset returns.

3For instance, absolute log deviations average 21 basis points (bps) for CIRP, 0.14 bps for TAP, and 219 bps
for ADRP.

4See, e.g., Amihud and Mendelson (1986), Constantinides (1986), Brennan and Subrahmanyam (1996), Bren-
nan et al. (1998), Vayanos (1998), Shleifer (2000), Amihud (2002), Huang (2003), Pastor and Stambaugh (2003),
Acharya and Pedersen (2005), Duffie et al. (2005, 2007), Baker and Wurgler (2006), and Sadka and Scherbina
(2007).
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As such, financial market dislocations may be a priced state variable. Investors may require a

compensation (in the form of higher expected returns) for holding assets with greater sensitivity

to dislocation risk.

We investigate this possibility within both the U.S. and a sample of developed and emerging

stocks and foreign exchange. Our evidence indicates that these assets’ sensitivities to MDI have

significant effects on the cross-section and time-series properties of their returns. We find that

stock and currency portfolios with higher negative “financial market dislocation betas” – i.e.,

experiencing lower realized returns when MDI is higher – exhibit higher expected returns. For

example, between 1973 and 2009, the estimated market dislocation risk premium for U.S. stock

portfolios formed on size and book-to-market sorts is up to −4.5% (−1.4%) per annum, even

after controlling for their sensitivities to the market (and additional risk factors). Similarly,

the market price of MDI risk for portfolios of currencies sorted by their interest rates is −1.5%

per annum when assessed over the available sample period 1983-2009. The estimated MDI risk

premium for country stock portfolios is smaller, ranging between −1.7% and −0.5% (when net

of four global factors). These estimates are both statistically and economically significant, for

they imply non-trivial compensation per average MDI beta: E.g., as high as 7.5% per annum for

U.S. stock portfolios, 5.9% for international stock portfolios, and 7.4% for a zero-cost carry trade

portfolio (long high-interest rate currencies and short low-interest rate currencies). Furthermore,

the MDI betas explain 51% (20%) of the samplewide cross-sectional variation in expected U.S.

(international) excess stock returns, and up to 77% of the cross-sectional variation in excess

currency returns.

This evidence suggests that investors require a positive premium to hold asset portfolios

performing poorly during financial market dislocations (i.e., with negative MDI betas), but are

willing to pay a negative premium to hold portfolios providing insurance against that risk (i.e.,

with positive MDI betas). Consistently, when sorting U.S. stocks into portfolios according to

their historical MDI betas, we find that stocks with higher ex ante negative (positive) sensitivity
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to market dislocation risk tend to exhibit both higher (lower) expected returns and small positive

(negative) ex post such sensitivity. A spread between the bottom and top deciles of historical MDI

beta stocks earns annualized abnormal returns (“alphas”) of 5.3% after accounting for sensitivities

to the market, size, value, momentum, and liquidity factors. Intuitively, stocks doing poorly

during prior financial market dislocations (i.e., with large negative historical MDI betas when

MDI realizations are positive) may subsequently do poorly or fail to recover those losses during

more normal times (i.e., with small positive post-ranking MDI betas when MDI realizations are

small or negative). Investors demand sizeable compensation to hold these stocks, especially in the

recent, more turbulent sub-period 1994-2009: GMM-estimated market dislocation risk premium

after controlling for the aforementioned five traded factors is roughly 2.4% per annum, implying

a statistically and economically significant compensation of 6.8% for the spread’s positive and

significant post-ranking MDI beta. Lastly, in the time-series, MDI has some predictive power for

future asset returns over both short and longer horizons. For instance, a one standard deviation

positive shock to MDI predicts (an average of) 1.1% lower excess returns next month but 3.6%

higher six-month-ahead cumulative excess returns (consistent with our cross-sectional results)

for several developed and emerging stock portfolios between 1973 and 2009.

Numerous empirical studies document the relation between empirical measures of individual

frictions absent from classical finance theory (e.g., liquidity, information, sentiment, noise, finan-

cial distress) and expected asset returns, hedge fund returns, or asset pricing anomalies (e.g.,

Pastor and Stambaugh, 2003; Baker and Wurgler, 2006; Sadka and Scherbina, 2007; Avramov

et al., 2010; Fleckenstein et al., 2010; Hu et al., 2010; Alti and Tetlock, 2011; Stambaugh et al.,

2011).5 Others emphasize the potential importance of rare events and crises for the cross-section

5For instance, Hu et al. (2010) show that a measure of “noise” constructed as the difference between actual
and interpolated Treasury bond yields spikes during episodes of marketwide illiquidity (see also Musto et al., 2011)
and is related to cross-sectional returns of hedge funds and currency carry trades. The literature proposes several
alternative yield curve interpolation models, but finds all of them to be plagued by errors both in normal times
and during periods of financial turmoil (e.g., Gürkaynak et al., 2007). This raises the question of whether yield
differentials from these models are akin to mispricings and can be conceptually attributed to liquidity effects.
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of asset returns (e.g., Veronesi, 2004; Barro, 2006; 2009; Gabaix, 2007; Bianchi, 2010; Bollerslev

and Todorov, 2011). Our novel, model-free analysis of systematic financial market dislocation

risk – one encompassing both observable and unobservable sources of mispricings – and its

role in asset pricing in both tranquil and turbulent times complements (rather than competing

with) these insights.

We proceed as follows. In Section 2, we construct our measure of financial market dislocations

and describe its empirical properties. In Section 3, we present and discuss the results of a wide

array of asset pricing tests. We conclude in Section 4.

2 The financial market dislocation index

Financial market dislocations entail large, widespread mispricings of traded financial securities.

Motivated by their frequent occurrence, over the last few decades financial economics has ad-

vocated the important role of frictions and biases for the process of price formation in capital

markets. As previously mentioned, it has proposed and tested several explanations for why mis-

pricings may arise, persist, and wane. Measuring the direct extent of these frictions and biases

– and their relevance for asset pricing – is challenging, and often practical only “in the context

of a series of ‘special cases”’ (Gagnon and Karolyi, 2010, p. 54).

In this study, we circumvent this issue by constructing a composite index of price dislocations

in global stock, foreign exchange, and money markets. The index captures the systematic com-

ponent of six hundred potential violations of three textbook arbitrage parities in those markets.

Hence, it measures the systematic significance of observable and unobservable factors behind

their occurrence. Next, we describe each of these parities, the procedure for the construction of

our index, and the index’s basic properties. In Section 3, we then investigate whether financial

market dislocation risk – i.e., the risk that frictions and biases in capital markets may lead to

mispricings – is priced in currency and U.S. and international stock returns.
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2.1 Arbitrage parities

We estimate the observed magnitude of mispricings in global capital markets by measuring vio-

lations of the Covered Interest Rate Parity, the Triangular Arbitrage Parity, and the American

Depositary Receipt Parity. There are several advantages to focusing on these parities. Assessing

their violations does not require us to take a stance on any asset pricing model. Their viola-

tions imply impediments to the enforcement of the law of one price via arbitrage within some

of the largest, most liquid financial markets in the world. The literature surveyed in the Intro-

duction attributes these violations to such explicit and implicit barriers to arbitrage as taxes,

(inventory) holding costs, transaction costs, short-sale restrictions, opportunity cost of capital,

idiosyncratic risk, liquidity risk, slow moving capital, funding liquidity, market freezes, rollover

risk, (counterparty) default risk, execution risk, exchange controls, information problems, agency

problems, or political risk. Ample data availability for these violations allows us to assess the

systematic, time-varying extent of those (often difficult to measure) impediments over a sample

period spanning almost four decades.

2.1.1 Covered interest rate parity

The first set of arbitrage deviations in our study stems from violations of the Covered Interest

Rate Parity (CIRP). According to the CIRP, in absence of arbitrage, borrowing in any currencyA

for T−t days (at interest cost rA,t,T ), exchanging the borrowed amount to currency B at the spot

exchange rate St,A/B, lending in currency B (at interest rB,t,T ), and hedging the foreign exchange

risk of repaying the original loan plus interest at the forward exchange rate Ft,T,A/B generates no

profits. The absence of covered interest rate arbitrage in international money markets implies

the following theoretical (∗), no-arbitrage forward exchange rate between any two currencies A
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and B:

F ∗t,T,A/B = St,A/B

µ
1 + rA,t,T
1 + rB,t,T

¶
, (1)

where St,T,A/B (Ft,T,A/B) is the spot (forward) exchange rate on day t expressed as units of

currency A for one unit of currency B.

While conceptually simple, the actual implementation of non-convergence CIRP arbitrage if

the CIRP in Eq. (1) is violated (Ft,T,A/B 6= F ∗t,T,A/B) is more involved. E.g., if Ft,T,EUR/USD <

F ∗t,T,EUR/USD, one would profit by buying USD for EUR in the forward market at a low price

and then selling USD for EUR at a high synthetic forward price using the spot and money

markets (i.e., borrowing the initial amount of USD, converting them into EUR, and lending

EUR). This strategy requires accounting for synchronous prices and rates, transaction costs, and

borrowing and lending on either secured terms (at “repo” and “reverse repo” rates) or unsecured

terms (at overnight bid and offer rates, with accompanying index swaps).6 Both funding and

trading costs and explicit and implicit limits to arbitrage typically create no-arbitrage bands

around theoretical CIRP levels. Both have been shown to vary during “tranquil versus turbulent

periods” (e.g., Frenkel and Levich, 1975, 1977; Coffey et al., 2009; Griffoli and Ranaldo, 2011).

Data and structural limitations (e.g., non-binding pricing) make measurement of actual CIRP

arbitrage profits challenging and feasible only over a few, most recent years (e.g., see Akram et

al., 2008; Fong et al., 2010; Griffoli and Ranaldo, 2011).

We intend to capture the systematic component of CIRP violation levels and dynamics across

the broadest spectrum of currencies and maturities over the longest feasible sample period. To

that purpose (as in the literature), our sample is made of daily indicative spot and forward

prices (midquotes, as observed at 4 p.m. Greenwich Mean Time [GMT]) of nine exchange

rates among five of the most liquid (and relatively free-floating) currencies in the global for-

6See Griffoli and Ranaldo (2011) for further details and evidence of actual CIRP profits during the 2008
financial crisis.
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eign exchange market (CHF/USD, GBP/USD, EUR/USD, JPY/USD, CHF/EUR, GBP/EUR,

JPY/EUR, CHF/GBP, JPY/GBP), and the corresponding LIBOR rates at seven maturities (7,

30, 60, 90, 180, 270, and 360 days), void of transaction costs, between May 1, 1990 and December

31, 2009.7 This dataset comes from Thomson Reuters Datastream (Datastream).8 For each of

the resulting 63 CIRP permutations (i), we compute daily (t) absolute log differences (in ba-

sis points [bps], i.e., multiplied by 10, 000) between actual and CIRP-implied forward exchange

rates: CIRPi,t =
¯̄̄
ln
¡
Ft,T,A/B

¢
− ln

³
F ∗t,T,A/B

´¯̄̄
× 10, 000.9

Panel A of Table 1 reports summary statistics for CIRPm, the monthly average of daily mean

observed CIRP violations CIRPi,t across all available currency-maturity permutations. We plot

its time-series in Figure 1a. During most circumstances, CIRP violations are low. Systematic

absolute percentage deviations of market forward exchange rates from their theoretical levels

average 21 bps (i.e., 0.21%), fluctuate between 10 and 15 bps during the late 1990s, and are as

low as 9 bps by the end of 2006. Yet, CIRP violations also display meaningful intertemporal

dynamics. Over our sample period, CIRPm trends first upward, then downward. It also often

spikes in proximity of well-known episodes of financial turmoil. Most notably (and consistent with

recent aforementioned studies), average CIRP deviations reach a maximum (84 bps) in October

2008 (immediately following the Lehman bankruptcy) and remain higher than the historical

averages for many months afterwards.10

7CHF is the Swiss franc; EUR is the European euro; GBP is the British pound; JPY is the Japanese yen; USD
is the U.S. dollar. LIBOR rates are computed by the British Bankers Association (BBA) as arithmetic averages
of contributor banks’ interbank offers at around 11 a.m. GMT.

8Exchange and money market rates for EUR/USD, GBP/EUR, CHF/EUR, and JPY/EUR are available in
Datastream from the date the euro is officially introduced (January 1, 1999); prior forward and LIBOR data
for such European currencies as the German mark (DEM), the French franc (FRF), or the Italian lira (ITL)
is not. For simplicity and uniformity across exchange rates (e.g., when considering national holidays, special
circumstances for fixing and value dates, as well as evolving day-count conventions [and their possibly conflicting
interpretations] over the sample period), interest rates are compounded using a 30/360 convention. The effect of
employing “market” day-count conventions, when feasible, on our analysis is immaterial.

9We filter this dataset for potential data errors and exclude daily CIRP deviations of 10% or more, i.e., when
CIRPi,t ≥ 1, 000 bps. The evidence that follows is unaffected by our filtering procedure.
10Investigations by media and regulators suggest that some of the LIBOR contributor banks may have under-

reported their offer rates to the BBA during the recent financial crisis (e.g., see the coverage of the LIBOR probe
on the Wall Street Journal website, at http://stream.wsj.com/story/the-libor-investigation/SS-2-32262/). This is
unlikely to meaningfully affect our analysis. Griffoli and Ranaldo (2011) compute similarly large CIRP violations
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2.1.2 Triangular arbitrage parity

The second set of arbitrage deviations in our study stems from violations of the Triangular Arbi-

trage Parity (TAP). Triangular arbitrage is a sequence of contemporaneous transactions keeping

cross-rates – exchange rates not involving vehicle currencies (USD or EUR), e.g., JPY/GBP –

in line with exchange rates quoted versus vehicle currencies (e.g., JPY/USD and USD/GBP).

According to the TAP, in absence of arbitrage the spot cross-rate between any two currencies A

and B should satisfy the following relation with the spot exchange rates of each with a third,

vehicle currency (V ):

S∗t,A/B = St,A/V × St,V/B. (2)

When Eq. (2) is violated (St,A/B 6= S∗t,A/B), implementation of the triangular arbitrage is

straightforward for it involves simultaneously selling and buying three exchange rates in the spot

market. E.g., if St,JPY/GBP < S∗t,JPY/GBP and V = USD, one would simultaneously buy GBP

for JPY, sell the ensuing units of GBP for USD, and sell those USD for JPY; this strategy would

be profitable for it implies buying GBP at a low JPY price and selling GBP at a high JPY

price (e.g., Bekaert and Hodrick, 2009). This trading strategy does not rely on convergence to

parity and is typically unimpeded by taxes, short-selling, or other regulatory constraints. Similar

data limitations as for the CIRP prevent the large-scale measurement of actual TAP arbitrage

profits. Rather, we focus on extracting the systematic component of daily TAP violations for the

most cross-rates (with respect to either USD or EUR [DEM before January 1, 1999]) among the

most liquid, relatively free-floating currencies over the longest feasible sample period, between

January 1, 1973 and December 31, 2009: AUD, CAD, CHF, FRF, GBP, ITL, JPY.11 These

in 2008 and 2009 to those in Figure 1a when using alternative (secured and unsecured) interest rates (in the repo
and overnight index swap [OIS] markets, respectively). Furthermore, all of our ensuing inference is insensitive to
removing 2008 and 2009 from the sample (see Section 2.3).
11AUD is the Australian dollar; CAD is the Canadian dollar.
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daily indicative spot exchange rates (as observed at 3 p.m. Eastern Standard Time [EST]) come

from the Pacific Exchange Rate Service database (Pacific). For each of the resulting 122 TAP

permutations (i), we compute daily (t) absolute log differences (in bps) between actual and

TAP-implied spot cross-rates: TAPi,t =
¯̄̄
ln
¡
St,A/B

¢
− ln

³
S∗t,A/B

´¯̄̄
× 10, 000.12

Transaction costs are minimal in the highly liquid spot foreign exchange market (BIS, 2010).

Not surprisingly, the literature finds that TAP violations are small, yet persistent (e.g., Aiba

et al., 2002; Marshall et al., 2008; Kozhan and Tham, 2010). Consistently, Panel A of Table

1 reports that mean monthly absolute percentage TAP deviations across all available cross-rate

permutations, TAPm, average 0.14 bps (i.e., 0.0014%). TAPm’s plot (in Figure 1b) however

shows TAP violations to ebb and flow in long cycles, e.g., first steadily increasingly during the

1970s and 1980s, then markedly declining in the 1990s. Figure 1b also points to two noteworthy

upward shocks to TAPm. The first one is short-lived and occurs in December 1998, a month before

the official launch of the euro; the second one begins in early 2003, lasts roughly two years (in

correspondence with a protracted appreciation of the euro), and rapidly dissipates afterwards.13

Interestingly, these dynamics appear to be only weakly related to those of average cross-currency

CIRP violations (e.g., a correlation of −0.116 with CIRPm in Table 1). Thus, TAP violations

may provide distinct information on the extent and time-series of financial market dislocations

(and the frictions driving them) over our sample period.

2.1.3 ADR parity

The last set of arbitrage deviations in our study stems from violations of the American De-

positary Receipt Parity (ADRP). Companies can list shares of their stock for trading in several

12We filter this dataset for errors (and unreasonably large TAP deviations) using the same procedure employed
for CIRP deviations in Section 2.1.1. We also verify that observed TAP violations in our dataset are not due to
rounding of prices from Eq. (2) and/or from direct-to-indirect quote conversion (i.e., from St,A/B =

¡
St,B/A

¢−1
).

We accommodate any deviation from the latter in the dataset by considering TAP violations of either S∗t,A/B or
S∗t,B/A separately.
13We note here that DEM, FRF, and ITL exit our database only on the day the euro is introduced (January

1, 1999). Removing cross-rates relative to ITL and FRF from the full sample has little impact on TAPm.
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markets (especially in the U.S.) besides their domestic ones in several forms, from global regis-

tered offerings to direct listings (e.g., Karolyi, 2006). Of these cross-listing mechanisms, American

Depositary Receipts (ADRs) are the most common. ADRs are dollar-denominated, negotiable

certificates, traded on U.S. stock markets, representing a pre-specified amount (“ratio”) of a for-

eign company’s publicly traded equity held on deposit at a U.S. depositary bank.14 Depositary

banks (e.g., Bank of New York, JPMorgan Chase) charge small custodial fees for converting all

stock-related payments in USD and, more generally, facilitating ADRs’ convertibility into the

underlying foreign market shares and vice versa. The holder of an ADR can redeem that certifi-

cate into the underlying shares from the depositary bank at any time for a fee; conversely, new

ADRs can be created at any time by depositing the ratio of foreign shares at the depositary bank.

If ADRs and the underlying equity are perfect substitutes, absence of arbitrage implies that the

unit price of an ADR, Pi,t, should at any time be equal to the dollar price of the corresponding

amount (qi) of home-market shares, as follows:

P ∗i,t = St,USD/H × qi × PHi,t , (3)

where PHi,t is the unit stock price of the underlying foreign shares in their local currency H.

Implementation of a literal ADR arbitrage when Eq. (3) is violated (Pi,t 6= P ∗i,t) is com-

plex. E.g., if Pi,t < P ∗i,t one would simultaneously buy the ADR, retrieve the underlying foreign

shares from the depositary bank (a process known as “cancellation”), sell those shares in their

home market, and convert the foreign currency sale proceeds to USD. Alternatively, simpler

convergence-based trading strategies would involve, e.g., buying the “cheap” asset (in this case

the ADR at Pi,t) and selling the “expensive” one (in this case the underlying foreign shares at

14A minority of companies, mostly Canadian, cross-list their stock in the U.S. in the form of ordinary shares.
Ordinary shares are identical certificates trading in both the U.S. and a foreign market (i.e., with a ratio of
one; see Bekaert and Hodrick, 2009). In the U.S., “Canadian ordinaries” trade like U.S. firms’ stock, require no
depositary bank, but are subject to specific clearing and transfer arrangements. The literature typically groups
ordinaries together with ADRs (e.g., Gagnon and Karolyi, 2010).
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PHi,t). Several studies (exhaustively surveyed in Karolyi, 2006) provide evidence of significant de-

viations of observed ADR prices from their theoretical parities. Any of the many aforementioned

frictions, risks, and barriers to trading in the literature may impede the successful exploitation of

both types of ADR arbitrage. ADRs’ fungibility, as captured by Eq. (3), is also limited by such

additional factors as conversion fees, holding fees, custodian safekeeping fees, foreign exchange

transaction costs, service charges, transfer arrangements, or (one-way and two-way) cross-border

ownership restrictions (Gagnon and Karolyi, 2010).

As the above discussion makes clear, measuring ADR parity violations has the potential to

shed light on the extent and dynamics of a wide array of impediments to arbitrage in the U.S.

stock market, in international stock markets for the underlying stocks, and/or in the correspond-

ing foreign exchange markets. As for CIRP and TAP violations, data availability and structural

limitations (e.g., imperfect price synchronicity, stale pricing) preclude a comprehensive inves-

tigation of actual ADR arbitrage profits.15 Accordingly, in this study we aim to capture the

systematic component of ADRP violations across the broadest spectrum of stocks (and curren-

cies) over the longest feasible sample period. To that purpose, we obtain the complete sample

of all foreign stocks cross-listed in the U.S. either as ADRs or as ordinary shares compiled by

Datastream at the end of December 2009. Consistent with the literature (e.g., Pasquariello,

2008; Gagnon and Karolyi, 2010), we exclude from this sample non-exchange-listed ADRs (Level

I, trading over-the-counter in the “pink sheet” market), SEC Regulation S shares, private place-

ment issues (Rule 144A ADRs), and preferred shares, as well as ADRs and foreign shares with

missing Datastream pair codes.16 Our final sample is made of 410 home-U.S. pairs of closing stock

prices (and ratios) for exchange-listed (on NYSE, AMEX, or NASDAQ; sponsored or unspon-

15For instance, Gagnon and Karolyi (2010) address non-synchronicity between foreign stock and ADR prices
by employing available intraday price and quote data for the latter (from TAQ) at a time corresponding to the
closing time of the equity market for the underlying (if their trading hours are at least partially overlapping).
However, the trading hours of Asian markets do not overlap with U.S. trading hours. In addition, TAQ data is
available only from January 1, 1993.
16We cross-check the accuracy of Datastream pairings by comparing them with those reported in the Bank of

New York Mellon Depositary Receipts Directory, available at http://www.adrbnymellon.com/dr_directory.jsp.
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sored) Level II and Level III (capital raising) ADRs from 41 developed and emerging countries

between January 1, 1973 and December 31, 2009.17

For each of these pairs (i), we use Eq. (3) and exchange rates from Pacific to compute daily

(t) absolute log differences (in bps) between actual and theoretical ADR prices: ADRPi,t =¯̄
ln (Pi,t)− ln

¡
P ∗i,t
¢¯̄
× 10, 000.18 Panel A of Table 1 contains descriptive statistics for ADRPm,

the monthly average of daily mean ADRP violations among all available pairs in the sample.

Average absolute deviations from ADR parity are large, about 219 bps (i.e., 2.19%), and subject

to large fluctuations.19 As displayed in Figure 1c, ADRPm is generally declining over our sample

period, hinting at a broad trend for lower barriers to (arbitrage) trading and greater world

financial market integration. Yet, in correspondence with episodes of financial turmoil, ADR

parity deviations tend to increase and become more volatile (e.g., in the 1970s, during the

Mexican Peso and Asian crises, or in 2008).20 Some of these dynamics appear to relate to those

of CIRP violations in Figure 1a (a correlation of 0.314 with CIRPm in Table 1), presumably

via mispricings in the foreign exchange market, but not to the time series of TAP violations in

Figure 1b (a correlation of −0.140 with TAPm).

2.2 Index construction

The three textbook arbitrage parities described in Sections 2.1.1 to 2.1.3 yield 595 daily potential

mispricings in the global stock, foreign exchange, and money markets. Each of them is only an

imprecise estimate of the extent of dislocations in the market(s) in which it is observed (as well

17Sponsored ADRs are initiated by the foreign company of the underlying shares. Unsponsored ADRs are
initiated by a depositary bank. Most developed ADRs in our sample are from Canada (67), the Euro area (58),
the United Kingdom (43), Australia (30), and Japan (24); emerging cross-listings include stocks traded in Hong
Kong (54), Brazil (23), South Africa (14), and India (10), among others.
18As for CIRP and TAP violations in Sections 2.1.1 and 2.1.2, we filter this dataset for errors and unreasonably

large ADRP deviations. We also exclude deviations in correspondence with ADR prices below $5 or above $1, 000.
19Summary statistics for ADRPm are similar to (albeit slightly smaller than) those reported in Gagnon and

Karolyi (2010, Table 2) for signed log-price differences based on synchronous prices when possible.
20Consistently, Pasquariello (2008) finds evidence of greater ADRP violations for emerging markets stocks

during recent financial crises.
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as of the explicit and implicit impediments behind its occurrence). However, Table 1 indicates

that their realizations are only weakly correlated across parities. Figures 1a to 1c further suggest

that observed mispricings tend to persist over time, perhaps reflecting the permanent nature of

some impediments to arbitrage or data and structural limitations to their accurate measurement.

This discussion suggests that an average of all abnormal arbitrage parity violations may measure

systematic financial market dislocation risk more precisely.

We construct our novel index of dislocation risk in two steps. First, on any day t we stan-

dardize each parity’s individual arbitrage deviation (CIRPi,t, TAPi,t, ADRPi,t) relative to its

historical distribution on that day: CIRP zi,t, TAP
z
i,t, ADRP

z
i,t.

21 This step allows to assess the

extent to which each realized individual absolute arbitrage parity violation was historically large

on the day it occurred without introducing look-ahead bias, while making these violations com-

parable across and within different parities. Equivalently, each so-defined standardized arbitrage

parity violation represents an innovation with respect to its historical mean (i.e., expected) mis-

pricing. Their paritywide monthly means (CIRP zm, TAP
z
m, ADRP

z
m; see Panel B of Table 1

and Figures 1d to 1e) are frequently negative, often statistically significant, (less than perfectly)

correlated, and subject to large intertemporal fluctuations.22 Second, we compute a monthly

index of financial market dislocation risk, MDIm, as the equal-weighted, cross-parity average

of these monthly means. This step allows to isolate the common, systematic component of the

cross-section of innovations in (i.e., abnormal) absolute arbitrage parity violations in our sample

at each point in time parsimoniously, while preserving their time-series properties. By con-

struction, the index (plotted in Figure 3) is positive in correspondence with greater-than-normal

marketwide mispricings, i.e., in the presence of historically large financial market dislocations.

21To that end, on any day t we exclude parity deviations with less than 22 past and current realizations.
22Monthly averaging smooths potentially spurious daily variability in these normalized arbitrage parity viola-

tions, e.g., due to price staleness or non-synchronicity.
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2.3 Index properties

The composite indexMDIm, based on minimal manipulations of observed model-free mispricings

in numerous equity, foreign exchange, and money markets, is easy to calculate and displays

sensible properties as a measure of systematic financial market dislocation risk.

Estimated correlations in Panel B of Table 1 indicate thatMDIm loads positively on average

abnormal violations in each of the three textbook arbitrage parities (CIRP, TAP, and ADRP).

Saliently, its plot (in Figure 3) displays several short-lived upward and downward spikes, as well

as meaningful longer-lived, cycle-like dynamics over our sample period 1973-2009.23 Many of

these spikes and cycles occur in proximity of well-known episodes of financial turmoil in the last

four decades: The Mideast oil embargo in the Fall of 1973, the oil crisis in the late 1970s, the

emerging debt crisis in 1982, the U.S. stock market crash in October 1987, the European currency

crisis in 1992-1993, the collapse of bond markets in 1994, the Mexican Peso crisis in 1994-1995,

the Asian crisis in 1997, the Russian default and LTCM debacle in the Fall of 1998, the internet

bubble during the late 1990s, 9/11, and the quant meltdown in August 2007. Consistent with

this chronology, most sizably positive realizations of our index (i.e., most abnormal mispricings)

occur in the latter portion of our sample. The index is highest in October 2008, in the wake of

Lehman’s default and in the midst of the most significant economic crisis and financial freeze since

the Great Depression.24 It is plausible to conjecture that in those circumstances, impediments

23According to Cochrane (2001, p. 150), risk factors in linear asset pricing models “do not have to be totally
unpredictable,” as long as they are expressed in the “right units” since these models are often applied to excess
returns without identifying the conditional mean of the discount factor (as in Sections 3.1 and 3.2). The market
dislocation index MDIm is not highly persistent (e.g., a first-order autocorrelation of 0.68) and measures innova-
tions in relative mispricings with respect to their historical levels. Further, the lack of strong predictive evidence
in Section 3.3 suggests our cross-sectional inference is unlikely to be contaminated by correlation between MDIm
and future excess returns. Alternatively, the time-series of month-to-month changes in the index, ∆MDIm, mea-
sures innovations in relative mispricings only with respect to their most recent levels. Hence, ∆MDIm may not
capture long-lasting dislocations, like those observed during the last quarter of 2008 in the aftermath of Lehman
Brothers’ default. The correlation between MDIm and ∆MDIm is 0.40. The inference reported in the paper
is robust to using ∆MDIm instead of MDIm. We describe some of these untabulated results in subsequent
footnotes.
24All of the ensuing inference is nonetheless robust to (and often stronger when) excluding this most recent,

turbulent period (2008-2009) from the sample. In addition, a regression of MDIm on a dummy equal to one
during the aforementioned crisis periods and zero otherwise yields a R2 of less than 7%.
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to trading and arbitrage may have become more severe, and asset mispricings larger and more

widespread.

Further insight on the nature and properties of our index of standardized innovations in

arbitrage parity violations comes from regressing its realizations on the change in several U.S.

and international, economic and financial market variables, in Table 2.25 Variable selection is

driven by the observation (motivated by the aforementioned literature on limits to arbitrage)

that mispricings are more likely during periods of U.S. and/or global economic and financial

uncertainty, illiquidity, and overall financial distress.26 Accordingly, we find MDIm to be higher

during U.S. recessions (in columns (1) and (4) of Table 2) and periods of economic uncertainty

(e.g., higher default risk, as measured by Moody’s Baa-Aaa corporate bond spread; columns (3)

and (4)), as well as in correspondence with higher world stock market volatility (columns (1) and

(4)), lower U.S. systematic liquidity (as estimated by Pastor and Stambaugh, 2003; column (4)),

and higher financial instability (e.g., lower balance sheet capacity of financial intermediaries, as

measured by Adrian et al., 2012; column (4)). Yet, we find MDIm to be (weakly) higher during

more tranquil times as well (e.g., lower “TED” spread between LIBOR and Treasury Bill rates;

columns (3) and (4)). Ceteris paribus, average abnormal arbitrage parity violations also weakly

increase in correspondence with lower marketwide “risk appetite” (higher CBOE VIX index,

columns (1) and (4); e.g., Bollerslev et al., 2009) or a steeper U.S. Treasury yield curve (higher

slope; columns (2) and (4)), but are insensitive to U.S. and world stock market downturns (and

25Regressions in changes help mitigate biases related to potential nonstationarity in the data. Regressing
MDIm on either raw or similarly normalized levels of these variables yields nearly identical inference.
26The regressors in Table 2 include monthly U.S. stock returns (from Kenneth French’s website), official NBER

recession dummy, world market returns (from MSCI), innovations in Pastor and Stambaugh’s (2003) liquidity
measure (based on volume-related return reversals, from Pastor’s website), as well as monthly changes in Chauvet
and Piger’s (2008) historical U.S. recession probabilities (from Piger’s website), VIX (monthly average of daily
S&P500 VIX, from CBOE), world market return volatility (its annualized 36-month rolling standard deviation),
U.S. risk-free rate (one-month Treasury bill rate, from Ibbotson Associates), slope of U.S. yield curve (average
of ten-year minus one-year constant-maturity Treasury yields, from the Board of Governors), U.S. bond yield
volatility (annualized average of 22-day rolling standard deviation of five-year constant-maturity Treasury yields,
as in Hu et al., 2010), TED spread (average of three-month USD LIBOR minus constant maturity Treasury
yields, from Datastream), default spread (average of Aaa minus Baa corporate bond yields, from Moody’s), and
innovations in Adrian et al.’s (2012) broker-dealer leverage (from Muir’s website).
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the accompanying illiquidity, as argued by Chordia et al., 2001; columns (1) and (4)), higher

volatility of U.S. interest rates (column (4)), or flight to quality (e.g., lower U.S. risk-free rates,

in column (2); see Hu et al., 2010).27

Insight onMDIm can also be drawn from regressing each of its components (CIRP zm, TAP
z
m,

and ADRP zm) on these variables (in columns (5), (6), and (7) of Table 2). Not surprisingly, U.S.

financial market conditions play an important role in explaining ADR parity deviations, but a

lesser one for CIRP and TAP deviations. For instance, ADRP zm (in column (7)) is increasing in

frictions in the U.S. intermediation sector (lower broker-dealer leverage), U.S. stock market illiq-

uidity (stronger volume-related return reversals) and volatility (higher VIX), and deteriorating

U.S. bond market conditions (higher default spread, Treasury bond yield slope and volatility),

but also in calmer times (lower TED spread). While CIRP zm displays some similar sensitivi-

ties (column (5)), TAP zm shares only a few (but rarely significantly; see column (6)). This is

consistent with the notion, suggested by the correlation matrices in Table 1 (and the litera-

ture discussed in Section 2.1.2), that abnormal cross-rate mispricings may be driven by distinct

(possibly unobservable) forces. In aggregate, all of these proxies can only explain up to 42% of

MDIm’s dynamics (in column (4)), and no more than 38% of each of its components (in columns

(5) to (7)).28

These properties suggest our index of abnormal arbitrage parity violations to be a reasonable,

non-redundant proxy for financial markets’ ability to correctly price traded assets.

27In untabulated regressions ofMDIm on each of the variables listed in Table 2 separately, we find its sensitivity
to Pastor and Stambaugh (2003)’s innovations in U.S. stock market liquidity to be the most statistically significant
(a slope coefficient of −0.393, with t = −2.22), but changes in VIX to have the greatest explanatory power (R2
of 10.92%). We explore the impact of either measure on whether MDIm is a price state variable in Sections 3.1.2
and 3.1.3.
28The adjusted R2 (R2a) in column (4) of Table 2 drops to less than 9% (and to 4%, −2%, and 14% in columns

(5) to (7)) when the most recent period of financial turmoil (2008-2009) is removed from the sample. The above
inference is unaffected by the further inclusion of the difference between the VIX index and realized S&P 500 return
volatility (a proxy for time-varying variance risk premiums in the U.S. stock market; Bollerslev et al., 2009) and
the Federal Reserve Bank of St. Louis’ financial stress index (capturing the comovement of 18 financial variables
such as stock and bond returns and return volatility, various yield spreads, and TIPS break-even inflation rates) in
the regressions of Table 2. In unreported analysis excluding the sub-period 2008-2009 because of data availability,
we also find MDIm to weakly increase in correspondence with greater investor sentiment (as estimated in Baker
and Wurgler, 2006) or greater worldwide intensity of capital controls (as estimated in Edison and Warnock, 2003).

18



3 Is financial market dislocation risk priced?

Our measure of financial market dislocation risk, MDIm, is based on a large cross-section of

arbitrage parity violations in global stock, foreign exchange, and money markets over nearly four

decades. As discussed above,MDIm has several desirable properties. It is parsimonious and easy

to compute; it relies on model-free assessment of asset mispricings; it is privy of look-ahead bias;

and it displays sensible time-series features, consistent with commonly-held notions of market

dislocations. In this section we investigate whether so-defined financial market dislocation risk is

a priced state variable. We concentrate on equity and foreign exchange markets, because of the

potential sensitivity of stock and currency returns to systematic mispricings and the availability

of established pricing benchmarks. We test whetherMDIm is related to the cross-section of U.S.

and international stock portfolio returns, the cross-section of U.S. stock returns, the cross-section

of currency portfolio returns, and future aggregate stock and currency portfolio returns.

3.1 Financial market dislocations and risk premiums: Stocks

3.1.1 Univariate MDI beta estimation

We begin by exploring the exposure of equity market portfolios to financial market dislocation

risk. Preliminarily, we follow the standard cross-sectional approach by proceeding in two steps

(e.g., Campbell et al., 1997). First, we run time-series regressions to estimate the sensitivity of

the monthly excess dollar return of each portfolio i, Ri,m, to our aggregate abnormal mispricing

index MDIm:

Ri,m = βi,0 + βi,MDIMDIm + εi,m. (4)
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Second, we estimate the dislocation risk premium λMDI using all portfolios:

E (Ri,m) = λ0 + λMDIβi,MDI . (5)

We consider two samples of 26 U.S. and 50 international equity portfolios over the period

1973-2009. The U.S. sample includes the U.S. market (MKT) and 25 U.S. portfolios formed on

size (market equity) and book-to-market (book equity to market equity), from French’s website.29

The international sample is unbalanced and includes the world market portfolio (WMKT), 23

developed, and 26 emerging country portfolios (listed in Table 4), from MSCI.30 Tables 3 and

4 report estimated MDI betas from Eq. (4) for U.S. and international portfolios, respectively.

Figures 4a and 4b display scatter plots of their annualized mean percentage excess returns versus

these MDI betas. The largest, circular scatters refer to the U.S. and world market portfolios;

scatters with dark (white) background refer to statistically (in)significant MDI betas, at the

10% level or less. Estimated MDI betas in Tables 3 and 4 are large, mostly (and often highly)

statistically significant, and always negative: Excess returns of U.S. and international stock

portfolios tend to be lower in correspondence with abnormally high financial market dislocations

– i.e., when arbitrage parity violations are (in aggregate) greater than their historical means

(MDIm > 0).31 MDI betas are more negative for “riskier” portfolios: Portfolios of smaller U.S.

stocks, U.S. stocks with higher book-to-market, and stocks of emerging countries.

Figures 4a and 4b suggest that stock portfolios with more negative MDI betas have higher

average excess returns. Accordingly, estimates of Eq. (5), in Panel A of Table 5, indicate that the

29See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. In unreported analysis, we
find similar inference from studying either a larger (100) or a smaller (10) number of portfolios sorted on size and
book-to-market.
30World and developed country portfolio returns are available from January 1973, with the exception of Finland

(January 1982), Greece, Ireland, New Zealand, and Portugal (January 1988). Emerging country returns are
available from January 1988, with the exception of China, Colombia, India, Israel, Pakistan, Peru, Poland, South
Africa, and Sri Lanka (January 1993), Czech Republic, Egypt, Hungary, Morocco, and Russia (January 1995).
31For instance, the estimates of MDI betas in Tables 3 and 4 imply that excess returns of U.S. and international

stock portfolios decline on average by 0.62% and 1.61% per month, respectively, from a one standard deviation
shock to MDIm (in Panel B of Table 1).
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annualized price of financial market dislocation risk is negative (λMDI < 0) and statistically sig-

nificant within both U.S. and international stock portfolio samples.32 Dislocation risk premiums

are economically significant, amounting to −2.1% and −0.5% per unit of MDI beta – i.e., 7.5%

and 4.4% per average MDI beta (λMDIβi,MDI) – for U.S. and international stock portfolios,

respectively. The accompanying R2 of 51% and 20% suggest that financial market dislocation

risk can explain a meaningful portion of the cross-section of equity portfolio returns. These prop-

erties are generally robust across sample sub-periods, although absolute estimated λMDI and Eq.

(5)’s cross-sectional explanatory power are greater in the first sub-period (1973-1993) for U.S.

portfolios, and in the second sub-period (1994-2009) for country portfolios.33

Intuitively, this evidence is consistent with the notion that investors find financial market dis-

locations undesirable. Thus, they require a compensation for holding stock portfolios with greater

exposure to that risk, i.e., performing more poorly in circumstances when asset mispricings are

abnormally large.

3.1.2 Multivariate MDI beta estimation

Financial market dislocation risk may be subsumed by additional systematic risk factors. For

instance, Figure 4 and Tables 3 and 4 show that both the U.S. and world market portfolios

are highly sensitive to MDIm. We investigate this possibility by employing the multivariate

asset pricing model in Pastor and Stambaugh (2003). This model allows to assess the marginal

contribution of MDIm to the cross-section of equity portfolio returns while accounting for their

sensitivities to other factors.
32Annualized risk premium estimates are computed multiplying monthly estimates by 12. Because of MDIm’s

relatively large variance (e.g., see Panel B of Table 1), similar inference is drawn from applying the errors-
in-variables correction described in Shanken (1992) to their conventional t-statistics (in Tables 5 and 10). The
single-stage GMM estimation of βi,MDI and λMDI in Section 3.1.2 (and Tables 5 and 9) yields heteroskedasticity-
robust inference as well (e.g., Cochrane, 2001).
33Those uneven sub-periods are chosen to correspond to the even sub-periods (1978-1993, 1994-2009) stemming

from the analysis of the cross-section of U.S. stock returns in Section 3.2. Dislocation risk premiums are smaller
(yet still economically and statistically significant) per average change-in-MDI (∆MDIm) beta, e.g., as high as
1.9% (t = 1.72) for U.S. portfolios and 2.6% (t = 2.58) for country portfolios over the full sample 1973-2009.
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Specifically, we define a multivariate extension of Eq. (4):

Rm = β0 +BFm + βMDIMDIm + εm, (6)

where Rm is a N × 1 vector of excess portfolio returns, Fm is a K × 1 vector of “traded” factors,

B is a N ×K matrix of factor loadings, and β0 and βMDI are N × 1 vectors. Assuming that the

N portfolios are priced by the factor betas in Eq. (6) implies that

E (Rm) = BλF + βMDIλMDI . (7)

Since our index MDIm is not the payoff of a trading strategy, in general λMDI 6= E (MDIm),

while λF = E (Fm) for traded factors Fm. Hence, substitution of Eq. (7) in Eq. (6), after taking

expectations of both its sides, yields the restriction:

β0 = βMDI [λMDI −E (MDIm)] . (8)

We consider several factor specifications. The U.S. portfolios in our sample are already

sorted on firm size and book-to-market. Thus, we characterize the vector Fm in Eq. (6) for these

portfolios as including either the U.S. market alone (MKTm) or in conjunction with two traded

U.S. risk factors – the momentum factor, MOMm (from French’s website), and the liquidity

factor of Pastor and Stambaugh (2003), PSm (from Pastor’s website). Further accounting for the

popular size (SMB) and book-to-market (HML) traded factors of Fama and French (1993), also

from French’s website, yields qualitatively similar inference. In the next section we consider all of

these factor models when examining the cross-section of individual U.S. stock returns. TheWorld

CAPM is the most common international asset pricing model (Bekaert and Hodrick, 2009); yet,

there is evidence of size, book-to-market, and momentum effects in international stock returns

(e.g., Fama and French, 1998). Accordingly, we assume that, besides MDIm, common sources

22



of risk Fm for country-level portfolio returns include either the world market (WMKTm) or the

four global market (GMKTm), size (GSMBm), value (GHMLm), and momentum (GMOMm)

factors of Fama and French (2012), from French’s website.34

We estimate the ensuing MDI risk premiums separately for the remaining 25 U.S. stock

portfolios and the 49 country equity portfolios in our sample using the GMM procedure described

in Pastor and Stambaugh (2003).35 Panel B of Table 5 reports the corresponding estimates

of annualized λMDI , their asymptotic t-statistics, as well as asymptotic chi-square J-tests for

the over-identifying restriction in Eq. (8).36 Full-period and sub-period GMM estimates of

dislocation risk premiums for U.S. and eligible international stock portfolios are always negative

and nearly always statistically significant, even after accounting for the effect of alternative

marketwide risks. Accordingly, MDI risk premiums per average MDI beta (λMDIβi,MDI), while

unsurprisingly smaller and less often statistically significant than in Panel A of Table 5, remain

economically large, e.g., ranging between 2.25% and 2.47% for U.S. portfolios (relative to CAPM)

and as high as 4.17% for country portfolios (relative to the global four-factor model).37

34Returns on the global Fama-French portfolios, formed by sorting stocks of 23 developed countries, are available
exclusively from November 1990 onward. It is worth noting that the aforementioned U.S. and global factor
portfolios also tend to perform poorly during market dislocations: E.g., estimated βi,MDI is −3.12 (t = −2.39)
for MKT (in Table 3), −0.61 (t = −0.68) for SMB, −2.69 (t = −3.13) for HML, −0.87 (t = −0.67) for MOM,
−2.91 (t = −2.89) for PS, and −4.21 (t = −3.47) for WMKT (in Table 4) over 1973-2009; −7.55 (t = −5.16) for
GMKT, −0.65 (t = −0.82) for GSMB, −1.21 (t = −1.37) for GHML, and −0.51 (t = −0.33) for GMOM over
1990-2009.
35To that purpose, let γ be the set of 2 + N (K + 1) unknown parameters: λMDI , βMDI , B, and

E (MDIm). Next, define fm (γ) =
¡

hm⊗εm
MDIm−E(MDIm)

¢
, where h0m = (1 F 0m MDIm) and εm = Rm −

βMDI [λMDI −E (MDIm)] − BFm − βMDIMDIm. Then, bγGMM = argmin g (γ)
0
Wg (γ), where g (γ) =

(1/M)
PM
m=1 fm (γ), W is the inverse of (1/M)

PM
m=1 fm (bγ) fm (bγ)0, and bγ = argmin g (γ)0 g (γ).

36In many (but not all) cases, this restriction cannot be rejected at any conventional significance level. Because
of data availability, Eqs. (6) to (8) can be jointly estimated via GMM only for 18 developed country portfolios
(excluding Finland, Greece, Ireland, New Zealand, and Portugal) over 1973-2009 and 1973-1993, and for 44
country portfolios (excluding Czech Republic, Egypt, Hungary, Morocco, and Russia) over 1994-2009. For similar
reasons, we estimate MDI risk premiums relative to the international four-factor model (GMKTm, GSMBm,
GHMLm, GMOMm) exclusively over 1990-2009 for 35 of those 44 country portfolios (further excluding China,
Colombia, India, Israel, Pakistan, Peru, Poland, South Africa, and Sri Lanka).
37Estimates of λMDIβi,MDI for U.S. portfolios relative to conventional three-factor (market, size, and book-to-

market), four-factor (i.e., plus momentum), and five-factor (i.e., plus PS) models are as follows: 0.61% (t = 2.59),
0.39% (t = 1.83), and −0.06% (t = −0.30) over 1973-2009; 0.48% (t = 1.92), 0.62% (t = 2.24), and 0.68%
(t = 2.37) over 1973-1993; 1.75% (t = 3.32), 0.64% (t = 1.67), and −0.29% (t = −0.97) over 1994-2009. Notably,
the corresponding estimated MDI betas relative to three-factor and four-factor models are often positive. We
discuss this feature of U.S. stocks’ sensitivity to dislocation risk in Section 3.1.3.
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Overall, U.S. and international stock portfolios’ sensitivities to financial market dislocations

appear to explain a non-trivial portion of these portfolios’ risk, one that is not captured by

fluctuations in local and global factors and for which investors require meaningful compensation.

3.1.3 Portfolio construction by financial market dislocation betas

The evidence in Tables 3 to 5 provides support to the notion that financial market dislocation

risk may be priced in the cross-section of U.S. and international stock portfolio returns. In this

section we investigate further whether the cross-section of U.S. stocks’ expected returns is related

to those stocks’ sensitivities to abnormal marketwide mispricings, i.e., to their MDI betas. We

follow a portfolio-based approach similar to the one in Pastor and Stambaugh (2003). At the end

of every year of our sample, starting with 1977, we sort all stocks into ten portfolios based on

stocks’ estimated MDI betas over the previous five years. We then regress the ensuing stacked,

post-formation returns on standard asset pricing factors. According to the literature, estimated

nonzero intercepts (alphas) would suggest that MDI betas explain a component of expected stock

returns not captured by standard factor loadings.

Our dataset comes from the monthly tape of the Center for Research in Security Prices

(CRSP). It comprises monthly stock returns and values for all domestic ordinary common stocks

(CRSP share codes 10 and 11) traded on the NYSE, AMEX, and NASDAQ between January

1, 1973 and December 31, 2009.38 At the end of each year (e.g., on month m), for each stock j

with 60 months of available data through m we estimate its MDI beta as the slope coefficient

38As customary, this restriction excludes Real Estate Investment Trusts (REITs), closed-end funds, Shares of
Beneficial Interest (SBIs), certificates, units, Americus Trust Components, companies incorporated outside the
U.S., and American Depositary Receipts (ADRs). The latter is important since ADR mispricings contribute to
our financial market dislocation index. When forming MDI beta-sorted portfolios, we also exclude stocks with
prices below $5 or above $1, 000.
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βj,MDI on MDIm in the following multiple regression of its monthly excess return Rj,m:

Rj,m = βj,0 + βj,MMKTm + βj,SSMBm + βj,BHMLm (9)

+βj,MMOMm + βj,LPSm + βj,MDIMDIm + ηj,m,

where MKTm, SMBm, and HMLm are the market, size, and book-to-market traded factors

of Fama and French (1993); MOMm is the traded momentum factor; and PSm is the traded

liquidity factor of Pastor and Stambaugh (2003). Our results are stronger when excluding from

Eq. (9) eitherMOMm alone or bothMOMm and PSm (as in Pastor and Stambaugh, 2003). We

then sort all stocks by their pre-ranking, historical MDI betas βj,MDI into ten portfolios (from

the lowest, 1, to the highest, 10), and compute their value-weighted returns for the next twelve

months.39 Equally-weighted portfolios yield similar inference. Repeating this procedure over our

sample and stacking decile returns across years generates ten monthly return series from January

1978 to December 2009.40

Panel A of Table 6 reports post-ranking MDI betas from running Eq. (9) for each historical

MDI beta-decile portfolio i, as well as for the 1-10 spread portfolio going long stocks with

the lowest (i.e., most negative) pre-ranking MDI betas (decile 1) and short stocks with the

highest (i.e., most positive) pre-ranking MDI betas (decile 10). Focus on this spread portfolio is

motivated by the evidence in the previous section that stock portfolios with the greatest negative

exposure to financial market dislocation risk experience the highest mean excess returns. Panel

B of Table 6 reports additional features of these portfolios: Their average market capitalization

39The ten portfolios contain an approximately equal number of stocks in each month. On average, each portfolio
contains 124 stocks. No portfolio contains less (more) than 71 (181) stocks. Notably, on each portfolio formation
month, this procedure sorts stocks using exclusively information available up to that month.
40Alternatively, we sort stocks by predicted MDI betas from a linear model including such stock characteristics

as their cross-sectionally demeaned historical MDI betas, past six-month cumulative returns and return standard
deviation, natural log of lagged stock price, and number of shares outstanding. Historical MDI beta, past returns,
and return volatility are the most significant predictors over our sample period; yet, sign and magnitude of all
predictor coefficients display non-trivial intertemporal dynamics. The inference based on portfolios sorted on
these predicted betas is qualitatively comparable to the one based on historical MDI betas.
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and sensitivities to the standard market, size, and book-to-market factors, as well as to the

traded momentum and liquidity factors. Lower (i.e., more negative) historical MDI beta stocks

are generally larger; their portfolios weakly tilt toward value stocks (positive HML betas) and

past losers (negative MOM betas), but are insensitive to liquidity risk (small, insignificant PS

betas).41 Interestingly, post-ranking MDI betas are small or weakly decline across deciles, and

the spread portfolio’s MDI beta is positive and significant only over the sub-period 1994-2009.42

Ceteris paribus, stocks doing relatively poorly during past financial market dislocations (large and

negative MDI betas whenMDIm > 0) may subsequently do poorly or fail to recover those losses

during normal times (positive yet small, insignificant post-ranking MDI betas when MDIm ≤

0). However, stocks doing relatively well during past financial market dislocations (large and

positive MDI betas when MDIm > 0) may preserve or add to those gains afterwards (small or

negative and significant post-ranking MDI betas when MDIm ≤ 0). In light of MDIm’s cycle-

like dynamics over our sample period (see Figure 2), these properties suggest stocks in lower

(i.e., more negative) pre-ranking MDI beta decile portfolios to be riskier than their high decile

counterparts.

Our analysis reveals that investors demand sizeable compensation to hold those riskier stocks.

Table 7 reports post-ranking annualized raw returns and alphas for each pre-ranking MDI beta

portfolio and the 1-10 spread with respect to four conventional traded factor specifications:

CAPM (the market factor: RM,m), Fama-French (the market, size, and book-to-market factors:

MKTm, SMBm, HMLm), Fama-French plus momentum (MKTm, SMBm, HMLm, MOMm),

and Fama-French plus momentum and liquidity (MKTm, SMBm, HMLm,MOMm, PSm). Raw

returns and alphas are generally declining across ex ante MDI beta deciles, except in the earlier,

41In unreported analysis, similar inference ensues from including the S&P100 VIX mimicking factor of Ang
et al. (2006). Monthly returns of low MDI beta portfolios (and the 1-10 spread) tend to be either statistically
unrelated or negatively related to this factor. We thank Deniz Anginer for the VIX factor data.
42Consistently, as noted in footnote 37, (untabulated) sample-wide estimates of MDI betas of (size and book-to-

market sorted) U.S. stock portfolios, after controlling for their exposure to the conventional three or four traded
factors, are also positive.
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more tranquil sub-period (1978-1993). All four spread portfolio alphas are positive over the full

sample (1978-2009), and especially large and statistically significant in the later sub-period (1994-

2009) – when large dislocations (i.e., sizably positive realizations of MDIm) occur most often

(see Figure 2). For instance, five-factor alpha for the 1-10 spread portfolio is 5.29% (t = 2.34)

over 1978-2009, 1.08% (t = 0.35) over 1978-1993 (during which most MDIm ≤ 0), and 9.26%

(t = 2.76) over 1994-2009 (in correspondence with the most well-known episodes of financial

turmoil).43 Equally-weighted decile portfolios have similar characteristics. E.g., Table 8 shows

that the equally-weighted 1-10 spread portfolio displays a positive but insignificant post-ranking

MDI beta (0.87) and positive and significant CAPM, Fama-French, four-factor, and five-factor

alphas (5.36%, 4.41%, 5.66%, and 3.91%, respectively) over 1994-2009.44

Further insight on the sign and significance of the financial market dislocation risk premium

comes from its direct estimation using all ten MDI beta decile portfolios, via the multivari-

ate GMM procedure described in Section 3.1.2. Table 9 reports estimates of λMDI and βi,MDI

from Eq. (7) for value-weighted (Panel A) and equal-weighted (Panel B) portfolios after ac-

counting for priced sensitivities to the three (F 0m = (MKTm SMBm HMLm)), four (F 0m =

(MKTm SMBm HMLm MOMm)), or five (F 0m = (MKTm SMBm HMLm MOMm PSm))

aforementioned traded factors in Eq. (6). Consistent with the sign and declining magnitude of

the value-weighted decile portfolios’ post-ranking alphas and MDI betas in Tables 6 and 7, both

43Augmenting the five-factor model to include the VIX mimicking factor of Ang et al. (2006) yields nearly
identical inference. For example, the resulting (untabulated) six-factor alpha for the 1-10 spread portfolio is
6.15% (t = 2.30) over 1986-2009, 0.31% (t = 0.08) over 1986-1993, and 9.02% (t = 2.53) over 1994-2009. Even
stronger inference can be drawn from forming MDI beta decile portfolios relative to just the three Fama-French
factors or the Fama-French factors plus the liquidity factor of Pastor and Stambaugh (2003) in Eq. (9). For
instance, the former imply five-factor alphas for the 1-10 spread portfolio of 6.72% (t = 2.68) over 1978-2009,
2.31% (t = 0.75) over 1978-1993, and 11.07% (t = 2.82) over 1994-2009; the latter’s post-ranking spread alphas
are 7.31% (t = 2.88) over 1978-2009, 2.45% (t = 0.80) over 1978-1993, and 12.23% (t = 3.00) over 1994-2009.
Sorting stocks into decile portfolios based on their pre-ranking change-in-MDI (∆MDIm) betas yields smaller
(but still non-trivial) 1-10 spread alphas: E.g., 2.88 (t = 1.43), 3.75 (t = 1.86), 3.76 (t = 1.82), 3.05 (t = 1.47),
and 5.21 (t = 2.01) relative to the CAPM, three, four, five, and six-factor models, respectively, over 1978-2009.
44Post-ranking MDI betas are more often statistically significant but less disperse for equally-weighted decile

portfolios, yielding lower spread alphas and MDI betas. However, in unreported analysis we also find that the null
hypothesis that all decile portfolio alphas are jointly zero is nearly always rejected by the F statistic of Gibbons et
al. (1989) for equally-weighted returns, but neither with CAPM alphas nor in the earlier subperiod (1978-1993)
for value-weighted returns.
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estimated risk premiums and spread portfolio’s MDI betas (β1,MDI−β10,MDI) in Panel A of Table

9 are nearly always positive and economically and statistically significant.45 For example, annu-

alized MDI risk premiums per average MDI beta (λMDIβi,MDI) are no less than 0.48% (t = 2.37)

over the full sample (1978-2009) and as high as 0.82% (t = 2.06) over the later sub-period (1994-

2009), in line with those estimated for the 25 size and book-to-market stock portfolios in Panel

B of Table 5. The MDI risk premiums for the 1-10 spread portfolio (λMDI
¡
β1,MDI − β10,MDI

¢
)

are larger – e.g., ranging between 6.85% (t = 2.89) per five-factor MDI beta of 2.84 (t = 3.31)

and 7.80% (t = 2.87) per three-factor MDI beta of 4.23 (t = 3.72) over 1994-2009 – and

broadly consistent with the estimates reported in Table 7. Estimated dislocation risk premiums

for equally-weighted portfolios are comparably significant – e.g., amounting to up to 2.40%

(3.16%) per average full-period (later-period) MDI beta.

Overall, the evidence in Tables 6 to 9 provides additional support to the notion that not only

across U.S. or international stock portfolios but also within U.S. stocks, abnormal mispricings

are undesirable and MDI betas may be priced such that greater exposure to financial market

dislocation risk is accompanied by higher expected returns.

3.2 Financial market dislocations and risk premiums: Currencies

Individual violations of each of the three textbook arbitrage parities entering our composite

index MDIm (CIRP, TAP, and ADRP, described in Section 2) may stem from foreign exchange

markets. Thus, these markets are a potentially important source of financial dislocations as

measured byMDIm. Accordingly, it is intuitive to consider whether exposure to dislocation risk

can explain the cross-section of returns to currency speculation.

To that purpose, we study the performance of the currency portfolios developed by Lustig et

al. (2011) from the perspective of a U.S. investor. Lustig et al. (2011) compute monthly excess

45Notably, according to Panel A of Table 9 the over-identifying restriction in Eq. (8) is never rejected by the
asymptotic chi-square J -tests at standard significance levels.
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foreign exchange returns as the return on buying a foreign currency (and selling USD) in the

forward market and then selling it (and buying USD) in the spot market, net of transaction costs

(bid-ask spreads) for up to 34 developed and emerging currencies between November 1983 and

December 2009. These returns are then sorted into six equal-weighted portfolios on the basis

of foreign currencies’ interest rates. The first portfolio (i = 1) is made of currencies with the

lowest interest rates, while the last (i = 6) contains currencies with the highest interest rates.46

These portfolios have appealing properties. Currency speculation via forward contracts is easy to

implement and yields Sharpe ratios comparable to those offered by international equity markets

(e.g., see Lustig et al., 2011, Table 1). The difference between the first and last portfolio returns,

HMLFX , can be interpreted as the return of carry trades, going long high-interest rate currencies

and short low-interest rate currencies. Lustig et al. (2011) also find that both the slope factor

HMLFX and the average level of foreign exchange excess returns, RX – i.e., the return for

a U.S. investor to investing in a broad basket of currencies – explain most of the time-series

variation in currency portfolio returns.

We estimate MDI betas and MDI risk premiums for currency portfolios from the standard

cross-sectional approach described in Section 3.1.1 (Eqs. (4) and (5)) in Table 10. As for U.S. and

international equity markets, most estimated MDI betas (βi,MDI in Eq. (4)) for currency excess

returns are large, negative, and often statistically significant.47 Portfolios made of currencies

carrying higher interest rates tend to exhibit greater sensitivity to dislocation risk, as do both

the basket currency (RX) and the carry trade (HMLFX) portfolios, especially in the latter sub-

period (1994-2009).48 Hence, both excess returns to speculating in foreign currencies against

the dollar or to zero-cost carry trading tend to decline in correspondence with abnormally high

46This data is available on Verdelhan’s website at http://web.mit.edu/adrienv/www/Data.html. We obtain
similar results within a sub-sample made exclusively of developed countries.
47For example, these estimates imply that excess returns of the currency portfolios in Table 10 decline on

average by 0.27% per month from a one standard deviation shock to MDIm.
48Consistently, Brunnermeier et al. (2008), Hu et al. (2010), Lustig et al. (2011), and Menkhoff et al. (2012)

find returns to carry trades to be related to such potential sources of systematic risk as shocks to Treasury yield
curve noise, U.S. and global equity volatility, and global foreign exchange volatility.
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relative mispricings.

Investors in foreign currencies require a meaningful compensation for exposure to such risk.

Figure 4c shows that – as for U.S. and international stock portfolios in Figures 4a and 4b and

Table 5 – currency portfolios’ average excess returns are inversely related to their MDI betas.

Thus, Eq. (5) yields negative estimates of the annualized price of MDI risk: λMDI < 0 in Table

10. For instance, the estimated λMDI between 1983 and 2009 is large (−1.46% per unit MDI

beta) and statistically significant at the 1% level (t = 4.49), implying a dislocation premium of

2.30% per average MDI beta (and 5.28% for the carry trade portfolio). Dislocation premiums

rise to nearly 4% (more than 7%) over 1994-2009. In addition, MDI betas in Eq. (5) can explain

up to 80% of the cross-sectional variation in currency portfolio returns.49

These results suggest that returns to speculation in foreign exchange markets may reflect

their sensitivity to systematic financial market dislocation risk.

3.3 Predicting asset returns

In this section we investigate whether financial market dislocations can predict future stock and

currency returns. As discussed earlier, positive innovations in the extent of arbitrage parity

violations may stem from more severe, abnormal impediments to speculators’ ability to trade.

Hence, they may contain information about current and future stressful conditions in financial

markets ultimately leading to lower future asset prices, at least in the short term. Yet, evidence

of positive dislocation risk premiums in Tables 5 and 10 suggests that abnormally high current

mispricings may imply higher future asset prices in the long term.

We test the ability of our indexMDIm to predict excess returns of U.S. and international stock

49Dislocation risk premiums per unit change-in-MDI (∆MDIm) beta are also large, e.g., implying a compen-
sation of 1.85% (t = 4.27) per average βi,∆MDI and 6.54% for HMLFX over 1994-2009 (with R2 = 84%).
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portfolios and currency portfolios over different horizons by running the following regressions,

Ri,m,m+h = δhi,0 + δhi,1Ri,m−h,m + δhi,MDIMDIm + em,m+h, (10)

where Ri,m,m+h is portfolio i’s cumulative excess return over the next h months and Ri,m−h,m

controls for the previous horizon’s excess return, for each of the 26 U.S. and 50 country stock

portfolios described in Section 3.1.1, and each of the 8 currency portfolios described in Section 3.2.

Table 11 reports summary statistics for the estimates of the coefficients of interest: δh=1i,MDI for one-

month-ahead (in Panel A) and δh=6i,MDI for six-month-ahead (in Panel B) cumulative stock returns,

multiplied by the in-sample standard deviation of MDIm to ease their economic interpretation.

Individual such estimates for currency portfolios are in Panels A (h = 1) and B (h = 6) of Table

12.50

As conjectured above, estimated near-future predictive coefficients δh=1i,MDI are nearly always

negative across stock and currency portfolios and over time, but not as often statistically sig-

nificant. For instance, Panel A of Table 11 shows this to be the case for only 3 U.S. portfolios

over the full sample period 1973-2009. Interestingly, those are portfolios made of firms with high

book-to-market. This is consistent with our finding in Sections 3.1.1 and 3.1.3 (and Tables 3

and 6) that U.S. value firms’ stock returns display the greatest pre- and post-ranking sensitivity

to dislocation risk. Estimates of δh=1i,MDI for currency portfolio returns (in Panel A of Table 12)

are also mostly negative, and statistically significant only for relatively high and low interest

currencies.

Current financial market dislocations have only marginally greater predictive power for near-

future returns of international stock portfolios. Panel A of Table 11 shows that a one standard

deviation increase in aggregate abnormal asset mispricings statistically significantly predicts an

50These estimates are unlikely to be affected by the finite-sample biases documented in Stambaugh (1999), since
our measure of average innovations in arbitrage parity violations MDIm is neither very persistent (see footnote
23) nor made of scaled price variables.
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average of 1.10% lower excess return next month for 5 of the country stock portfolios in our

sample (with a corresponding mean adjusted R2 [R2a] of 4%) between 1973 and 2009. This short

list includes both developed (Finland, Ireland) and emerging markets (Jordan, Morocco, Poland)

but neither the U.S. nor the World market. This evidence is robust across the two sub-periods.51

For instance, positive innovations in aggregate arbitrage parity violations over 1973-1993 –while

often smaller than later in the sample – were followed by an average of −0.25% lower monthly

excess returns (when significant, with a mean R2a of 9%), and as much as −3.71% in China.

MDI’s predictive coefficients for six-month-ahead holding-period returns (δh=6i,MDI) are more

often positive and significant, consistent with the cross-sectional evidence in Sections 3.1. and

3.2. For instance, estimated δh=6i,MDI in Panel B of Table 11 imply that a one standard deviation

increase in abnormal arbitrage parity violations during the later, more turbulent sub-period 1994-

2009 – when estimated dislocation risk premiums in Tables 5 to 9 are the largest – is followed

by an average of 3.19% (5.10%) higher excess U.S. (international) stock returns over the next

six months when statistically significant, and by as much as 4.30% (8.69%) higher excess returns

for small growth firms (Indonesia). Similarly, estimates of δh=6i,MDI for currency portfolios over

1994-2009 are nearly always positive, albeit never statistically significant.

4 Conclusions

Dislocations occur when financial markets experience abnormal and widespread asset mispricings.

This study argues that dislocations are a recurrent, systematic feature of financial markets, one

with important implications for asset pricing.

We measure financial market dislocations as the monthly average of innovations in six hundred

observed violations of three textbook arbitrage parities in global stock, foreign exchange, and

money markets. Our novel, model-free market dislocation index (MDI) has sensible properties,

51Because of data availability, Eq. (10) cannot be estimated for Czech Republic, Egypt, Hungary, Morocco,
and Russia over the sub-period 1973-1993.
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e.g., rising in proximity of U.S. recessions and well-known episodes of financial turmoil over

the past four decades, in correspondence with greater fundamental uncertainty, illiquidity, and

financial instability, but also in tranquil periods.

Financial market dislocations indicate the presence of forces impeding the trading activity of

speculators and arbitrageurs. The literature conjectures these forces to affect equilibrium asset

prices. Accordingly, we find that investors demand significant risk premiums to hold stock and

currency portfolios performing poorly during financial market dislocations, even after control-

ling for exposures to market returns and such popular traded factors as size, book-to-market,

momentum, and liquidity. This evidence provides further validation of our index.

Our analysis contributes original insights to the understanding of the process of price forma-

tion in financial markets in the presence of frictions. It also proposes an original, easy to compute

macroprudential policy tool to oversee the integrity of financial markets and detect systemic risks

to their orderly functioning.
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Table 1. Arbitrage parity violations: Summary statistics

This table reports summary statistics for monthly averages of daily equal-weighted means of observed (Panel

A, in basis points, i.e., multiplied by 10,000) and standardized (Panel B) absolute log violations of the Covered

Interest Rate Parity described in Section 2.1.1 (CIRPm and CIRP
z
m, respectively), of the Triangular Arbitrage

Parity described in Section 2.1.2 (TAPm and TAP zm), of the ADR Parity described in Section 2.1.3 (ADRPm
and ADRP zm), as well as for the ensuing Market Dislocation Index described in Section 2.2 (MDIm), between
January 1973 and December 2009. Each individual absolute log difference between actual and theoretical prices

is standardized by its historical mean and standard deviation over at least 22 observations up to (and including)

its current realization. The market dislocation index is constructed as an equal-weighted average of CIRP zm,
TAP zm, and ADRP

z
m, when available. N is the number of monthly observations. Np is the total number of

parities.

Correlation matrix
Parity Np N Mean Median Stdev Min Max CIRP TAP ADRP MDI

Panel A: Absolute arbitrage parity violations
CIRPm 63 236 21.22 19.58 8.76 8.76 84.27 1 -0.116 0.314 0.901

TAPm 122 444 0.14 0.14 0.01 0.12 0.19 -0.116 1 -0.140 0.182

ADRPm 410 441 218.87 200.86 78.16 121.94 673.86 0.314 -0.140 1 0.292

Panel B: Standardized absolute arbitrage parity violations
CIRP zm 63 235 -0.02 -0.10 0.42 -0.55 3.33 1 -0.140 0.558 0.917

TAP zm 122 444 0.08 0.04 0.13 -0.15 0.78 -0.140 1 -0.025 0.203

ADRP zm 410 441 -0.16 -0.17 0.25 -1.28 1.47 0.558 -0.025 1 0.825

MDIm 595 444 -0.03 -0.05 0.17 -0.65 1.47 0.917 0.203 0.825 1

41
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Table 3. MDI betas: U.S. stock portfolios

This table reports OLS estimates of MDI betas βi,MDI , the slope coefficients from time-series regressions

of percentage monthly excess returns of each of 26 U.S. stock portfolios i on MDIm, the financial market
dislocation index described in Section 2.2 (Eq. (4)), over the full sample period (January 1973 to December

2009, 444 observations). The sample includes the U.S. market (MKTm) and the intersections of five U.S.
stock portfolios formed on size (market equity, M), from small to large, and five portfolios formed on book-to-

market (book equity to market equity, B/M), from low to high, Ri,m, from French’s website. t-statistics are in

parentheses. A “∗”, “∗∗”, or “∗∗∗” indicates significance at the 10%, 5%, or 1% level, respectively.

U.S. market 25 U.S. portfolios
βMKT,MDI βi,MDI Low B/M 2 3 4 High B/M

-3.12∗∗ Small M -3.05 -3.09 -3.92∗∗ -3.81∗∗ -6.37∗∗∗

(-2 .39) (-1 .32) (-1.57) (-2 .36) (-2 .44) (-3 .76)

2 -2.26 -3.37∗∗ -3.10∗∗ -4.53∗∗∗ -5.65∗∗∗

(-1 .07) (-1.98) (-2 .03) (-3 .07) (-3 .33)

3 -2.79 -3.14∗∗ -3.56∗∗ -4.18∗∗∗ -4.11∗∗∗

(-1 .43) (-1.99) (-2 .54) (-3 .06) (-2 .66)

4 -2.31 -3.23∗∗ -4.35∗∗∗ -4.29∗∗∗ -4.82∗∗∗

(-1 .32) (-2.14) (-2 .98) (-3 .14) (-3 .15)

Large M -1.91 -2.25∗ -3.04∗∗ -3.95∗∗∗ -3.95∗∗∗

(-1 .37) (-1.71) (-2 .37) (-3 .15) (-2 .85)
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Table 12. MDI and currency return predictability

This table reports the estimated predictive coefficients of OLS regressions of one-month-ahead percentage

excess returns (Ri,m,m+1, Panel A) or six-month-ahead cumulative percentage excess returns (Ri,m,m+6, Panel
B) of each of the 8 currency portfolios i described in Section 3.2 (six currency portfolios formed on interest rates,
from low [1] to high [6], as well as a portfolio going long a basket of developed and emerging currencies against

the dollar [RX] and a carry trade portfolio [HMLFX ] going long high-interest rate currencies and short low-
interest rate currencies) on their previous month’s excess returns (Ri,m,m) or their previous six-month cumulative
excess returns (Ri,m−6,m), respectively, and previous month’s realization of the financial market dislocation index
described in Section 2.2 (MDIm). Specifically, we report the aforementioned regressions’ coefficients forMDIm
(δh=1i,MDI and δ

h=6
i,MDI of Eq. (10), estimated over the full sample 1983-2009 and two sub-periods [1983-1993, 1994-

2009]), multiplied by the corresponding in-sample standard deviation of MDIm (i.e., δhi,MDIσMDI), as well
as their Newey-West t-statistics (in parentheses). R2a is the corresponding adjusted R

2. A “∗”, “∗∗”, or “∗∗∗”

indicates significance at the 10%, 5%, or 1% level, respectively.

1 2 3 4 5 6 RX HMLFX
Panel A: One-month-ahead excess returns

Estimated δh=1i,MDI times σMDI
1983-2009 -0.05 -0.18∗ -0.08 -0.09 -0.19 -0.02 -0.11 0.04

(-0.29) (-1 .67) (-0 .60) (-0 .69) (-1 .41) (-0 .09) (-0.84) (0 .25)

R2a -0.59% 0.69% -0.50% 1.36% 2.81% 1.85% 0.70% 1.63%

1983-1993 0.03 -0.002 0.26 0.18 0.16 0.39 0.17 0.38∗

(0 .12) (-0 .01) (1 .25) (0 .78) (0 .66) (1 .48) (0 .83) (1 .74)

R2a -1.22% -1.68% -0.66% -0.66% -0.61% 1.74% -1.11% 1.28%

1994-2009 -0.10 -0.24∗ -0.20 -0.17 -0.28∗ -0.15 -0.19 -0.03
(-0.39) (-1 .81) (-1 .14) (-0 .99) (-1 .75) (-0 .60) (-1.10) (-0 .16)

R2a -0.34% 3.09% 0.08% 4.54% 7.79% 2.43% 3.54% 2.30%

Panel B: Six-month-ahead cumulative excess returns
Estimated δh=6i,MDI times σMDI

1983-2009 -0.002 0.05 0.49 0.10 0.54 0.80 0.44 2.69
(-0.00) (0 .12) (1 .30) (0 .26) (-1 .04) (1 .54) (0 .97) (0 .90)

R2a 1.98% -0.02% 1.00% 0.97% -0.08% 1.01% 0.95% 0.07%

1983-1993 -0.83 0.18 1.38∗ 0.19 0.53 1.55∗ 0.44 2.69∗∗∗

(-1 .07) (0 .25) (1 .77) (0 .25) (0 .78) (1 .91) (0 .67) (3 .94)

R2a 5.59% -1.50% 2.30% -1.79% -1.33% 1.70% -0.78% 11.23%

1994-2009 0.11 -0.15 0.36 0.26 0.32 0.78 0.35 -0.02
(0.22) (-0 .33) (0 .76) (0 .54) (0 .56) (1 .24) (0 .76) (-0 .02)

R2a -0.94% -0.47% 1.38% 5.46% -0.46% 1.00% 0.93% -0.42%
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Figure 2. The market dislocation index

This figure plots the Market Dislocation Index described in Section 2.2 (MDIm). The index is constructed as
a monthly average of equal-weighted means of daily abnormal (i.e., standardized), absolute log violations (in basis

points, i.e., multiplied by 10,000) across 63 permutations of the Covered Interest Rate Parity described in Section

2.1.1 (CIRP zi,m), 122 permutations of the Triangular Arbitrage Parity described in Section 2.1.2 (TAP
z
i,m),

and 410 permutations of the ADR Parity described in Section 2.1.3 (ADRP zi,m), between January 1973 and
December 2009. Each individual absolute log difference between actual and theoretical prices is standardized

by its historical mean and standard deviation over at least 22 observations up to (and including) its current

realization.
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