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Abstract

This paper offers a unified treatment of truthful communication prior to a sale under in-
complete information. Among other things, the framework accommodates general reporting
costs, information endowments, message spaces or possible uses of information. I show that
this class of problems admits at most a unique perfect sequential rational expectations equi-
librium (PRE) and provide a tractable methodology to characterize it. I provide conditions
for the existence of the PRE which nest common settings and a class of problems involving
selective disclosure over multiple pieces of information. Necessary and sufficient conditions
are provided for unravelling to a fully-revealing equilibrium and I show that this unravelling
property has a representation that is equivalent to a breakdown in a lemon’s market. Then,
when unravelling does not hold, I examine the social desirability of rules that reduce the level
of discretion in communication. Lastly, I analyze an application in which the seller observes,
and can disclose, ranges over the true state; the model casts doubt on several commonly-
accepted conjectures in the area of truthful disclosure, e.g., that unfavorable information
should be withheld or that an increase in costs or a reduction in information endowment
would necessarily reduce communication.
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Models of communication generally fall into one of three broad families, which emphasize

one channel through which a self-interested agent (sender) making the communication may

transmit information to another party. In the signalling family, holding the response to the

information fixed, the sender only has private information about her preferences over possible

communications. In the cheap talk family, holding the communication fixed, the sender has

private information about her preference over the possible responses to the information. In the

truthful disclosure family, the sender is privately informed about the feasibility of making certain

communications.
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While signalling and cheap talk have been the object of significant theoretical research,

prior literature in the area of disclosure has primarily focused on models within specific applied

settings. Existing theories of disclosure require a detailed description of the information known

to the players, their preferences and the consequences of their disclosures and there is no general

theoretical framework for models involving truthful disclosure.

This paper offers to fill this gap and presents a tractable methodology to analyze pure truthful

disclosure in the context of a sale. By pure truthful disclosure, I assume here that the sender

cannot signal her information as a result of her differential preference over messages or transmit

information via unverifiable cheap talk. Throughout the paper, for expositional reasons, I use

the simplifying analogy of a seller putting an item of unknown quality for sale in a market. This

analogy is helpful to make the analysis more directly comparable to the rest of the literature

in the area and captures well the underlying conflict of interest. It is possible to obtain the

results more abstractly by reinterpreting the market price in this analogy as a more general

decision that is made by another party and over which the preferences of the communicating

and receiving party are completely misaligned.

My analysis offers several novel contributions to the area of truthful disclosure. First, I

introduce a refinement that selects a unique equilibrium in all truthful disclosure problems and

show that the unique equilibrium can always be recovered constructively from a simple algorithm.

I provide conditions under which the equilibrium exists and apply the theory to prove existence

and uniqueness in generalized versions of classic truthful disclosure models. Second, I develop

necessary and sufficient conditions for unravelling to a fully-revealing set of disclosures. These

conditions clarify and extend some examples of breakdown of unravelling described in specialized

settings. In particular, I show that the existence of disclosure costs or imperfect endowment of

information are neither necessary nor sufficient conditions to prevent unravelling but are instead

special cases of the more general economic principles that might prevent unravelling. Third, I

examine the economic consequences of regulations that restrict discretion over what sellers can

communicate. While, in general, the consequences of such regulations are redistributive across

sellers, eliminating discretion to withhold or forcing sellers with the most favorable information

to perfectly reveal their information will be undesirable to all sellers.

Lastly, I revisit three classic predictions in this area within models that involve richer forms

of truthful communication. Prior literature generally assumes at least two of the following

three conditions: (a) the cost of disclosure is fixed and does not depend on what information
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is disclosed, (b) the seller must be either fully informed or fully uninformed, and (c) the seller

must can either keep silent or fully report what she knows. When any two of assumptions (a)-

(c) hold, it is known that sellers with unfavorable information withhold and both increases in

disclosure costs or lower endowment of information reduce communication. When only one of

these assumptions hold, however, these insights are shown not to hold in general and I provide

a complete analysis of the type of communication in these environments.

A more detailed elaboration on the results follows. Truthful disclosure problems are a subset

of persuasion games in which some messages are defined as “truthful” and, by assumption, a

sender cannot make any untruthful report or be directly penalized for being truthful as a function

of her own observed information. This class of problems has found many natural applications in

law and economics. As one example, in a court of law, a person can show a piece of evidence, or

strategically select which evidence to show or withhold but, plausibly, cetain forms of evidence

might be difficult to fabricate or tamper with. As a second example, the communication might

be about a verifiable fact to be released at some date in the future; provided the law has the

ability to (ex-post) enforce sufficient fines against any misreporting, the communication will be

truthful.

I introduce a simple equilibrium concept to construct the equilibrium in truthful disclosure

problems which is adapted from the perfect sequential equilibrium of Grossman and Perry (1986)

and denoted perfect sequential rational expectations equilibrium (PRE). I show that the PRE is

generically unique and can be constructed from an algorithm, the priority algorithm, that applies

to any truthful communication problem. Under the priority algorithm, the PRE is constructed

iteratively in a sequence of steps: in the first step, the priority algorithm selects the report that

maximizes sellers’ expected utility under the belief that all sellers for whom the report is feasible

make this report. Then, all types that can feasibly send this report are assigned the report as

their equilibrium strategy, and the type space is updated by iterated elimination in this manner

until all types have been exhausted.

I give several economic conditions that guarantee the existence of the PRE and use the

theory to show the existence of a unique PRE in a class of multi-dimensional disclosure problems.

Using the priority algorithm, I examine the welfare consequences of certain regulations in this

environment, in which the regulator can reduce or increase discretion over the reporting space.

Removing the option to withhold information or mandating full-disclosure of the most favorable

information will hurt all sellers, regardless of the information they intend to communicate. The
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result suggests that the social value of mandatory disclosure may be caused by other externalities

of disclosure (e.g., product market competition) or its effect on the bargaining power of buyers

in the market.

The PRE can be applied to analyze rich models of truthful communication. A procedure

is obtained to characterize the PRE in problems with a continuous type space and I apply

this result along three applications that improve over weaknesses of the classic models in this

area. Within a richer setting, I re-examine three well-accepted results in this literature, i.e.,

whether more favorable events are more tightly disclosed and whether costs or lack of information

endowment reduce communication. None of these properties holds when assuming only truthful

communication, but the model offers simple insights as to when and why these properties will

hold.

The plan of the analysis is as follows. Section 1 contains a definition of truthful communica-

tion problems, a discussion of the literature with several examples, and the equilibrium concept

of PRE. Section 2 offers the main theoretical contribution of the paper, and introduces the pri-

ority algorithm, the proof of uniqueness and conditions under which the PRE exists. Section 3

uses of the properties of the priority algorithm to revisit general conditions under which unravel-

ling to full-disclosure will occur, and then examines the effect of particular mandatory disclosure

rules. Section 4 extends the algorithm to a continuous type space and further develops three

applications of the model in which some of the comparative statics discussed in the broader

literature can be assessed.

1. The model

1.1. Communication and beliefs

This is a model in which a good is placed for sale by a privately informed seller after a truthful

disclosure has been made. There is a finite number of possible states of the world, where the

state is a random variable s̃ ∈ S = {s1, . . . , sn} and the probability of state s being realized

is denoted qs. Hereafter, I use the interpretation of the sale of a firm’s asset but, as for most

models in this literature, the good for sale may also be interpreted as the sale of a product by

a company, the supply of labor services, etc.

The seller has private information about the state of the world which I represent as a signal

x̃. I refer to each realization x̃ = x as the seller’s type and denote the set of types as a finite set
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X = {x1, . . . , xm}.1 Conditional on state s, each type has probability tx(s). Prior to the sale,

the seller must issue a public report r which may convey information about her type. A seller

with type s can choose a report r ∈ M(x), where M(x) is a finite non-empty that contains all

reports that can be truthfully made by type x. Put differently, the set M(x) defines for the

problem under consideration what a truthful report is. A report r /∈ M(x) is categorized as

untruthful and, by assumption, cannot be made by type x.

Conditional on price p and report r, the seller achieves a utility U(p, r), where U is strictly

increasing in p. Implicit in this assumption, the seller has no alternative use for the asset and

must sell.2 The selling price is a function of buyers’ expectations about the underlying state.

For any distribution F over the set of states S, let P(F ) denote the market pricing function.3

When observing a report, buyers form a belief b ⊆ X that the type of the seller making this

report is such that x̃ ∈ b. To map beliefs about types into prices, I define the function φ(.)

that associates to any b the induced probability distribution over the set of states, i.e., φ(b) is

the c.d.f. of the random variable s̃|x̃ ∈ b. Then, P(φ(b)) is the market price that is offered by

buyers with belief b.

The timing of the model is as follows. Nature draws the state of the world s̃ = s and the

seller draws her information x̃ = x. Then, she issues a report r ∈ M(x). This report is publicly

observed and the firm is priced by buyers at price p.

I make two technical assumptions, both of which are very natural for my setting. First, for

any two beliefs b and b′, the price function satisfies that P(φ(b ∪ b′)) ≥ min(P(φ(b)),P(φ(b′))).

That is, even if there is uncertainty about the state, the resulting price should not be lower

than the most pessimistic belief. Second, I assume that the problem is generic, i.e., specifically,

any feasible utility level û has a unique antecedent (b, r) where U(P(φ(b)), r) = û. Genericity

will be implied by any small perturbation to the payoff structure and is commonly-used in finite

games.4

1As I will show later on, there are several, mostly technical, difficulties when considering a continuous type
space. The assumption of discrete types allows me to state the economic aspects of the model with more generality
and has been used in the voluntary disclosure literature (e.g., Grossman and Hart (1980), Grossman (1981), Shin
(1994)).

2Without loss of generality, I adopt the convention of modelling the possible cost of sending a report r directly
in the utility function rather than including it in the price.

3At this point, I make no assumption about how buyers value risk or whether further operating decisions
are made by buyers. As an example with real effects, the model accommodates a pricing function P(F ) =
maxk

∫
H(k, s)dF (s) (Shavell (1994)) which can be interpreted as a production economy with a post-disclosure

investment k.
4As for the equilibrium concept, I adapt genericity, usually defined in the context of multi-player games,

to a rational expectations setting. In other words, the belief b and implied price is, in a rational expectations
equilibrium, the analogue to the action of the responder in a traditional communication game. For other examples
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Definition 1.1 A disclosure problem (Q) is given by a state space (S, qs), a type space (X, tx(s)),

the pricing function P(F ) and the utility function U(p, r).

Example 1 (Unravelling) In Grossman (1981) and Milgrom (1981), the seller observes

information about the quality of an item placed for sale s̃ ∈ S, so that the type of a seller

is equal to the state x̃ = s̃. There is a prospective buyer for the item who values quality

according to a VnM utility function V (s, p) where s is quality and p is price paid. For a given

probability assessment F about quality, the buyer is willing to pay up to P(F ), defined by
∫

V (s̃,P(F ))dF = v, where v is the utility obtained when not buying. The seller can make any

report r that indicates that the true quality lies in the set r, i.e., M(x) = {r ⊆ S : x ∈ r}.

There are no reporting costs and the seller achieves a utility U(p, r) = p. In Grossman and Hart

(1980), the pricing function P(F ) can be a linear or convex function of F and the reporting

space is restricted to disclosure or withholding, i.e., M(x) = {x, rnd}. In Viscusi (1978), a seller

can certify that she is above a certain quality, i.e.., M(x) = {r : x ≥ r} and the analogue to

withholding is r = s.

Example 2 (Disclosure costs) In Verrecchia (1983), a seller observes a noisy signal x̃ about

the liquidating cash flow s̃ of a traded asset, i.e., x̃ = s̃ + ε where ε is white noise. The market

price for the asset is P(φ(b)) = E(s̃|x̃ ∈ b) − βV ar(s̃|x̃ ∈ b). A seller can truthfully disclose or

withhold information and makes a report r ∈ M(x) = {x, rnd}. There is a proprietary cost c > 0

that reduces the firm’s cash flows conditional on a disclosure r = x. In Verrecchia (1983), this

cost is modelled directly as part of the market price but, since the manager owns the firm, the

cost can be equivalently be represented as part of the seller’s utility function U(p, r) = p−1r=xc.

In Jorgensen and Kirschenheiter (2003), x̃ is the variance of the asset which she can disclose

for a cost. The first model in Jovanovic (1982) (p.37) also satisfies these assumptions, with

the special case of risk-neutral pricing. The model of Fishman and Hagerty (1990) has more

trade-offs (e.g., moral hazard and liquidity trading) but the disclosure framework follows these

assumptions, namely, the manager knows his effort x̃ which increases the final cash flow s̃, and

chooses a precision r ∈ M(x) = {τH , τL}, which is publicly observed, and such that the cost of

a high precision is higher than the cost of a low precision. The price then forms according to a

price-setting mechanism which is a function of r and is increasing in the realized disclosure.

of uses of genericity in games, see Kreps and Wilson (1982), Banks and Sobel (1987) or Blume and Zame (1994).
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Example 3 (Imperfect information endowment) Dye (1985) and Jung and Kwon (1988)

develop a model in which the seller can be informed about the true liquidation cash flow, denoted

x̃ = s̃, or uninformed, denoted x̃ = NI. An uninformed seller cannot disclose that she is

uninformed, and must report M(NI) = {rnd} while, by contrast, an informed seller may report

her information M(x) = {x, rnd}. There are no disclosure costs and all players are risk-neutral.

Hence, P(φ(b)) = E(s̃|x̃ ∈ b) and U(p, r) = p. In Shavell (1994), the information can be used

for productive purposes, i.e., P(φ(b)) = maxk E(s̃r(k) − k|x̃ ∈ b) where k represents the buyer’s

operating choice (Shavell also models a pre-disclosure information acquisition stage). In Hughes

and Pae (2004), a mandatory disclosure z is publicly observed and is a noisy unbiased signal on

the terminal cash flow with mean z0. Then, the manager might observe its precision x̃ which she

can disclose or withhold when informed. The market prices the firm as a weighted average of

the initial prior and the mandatory disclosure, P(φ(b)) = max(l,E(s̃z + (1 − s̃)z0|x̃ ∈ b)) where

l can represent the payoff from an early liquidation.

Example 4 (Multi-dimensional information) In Shin (1994), the seller observes a ran-

dom vector of signals x = (yi, zi)k
i=1 where, conditional on true state s̃, for each i, yi and/or

zi can be equal to NI (the seller did not observe the signal) or, otherwise, satisfy yi ≤ s̃

and zi ≥ s̃. The seller can truthfully disclose or withhold information, i.e., she can make

any report r = {{r1
i , r

2
i }

k
i=1} where r1

i ∈ {yi, NI} and r2
i = {zi, NI}. There are no costs

and buyers and sellers are risk-neutral. Kirschenheiter (1997) develops a two-dimensional

version of Verrecchia (1983) in which the seller observes x = (x1, x2), can report M(x) =

{(x1, rnd), (rnd, x
2), (rnd, rnd), (x1, x2)}, where rnd indicates that the signal is withheld. The

seller is risk-neutral and obtains a utility U(p, r) = p − 1x1 6=r1
nd

c1 − 1x2 6=r2
nd

c2 − 1x1,x2 6=rnd
c12.

Pae (2005) develops a two-dimensional version of Dye (1985) in which the seller might receive

between zero and two signals. Dye and Finn (2007) consider a n-dimensional version of this

model where the seller may stochastically receive between 1 and n signals.

Example 5 (Untruthful disclosure) Benabou and Laroque (1992) and Marinovic (2013)

offer examples of models with uncertainty about the sender’s preference. In their model, a

type x̃ = (τ, s) has two characteristics. The parameter τ ∈ {0, 1} represents whether the seller

constrained and, when τ = 1, the seller must report M(x) = {s}. When τ = 0, the seller is

unconstrained and can report any s, i.e., M(x) = {s : s ∈ S}. There is no credible mechanism

to perfectly report τ . There are no costs and buyers price the firm as P(φ(b)) = E(s̃|x̃ ∈ b).

7



Note that the unconstrained type can, in effect, make disclosures that do not represent her

observed s and mimic the disclosures made by the constrained type. In the version developed

by da Silva Pinheiro (2013), the unconstrained type must report within certain bounds that

determine the probability that a favorable report is publicly released.

Example 6 (Lemon’s market) It might seem that a market for lemon (Akerlof (1970)) does

not fit in the model, because if the seller opts to retain and consume the asset, her utility will

depend on her true type. However, the model can be easily reinpreted to accommodate lemons

as a special case. As in prior examples, let M(x) = {x, rnd} but letting now r = x denote the

(binding) report that the seller has an asset with value x that she has opted not to sell; hence,

she has no longer a reason to make a false disclosure. Then, denote U(p, r) = (1 − 1r=xβ)p

so that the “cost” of disclosure is reinterpreted as a proportional discount for having the seller

consume her asset instead of transferring it to a buyer with a higher willingness to pay. Vice-

versa, let r = rnd be the report in which the seller does not consumer and puts the asset for

sale. As an richer version of this example, Jovanovic (1982) allows the seller to either retain the

asset or disclose and sell, which can be represented as U(p, r) = max(1 − 1r=xβ)p, p − 1r=xc),

where β ∈ (0, 1), since the seller implicitly has the option between two mechanisms to make a

truthful disclosure: (a) keep the discounted asset, or (b) pay the disclosure cost but sell it at its

full value.

Example 7 (Dynamic disclosure) Several recent studies focus on the issue of dynamic

disclosure, when the disclosure process occurs over multiple periods with, possibly, new arrival

of information (see, e.g., Einhorn and Ziv (2008), Beyer and Dye (2011), Guttman, Kremer and

Skrzypacz (2012), Marinovic and Varas (2013)). Many of these models are solved by backward

induction or dynamic programming where the disclosure problem is considered over a single

period looking ahead on the continuation payoff of future periods. This, in turn, implies that

(in each period) the utility function has the form Ut(p, r) which is to be recovered endogenously

and thus cannot necessarily be characterized in closed-form on which standard methods can be

applied. Although the methods discussed here do not cover the issue of solving for the proper

characteristics of Ut(.), they allow modelers to establish the existence and uniqueness of an

optimal disclosure policy in each period with little required knowledge of continuation payoffs.
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1.2. Equilibrium concept

I introduce next the equilibrium concept for the model. As is standard in the truthful dis-

closure literature, I use a rational expectations equilibrium concept and model the receiver in

reduced-form as a price-setting mechanism.5

Definition 1.2 For a disclosure problem (Q), a rational expectations equilibrium (RE) Γ is

defined as a price function P (r), a belief structure B(r) and a reporting strategy R(x), such

that:

(i) All sellers maximize their utility, i.e., for any type x, R(x) ∈ argmaxr∈M(x)U(P (r), r).

(ii) Prices and beliefs form in a Bayesian manner, i.e., B(r) = {x : R(x) = r} and, for any

B(r) 6= ∅, P (r) = P(φ(B(r))).

(iii) For any B(r) = ∅, there exists br ⊆ M−1(r) such that P (r) = P(φ(br)).

Definition 1.3 For a triple Γ = (P (.), B(.), R(.)), let uΓ(x) = U(P (R(x)), R(x)) be defined as

the utility obtained by type x conditional on prices, beliefs and reporting strategies Γ.

Like many persuasion games, disclosure problems can have many equilibria which can be

sustained by various pricing functions P (.). I introduce a slightly modified version of perfect

sequential equilibrium (Grossman and Perry (1986)), which I label perfect rational expectations

equilibrium (PRE). This criterion cannot rule out multiplicity in all persuasion games but I will

show that it predicts at most a unique equilibrium in (generic) truthful disclosure problems.

I give a general intuition for the PRE and then present a formal definition. In a PRE, the

problem described above is viewed as a simplified representation of a richer interaction in which

the seller chooses a report r0 and can either take the quoted market price or make an alternative

binding offer p0. If this offer p0 is rejected, the asset is not sold, an eventuality I am assuming

to be a least-preferred outcome for the seller.6

5One potential limitation of this formulation is that it may seem counter-intuitive to use a refinement that
applies to the price-setting mechanism and not to a real player. However, one should note that the price-setting
mechanism can always be expanded here as a model in which the seller makes a take-it-or-leave-it offer to a buyer
or if multiple buyers compete. The use of the price-setting mechanism is used here to save space when exposing
the model but is, like in most of this literature, not critical for the main insights.

6Note that for this rationale to hold, the seller should not be able to costlessly revert to the market price
function P (.) since, in this case, any offer would be cheap talk. This assumption is consistent with most non-
cooperative bargaining games, in which modifying an offer should involve non-zero costs to the party making
the offer (Rubinstein (1982), Crawford (1982)). Naturally, since my purpose here is not to develop a complete
bargaining game but to motivate the PRE criterion, I make the simplifying assumption that an offer is completely
binding.
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The PRE relies on a forward-induction logic where players assume that an off-equilibrium

action must be rationalized from a particular belief and, therefore, buyers should learn from

what this action means. To be specific, consider an off-equilibrium proposal (r0, p0). For the

seller to rationally make an offer different from the posted price, she should be anticipating her

offer to be accepted. Hence (if possible), buyers should assume that the seller expects the offer

to be accepted.7 Further, all types of sellers should have the same expectation and, therefore,

expect this particular offer to be accepted. Therefore, all sellers who can truthfully offer (r0, p0)

and are better-off doing so should be expected to make this offer. In turn, buyers can calculate

the set of types b0 accordingly, implying a maximal willingness to pay for the asset P(φ(b0)). If

the offered price p0 is lower than the willingness to pay, the forward-induction argument stated

above can be rationalized, in turn disqualifying the conjectured equilibrium.8

Definition 1.4 A perfect rational expectations equilibrium (PRE) Γ is a RE such that there

exists no triple (b0, r0, p0) such that all of the following conditions hold:

(i) There exists b0 6= ∅ such that types x ∈ b0 are strictly better-off with an off-equilibrium

price and report pair (r0, p0).

(ii) The offered price p0 is below buyers’ willingness to pay conditional on the belief b0, i.e.,

p0 ≤ P(φ(b0)).

(iii) The belief b0 is consistent with the set of types strictly better-off sending r0, i.e.,

b0 = M−1(r0) ∩ {x : U(p0, r0) > uΓ(x)}. (1.1)

Note that there are a few small differences with Grossman and Perry’s perfect sequential

equilibrium, the most obvious one being that the concept is applied in a rational expectations

environment rather than a two-player game. In addition, I impose the conditions of PRE over all

possible reports r0 including reports that could be made on the equilibrium path. Conceptually,

this is natural given that the logic of the pre-sale binding offer that underlies the PRE in this

problem is that the seller can make a new proposal that takes the form of an off-equilibrium pair

(r0, p0). Further, I allow the price p0 to be below buyers’ maximal willingness to pay because

7For a more general discussion of forward-induction and strategic stability, see Kohlberg and Mertens (1986)
and Carlsson and Van Damme (1993).

8If the price p0 is greater than the willingness to pay, buyers cannot reconcile this offer as a rational move and
the offer cannot be accepted.
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this pre-sale offer need not be equal to buyers’ willingness to pay to be accepted.9 Lastly, I select

the set of types b0 in terms of types that would be strictly better-off making the offer. I view

this assumption more intuitively appealing but all results carry over using a stronger version of

PRE in which indifferent types may or may not be part of b0.

1.3. Discussion and links to the literature

As my intent is to provide a general formulation for a particular class of models usually re-

ferred to as truthful disclosure, I provide here some further discussion of the main restriction

that underlies these models.10 In the literature, truthful disclosure problems are a subset of

the general class of persuasion games, in which the utility of the seller depends only on beliefs

and the signal sent, not on her original type (“type-independent” preferences). Examples of

this approach include, among many others, Grossman and Hart (1980), Grossman (1981), Mil-

grom (1981), Jovanovic (1982), Verrecchia (1983), Dye (1986), Teoh and Hwang (1991), Penno

(1997), Jorgensen and Kirschenheiter (2003), Shin (2003), Suijs (2007), Bagnoli and Watts

(2007), Acharya, DeMarzo and Kremer (2011), Guttman et al. (2012), Kumar, Langberg and

Sivaramakrishnan (2012) and Marinovic (2013).11

Like persuasion games, disclosure problems tend to have many equilibria. In fact, various

workarounds have been considered in the prior literature to address the multiplicity and I offer

here some discussion of the benefits of the PRE over other concepts. In the early literature, one

approach has been to reduce the message space to a seller indicating her own type (“disclose”)

or a single pooling signal that is always available (“withhold”), e.g., Grossman and Hart (1980),

Jovanovic (1982), Verrecchia (1983), Dye (1985), Jung and Kwon (1988). This approach gener-

ally addresses the multiplicity that might emerge from the off-equilibrium but does not readily

accommodate coarse disclosures or partial withholding of information; for example, an informed

seller might be willing to disclose only a piece of what she knows. Furthermore, this approach
9One limitation of this restriction is that buyers might wonder why the seller does not make the best offer

that would maximize her utility - for example, filtering out types that should have made a different offer pair.
However, this is a more fundamental problem in that even if we were to set p0 equal to the willingness to pay,
there could be other report-price pairs (r, p) 6= (r0, p0) that would further raise the utility of certain types in b0 if
accepted by the above logic. This is a limitation that we share with perfect sequential equilibrium, as well as other
common refinements (see also Mailath, Okuno-Fujiwara and Postlewaite (1993) for a more complete discussion of
this problem).

10For recent surveys of this literature, see Verrecchia (2001), Dye (2001), Dranove and Jin (2010) and Beyer,
Cohen, Lys and Walther (2010).

11Note that the assumption rules out many other forms of communication as in reporting models with cheap
talk (Stocken (2000), Baldenius, Melumad and Meng (2011)), costly misreporting (Guttman, Kadan and Kandel
(2006), Kartik, Ottaviani and Squintani (2007), Beyer (2009), Caskey, Nagar and Petacchi (2010), Laux and
Stocken (2012)) or if sellers remain exposed to the residual value of the asset (Bushman and Indjejikian (1995),
Huddart, Hughes and Levine (2001)).
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does not always guarantee a unique RE.

A workaround, related to the PRE, is Dye’s optimal policy (Definition 3, p. Dye (1986)),

which is also used in Kirschenheiter (1997). A RE is optimal if it is not preferred by all types

(strictly by some) by another RE. However, while optimality is a compelling criterion, it is often

too demanding to eliminate most REs because its application requires (i) all types to favor one

RE and (ii) compare payoffs in a RE to another specified RE. The PRE always satisfies Dye’s

optimality criterion since, if this were not the case, some subset of sellers would be able to offer

a new pair of report and price consistent with the other RE. But the PRE is a more demanding

criterion than optimality given that it needs only be applied to a subset of seller types.

2. Motivational examples

In the following examples, I illustrate how multiplicity of equilibria is a prevalent feature of

voluntary disclosure models and how, in certain simple models, a unique PRE can be derived

with minimal formalism. In later sections, I will make the logic more systematic to apply it to

the general disclosure model.

2.1. A binary disclosure problem

In order to show how to apply PRE, I begin with a simple introductory example with only

two types X = {l, h}, where l is a low type and h is a high type, and the price function is such

that:

P(φ({h}))
︸ ︷︷ ︸

=Ph

> P(φ({h, l}))
︸ ︷︷ ︸

=Pl

> P(φ({l}))
︸ ︷︷ ︸

=0

. (2.1)

The low type has only one message M(l) = {0} and the high type has two messages M(h) =

{0, 1}; for example, “0” might represent ‘withhold” and “1” might represent “disclose to be a

h type”. Sellers are risk-neutral but there is a cost rc when sending report r ∈ {0, 1}, where

c ∈ (Pm, Ph).

It is immediately seen that the model has two REs. In the fully-separating equilibrium (RE-

1), type h reports r = 1 and type l reports r = 0. In the pooling equilibrium (RE-2), type h and

type l reports r = 0 and obtains a price Pm.12 Many reporting games outside of the voluntary

disclosure literature tend to favor fully-separating equilibria when they exist and, in such games,

full-separation is sometimes used as a selection criterion, see, e.g., Dye (1988), Kanodia and Lee

12The problem also has a mixed strategy equilibrium which I do not discuss here.
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(1998) or Fischer and Verrecchia (2000). On the other hand, other studies argue that pooling

equilibria can lead to lower deadweight cost of separation on welfare grounds (Guttman et al.

(2006), Guttman, Kadan and Kandel (2010)), so it is an open question as to whether RE-1 or

RE-2 is the proper equilibrium for this problem; however, RE-1 is not a PRE. To see this, note

that when playing RE-1, a type could make an alternative offer (r0, p0) = (1, Pm), i.e., “I am

sending message r=0 but you should not give me the current quoted price P (0) = 0 and, instead,

trade at my offer Pm.” Types b0 = {h, l} would have made this offer, thus validating the price

p0 = Pm and making it irrational for type h to issue r = 1 or type l to accept a price P (0) = 0.

2.2. Costly disclosure

Consider the following model adapted from Jovanovic (1982) and Verrecchia (1983). For

expositional purposes, I use here the continuous type space in these models to better fit this

literature (the definitions of RE and PRE carry over to the continuous setting). As in the

previous example, the seller is risk-neutral. The type space is X is an interval and P(φ(b)) =

E(x̃|x̃ ∈ b); the message space is M(x) = {x, rnd} where rnd indicates “withhold information.”

There is a cost c ∈ (0, sup X − E(x̃)) when sending r = x and no cost when sending r = rnd.

This model admits REs that take the form of a threshold τ and such that R(x) = x if x ≥ τ

and R(x) = rnd if x < τ . A commonly-used solution technique is to note that τ corresponds to

the marginal type indifferent between disclosing and withholding.

E(x̃|x̃ < τ ) = τ − c (2.2)

However, Equation (2.2) does not necessarily have a unique solution. For example, it is

known that a sufficient condition for uniqueness is logconcavity and a sub-exponential lower

tail (see Bertomeu (2012)). Logconcavity and sub-exponential tails are satisfied by the Normal

distribution, as shown in Verrecchia (1983). However, putting aside the issue of negative prices

with normal distributions, logconcavity is a technical condition that is not easily derived from

economic behavior. Furthermore, logconcavity is only sufficient if the price under risk-neutral

pricing (e.g., P(φ(b)) = E(x̃|x̃ ∈ b)) and might not guarantee uniqueness in problems that

involve real operating decisions.

I will illustrate a reasonable environment in which logconcavity would not hold and develop

further what economic problems this may create. Borrowing from Subramanyam (1996), herafter
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Figure 1: Costly voluntary disclosure with uncertain variance

KRS, assume that firms have normally-distributed types with mean normalized to zero but whose

variance might be different. Suppose that the variance can be either σ2 = 1/2 or σ2 = 3 (KRS

uses a continuous distribution for the precision). In Figure 1, I plot E(x̃|x̃ < τ ) against τ − c at

c = 1.6. An intersection between these two curves is a solution to Equation (2.2).

There are three possible voluntary disclosure equilibria once one considers the (plausible)

scenario in which not all firms have the same volatility. In fact, the number of equilibria can

be even greater with more than two possible volatilities, implying that a single indifference

condition like Equation (2.2) is far from sufficient to pin down an equilibrium. Worse still, one

of these equilibria, RE-2, has comparative statics that are the opposite of the standard models:

a small increase in c (raising the dotted curve) will decrease the voluntary disclosure threshold,

implying more voluntary disclosure.

Fortunately, the PRE performs again to select which equilibrium is reasonable and the

counter-intuitive RE-2 fails to be a PRE. This can be again shown with minimal need for

notation, but the reader may stop at this point and throw in an educated guess as to whether

RE-1 or RE-3 (or both) will be the PRE in this model. For each RE-i, I label the disclosure

threshold τi where, by definition, τ1 < τ2 < τ3.

Let me first dismiss RE-2 as a reasonable equilibrium. Suppose that some types send an

alternative pair (p0, r0) where p0 = E(x̃|x̃ ≤ τ3) and r0 = ∅, i.e., this message would have the

form: “I am not disclosing but consider pricing the asset as if we were playing according to

RE-3”. Naturally, because RE-3 is itself an RE, this price p0 can be rationally sustained and,

further, it would strictly benefit all sellers with c < τ2 which were obtaining E(x̃|x̃ ≤ τ2) in

RE-2. Because RE-3 is an RE, sellers with x ∈ (τ2, τ3) must be better-off obtaining E(x̃|x̃ ≤ τ3)

over their disclosure utility x − c when playing RE-2. This confirms that RE-2 is not a PRE.
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By the same argument, RE-1 is also a PRE either and the PRE must be the maximal solution

to Equation (2.2).

The equilibrium RE-3 has the intuitive comparative statics that higher cost reduces disclo-

sure. This comparative statics even holds when the implicit function theorem does not apply.

If the cost c decreases sufficiently so that RE-3 ceases to exist, then the PRE will shift to RE-1

leading to a non-marginal increase in voluntary disclosure.

2.3. Many dimensions

A well-known limitation of voluntary disclosure models is that the standard tools used when

a single piece of news is being voluntarily disclosed do not generalize well to two or more

dimensions. As I will argue later on, the PRE will address this problem in a very general sense

but I illustrate at this point the fundamental problem of multiplicity under multi-dimensional

disclosure.

In the simplest of such multidimensional problems, consider a continuous two-dimensional

state space (s1, s2) ∈ S1 ×S2, where the price is P(G) = EG(s̃1 + s̃2) such that EG indicates the

conditional of expectation according to c.d.f. G(.). The type space is ({rnd}∪S)× ({rnd}∪S′).

As in Dye (1985) and Jung and Kwon (1988), each type may not receive information and assume

that s̃1 and s̃2 are observed independently with the same probability p ∈ (0, 1). To make this

example entirely straightforward, assume that buyers can identify whether the first or second

dimension is disclosed. There are no costs and the seller achieves a utility equal to the selling

price.

Obviously, this model has a very apparent RE. Because the two dimensions are fully separable

(additive marginal effects and uncorrelated endowments/signals), one can appeal to the solution

to the one-dimensional case to construct an equilibrium. Denoting τ1 and τ2, the (unique)

disclosure thresholds in Jung and Kwon (1988) for each dimension, an RE exists in which each

s̃i is disclosed whenever information is received and s̃i ≥ τi is greater than the designated

threshold. Let this RE be denoted as RE-1 and represented in Figure 2 where s̃ = (s̃1, s̃2) in

the upper-right (lower-left) quadrant is fully disclosed (withheld) and only one dimension of s̃

is disclosed along the off-diagonal quadrants.

However, this intuitive RE-1 is not the unique RE in the two-dimensional problem and it is

relatively easy to create many other equilibria by small changes over off-equilibrium beliefs. As

an example, I carved out zone A from the region in which s̃2 should be disclosed in the original
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Figure 2: Two-dimensional Dye model

RE and, for now, let me define a new candidate RE in which the seller does not disclose when

lying in zone A. To justify this conjecture, assume that if a single dimension is disclosed in

zone A, buyers assign a (sufficiently) negative belief about the other piece of information that is

withheld, thus confirming that no disclosure in zone A. If the support of ( s̃1, s̃2) is unbounded

from below, any zone can be carved out of the regions where only one signal is disclosed and

reclassified into the non-disclosure region.

To make things worse, it is not the case that such manipulations would simply change

the equilibrium in places where they occur. Creating zone A would imply an increase in the

non-disclosure price, thus shifting the entire regions defined earlier and globally changing the

nature of the equilibrium. Furthermore, this type of equilibrium cannot be removed with Dye’s

optimality criterion because, evidently, reclassifying some high disclosed events into the non-

disclosure region is desirable to uninformed types.

It is clear that RE-1 is the most intuitive equilibrium in this problem, but recall that it can

only be obtained as such in the very simple setting described above. How does one identify

which off-equilibrium beliefs are reasonable or unreasonable in more complex problems that

involve correlated types or information endowments? To avoid these nagging problems, a few

existing multi-dimensional studies specifically rule out a situation in which no signal is disclosed

(Kirschenheiter (1997), Dye and Finn (2007)) which, however, severely restricts what problems
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can be analyzed using the standard tools.13

Fortunately, the PRE selects the “right” RE for this example and, as I will show later on,

guarantees a unique prediction in fairly general multi-dimensional disclosure problems. The

interested reader may refer to the general proof later on, but I can give here a heuristic expla-

nation. In any RE in which no-disclosure is possible, RE-1 is the unique RE that minimizes the

non-disclosure price across all REs. So, if an RE does not coincide with RE-1, some types that

were disclosing under RE-1 do not disclose under, say, another equilibrium RE-2. Therefore,

some types are worse-off under RE-2. The concept of PRE follows immediately. These types

would adopt their disclosures of RE-1 and suggest the price that would have occurred under

RE-1, thus moving away from the price function in RE-2 and ruling it out as a PRE.

3. Le main result

Although PRE has performed well in a few examples (in these cases, it can be applied with

almost no need for formalism), the question remains as to whether the PRE will be effective in

finding equilibria in the general class of disclosure problems. Within this Section, I establish

that this class of models has (generically) at most one PRE, provide a simple constructive

characterization of the PRE and, lastly, derive a necessary and sufficient condition for a PRE

to exist.

3.1. Uniqueness

As a first step for my analysis, I will construct a set of strategies, prices and beliefs from a

particular algorithm that, as it turns out, is closely related to the concept of PRE.

For any type space X ′ ⊆ X, define V (X ′) as the report that maximizes the seller’s utility

provided that the market believes that a type reports r if she can do so. Genericity and the

finiteness of the reporting space guarantee that the maximizer exists and is unique.14 In formal

13Other studies have fallen into the precipice of inadvertently selecting one among the many possible REs,
without much consideration as to why this equilibrium would be more reasonable. A good example is Pae (2005)
who describes the equilibrium of a two-dimensional Dye model, in contradiction to the multiplicity of RE made
apparent in my example. His study uses the same restriction as Kirschenheiter (1997) and Dye and Finn (2007)
by first focusing on a model in which at least one signal is received (p. 388-395) and for which the RE can be
examined. Then, considering the case in which no firm may receive information, the study argues that the same
functional form for the updating function with one signal derived earlier can be used. It can be used but does
not have to be, because for any off-equilibrium message (and there are many of them) this particular manner of
updating need not hold. The results that follow p. 396-401 are only true for one among a continuum of other
REs in this game.

14For non-generic models, non-uniqueness might (occasionally) imply that the algorithm below would branch
out, leading to more than one PRE. Otherwise, the existence and construction would still hold.
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terms,

V (X ′) = argmaxr U(P(φ({x ∈ X ′ : r ∈ M(x)})), r) (3.1)

I define the algorithm presented below as the priority algorithm. The triplet Γa given by

(P a(r), Ba(r), Ra(x)) is constructed iteratively as follows:

1. Initialize the algorithm at i = 1 and X1 = X,

2. Calculate ri = V (Xi) and set bi = Ba(ri) = {x ∈ Xi : ri ∈ M(x)}, Ra(x) = ri for all x ∈ bi

and P a(ri) = P(φ(bi)),

3. Set Xi+1 = Xi\bi,

4. Stop if Xi+1 = ∅, otherwise update to i+1 and return to step 2.

5. Complete the process for any off-equilibrium r, with Ba(r) = argminb∈K(r)U(P(φ(b)), r) s.t.

K(r) = {b : if x ∈ b, r ∈ M(x)} and P (r) = P(φ(Ba(r))).

The algorithm is initialized with the complete type space (step 1.), at which point, it selects

the best attainable report, i.e., the report that maximizes the utility if it is issued by all sellers

that can send the report (step 2.). Then, these types are removed from the type space (step

3.) and the procedure repeats until all types have been exhausted (steps 2-4.). Lastly, all

off-equilibrium beliefs are set to be sufficiently pessimistic (step 5.).15

Definition 3.1 I say that type x has priority over type x′, denoted x 
 x′, if x is selected by

the algorithm at the same step as x′ or earlier. Denote x||x′ if x and x′ are selected in the same

step.

Note that the priority order is a complete order over the type space X. I show next that

being recovered from the priority algorithm is a necessary condition for an equilibrium to be a

PRE.

Lemma 3.1 When it exists, the PRE is unique and must coincide with Γa (except, possibly, for

off-equilibrium beliefs and prices).

15In theory, in a RE one might set any arbitrarily small value for the off-equilibrium price (Fudenberg and
Tirole (1991)). I use here a more demanding specification for the off-equilibrium so that the specification would
also qualify as a sequential equilibrium in the sense of Kreps and Wilson (1982).
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When a PRE exists, it must be recovered from the priority algorithm. At step i = 1, for any

RE that differs from Γa, there is a subset of types that could have achieved a higher utility if they

had sent a different message, contradicting the requirements of a PRE. This argument can be

repeated at steps i > 1, implying that after accounting for those types that have already selected

their utility-maximizing report, the algorithm must keep selecting the utility-maximizing report

across all remaining types.

3.2. Existence of the PRE

Lemma 3.1 does not guarantee that a PRE exists. Indeed, there are examples of disclosure

problems that do not always admit a pure-strategy RE (Benabou and Laroque (1992), Marinovic

(2013), da Silva Pinheiro (2013)). I formally examine next when the candidate equilibrium

obtained from the priority algorithm qualifies as a PRE.

Lemma 3.2 Γa is a PRE if and only if uΓ(x) ≥ uΓ(x′) for any x 
 x′.

Lemma 3.2 offers a necessary and sufficient characterization of the existence of a PRE.

However, verifying this property requires a direct computation of the algorithm and, therefore,

whether existence holds is not evident from the description of the game. I develop next simpler

conditions that can guarantee the existence of the PRE in various disclosure problems.

Condition (A). The message space is complete if, for any r and r′, there exists r′′ such that

M−1(r′′) = M−1(r) ∪ M−1(r′) and U(p, r′′) ≥ max(U(p, r), U(p, r′)) for any p.

Condition (A) has an interpretation in terms of a semantical connector “or”; that is, if a seller

can make a truthful sentence that she has a certain piece of information with certainty, then,

she should be able to truthfully make a report that she has this information or has another

piece information consistent with a different report. Because this new statement is coarser and

conveys less information, it should be weakly less costly to the seller (e.g., an external party

that can verify that r or r′, might require more verification effort to verify only r and only r′).

Consider, as an example, an interval forecast made by a manager: even if the manager knows

that the true expected cash flow will be a certain value, she can truthfully report that it will lie

within an interval, plausibly letting out less proprietary information to the firms’ competitors.

Another example is Grossman (1981) and Milgrom (1981) who allow the seller to make any

coarse representation of her information.
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Theorem 3.1 If condition (A) holds, there exists a unique PRE, and it is given by Γa.

A limitation of condition (A) is that it is rarely assumed in voluntary disclosure models,

in part for its inherent economic limitations but also for technical reasons. Condition (A)

significantly increases the size of the reporting space (and the implied off-equilibrium path)

which since most of these models do not use refinements, creates many REs. As an economic

assumption, also, it is possible that the reporting space might be constrained by feasibility

considerations (a suspect cannot simultenously report two disjoint alibis).

I consider here an alternative to condition (A) that does not require a complete message

space and can be directly applied to existing voluntary disclosure models as-is.

Definition 3.2 A type x is higher than type x′, denoted x � x′, if, for any b s.t. x, x′ /∈ b,

P(b ∪ {x}) ≥ P(b ∪ {x′}).

I define this order as the value order given that it represents the impact of a type on price;

I further denote the implied strict value order as � and equivalence relation ∼. Using the value

order, I introduce the following three conditions.

Condition (B1). X is fully ordered according to the value order �, with x ∼ x′ if and only

if x = x′.

Condition (B2). For any r, M−1(r) are intervals in the sense of �.

Condition (B3). For any two reports r and r′ such that (a) M−1(r)∩M−1(r′) 6= ∅ and (b) all

maximal elements M−1(r′) are higher than all maximal elements of M−1(r), then the following

holds: U(p, r′) ≥ U(p, r) for any p.

Condition (B1) states that the set of types can be ordered from the type that most increases

prices to the type that most decreases prices. Condition (B2) states that unconditional beliefs

after observing a report must be convex (interval) sets in the sense of the value order. Condition

(B3) is generally satisfied in many models of voluntary disclosure. This condition is a technical

restriction that states that if there are two reports available to some moderate types but one of

these reports is only available to higher types (the “good” report) while the other is only available

to lower types (the “bad” report), then issuing the bad report should be weakly more costly. One

interpretation of this condition is that it may expensive to verify that a report is inconsistent
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with some events being very favorable (i.e., good news is hard to objectively verify). Importantly,

I do not mean here that it should be necessarily cheaper to make disclosures consistent with

higher types in that this property need only hold across reports that span over the same types.

This condition is always satisfied in models in which the only pooling report is “withhold” which

is both costless to send with a maximal upper bound.

Theorem 3.2 If conditions (B1), (B2) and (B3) hold, there exists a unique PRE, and it is

given by Γa.

3.3. The priority order: a simplified approach

A notable difficulty in applying the algorithm Γa is that, at each step i, the report ri = V (Xi)

must be evaluated by considering every possible report that can be sent by types in the set Xi.

This presents two notable challenges. First, the set Xi is not analytically characterized unless

the algorithm is applied. Second, the search for a PRE can present computational challenges if

the set of types or the message space is large. Technically, I am thus interested in considering

when a simplified algorithm can be used in which, at each step, one may restrict the attention

to reports that could be sent by certain types that are easy to identify in a subset of Xi.

There is a subclass of disclosure problems that admits a simplified computation of the priority

order. To show this, I introduce a new order that can be directly computed from knowledge of

the type and reporting spaces. I refer to this order as the dominance order.

Definition 3.3 Type x dominates type x′, denoted x � x′, if for any r′ ∈ M(x′), there exists

r ∈ M(x) such that (a) U(p, r) ≥ U(p, r′) for all p, and (b) A type in M−1(r)\M−1(r′) is always

higher than a type in M−1(r′)\M−1(r).

In plain language, a type is dominant when she has access to cheaper message that pool

with higher types in the sense of the value order. As before, I will introduce an algorithm,

which I call the dominance algorithm, and then examine its properties. The triplet Γ b =

(P b(r), Bb(r), Rb(x)) is constructed iteratively in the following manner:

1. Initialize the algorithm at i = 1 and Y1 = Y ,

2. Select the maximal set of Zi ⊆ Yi, in the sense of the dominance order �. Calculate ri =

argmaxr∈
⋃

x∈Zi
M(x)U(P(φ(M−1(r))), r) and set bi = Bb(ri) = {x ∈ Yi : ri ∈ M(x)}, Rb(x) =

ri for all x ∈ bi and P b(ri) = P(φ(bi)).
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3. Set Yi+1 = Yi\bi,

4. Stop if Yi+1 = ∅, otherwise update to i+1 and return to step 2.

5. Complete the off-equilibrium r, with Bb(r) = argminb∈K(r)U(P(φ(b)), r) s.t. K(r) = {b :

if x ∈ b, r ∈ M(x)} and P (r) = P(φ(Bb(r))).

The main simplification obtained in algorithm b is that the types that will send the report

at step i are a maximal element according to the dominance order �.

Theorem 3.3 The reporting strategies, and beliefs and prices following any report that may be

made with positive probability under Γa and Γb coincide. Further, if x � x′, then x 
 x′ and

uΓa
(x) ≥ uΓa

(x′).16

One remaining difficulty is that the set Zi may typically include multiple types which might

still cause the search for the report to be selected in step i to be cumbersome. Under a stronger

condition, as I show next, the simplified approach can be used to directly remove the search for

the “right” type by selecting any maximal type.

Condition (C) X is fully-ordered according to the dominance order �.

Theorem 3.4 Suppose that conditions (B1) and (C) hold. If Γ is a PRE, all types that are

maximal at step i and have a report in common must send the same report.

When the conditions of Theorem 3.4 hold, step 2 can be simplified to selecting any �−maximal

type, instead of the maximal type that maximizes the price. The search for an optimal price

remains only present across reports available to that particular maximal type. There are well-

known examples in which the type space is fully ordered according to � and therefore algorithm

b yields a very simple procedure to compute equilibria. Under the canonical costly disclosure

models of Jovanovic (1982) and Verrecchia (1983), each type x ∈ R is such that M(x) = {rnd, x}

and such that r = x involves an additive cost c > 0 while r = rnd does not. If x > x′, type x

has access to the same report as x′ as well as report r = x which involves the same cost but a

higher type than the message available to x′, i.e., r = x′. It then follows that x � x′ if and only

if x ≥ x′ and, in this case, the dominance order coincides with the value order.

16Algorithm b need not pick types in the same order as algorithm a. As an example, if a high type has a single
message to send which she can only send and this message is very costly, then she will obtain an equilibrium that
is very low, and thus will be captured by algorithm a at a later step but would be captured by algorithm b much
earlier.
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Yet, even when (B1) and (C) are satisfied, the dominance order need not exactly coincide

with the value order, as shown in the uncertain information endowment models of Dye (1985)

and Jung and Kwon (1988). These models have a set of types where either x ∈ S (the seller is

informed and anticipates value x) or x = NI (the seller is not informed and anticipates value

E(x̃)). The message space is then given by M(x) = {rnd, x} where, by definition, the uninformed

can only report rnd. Consider the orders � and �. It is clear that NI � x if x ≤ E(x̃) (below-

average types are lower types than the uninformed). Yet, these types have more messages than

type NI and therefore satisfy x � NI, with NI being the type that is (indeed) dominated by

all other types. In fact, within this class of models, some informed below-average types have

priority over uninformed types and, as is well-known, achieve a greater equilibrium surplus.17

3.4. Existence with multi-dimensional information

I develop here a basic application of the theory to the case of a seller informed about several

characteristics and who may disclose/withhold each characteristic separately. In what follows,

I use upperscript for dimensions to distinguish xi, the ith component of vector x from xi, the

element of the type space X.

Let (Q) be the disclosure problem defined as follows. A type is given by a vector x =

(x1, . . . , xd) where xi ∈ {NI, si}, NI represents the eventuality that the seller is not informed

about component i, and d is the number of dimensions. Note that I make no assumption about

distributions or the pricing function, i.e., (a) whether components of the state si are correlated,

(b) whether the probabilities of receiving information on one state are correlated or depend on

the state, (c) whether the economy is pure-exchange or there are uses for information. There is a

cost to disclose so that, for each p, U(p, r) is a non-decreasing function of the number of reports

disclosed (not their value). For any report, the reporting space is M(x) = {{r1, . . . , rd} : ri ∈

{rnd, x
i}}, i.e., a seller can withhold information. The results apply more generally to ordered

reports with the form r = (r1, . . . , rd), when buyers do know which signal is disclosed and, since

the proofs are unchanged, I will focus here on unordered reports.18

17Note that the condition that the type space should be fully ordered according to dominance is demanding.
For example, this condition is not verified in multi-dimensional disclosure models of the kind described in Section
2.3. In this example, a type x = (1, 2) neither dominates nor is dominated by a type x = (1.5, 1.5) or by type
(2.5, NI) for that matter. For these problems, only Theorem 3.3 applies.

18One issue with this multi-dimensional model is that it does not fit (A) or (B2). The latter is because, as
an example, the report {x1, . . . , xd−1, NI} can be sent by all types with {x1, . . . , xd−1, y} implying states in the
range, say, of the price when y is minimal or y is maximal. But this range might include the price of types with
{y′, . . . , xd−1, y} with y′ 6= x1 and which cannot send this particular report, violating the convexity requirement
in (B2). Fortunately, the results from Lemmas 3.1 and 3.2 are sufficient to obtain a PRE even for this case.
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Proposition 3.1 (Q) has a unique PRE.

One notable feature of multi-dimensional information is that the signal space available to each

type is ranked from most precise to least precise (more non-disclosure). This property guarantees

that under fairly general conditions, there is a unique PRE in many multi-dimensional disclosure

problems. Of note, while I focus here on existence and uniqueness, a more detailed analysis of

such models is not trivial and goes beyond the scope of my study.

4. Properties

4.1. The unravelling property

I first analyze conditions under which an unravelling property holds. By “unravelling,” I mean

here that the type is perfectly revealed from the report, i.e., in my notation, each set bi obtained

from the priority algorithm contains a single type.

Definition 4.1 The unravelling property holds if a PRE exists and, for any type (x, x′) such

that x 
 x′ and x′ 
 x, x = x′. That is, the unravelling property is equivalent to the priority

order 
 being a complete order.

I present next an equivalent characterization of unravelling. First, each type x must have

access to (at least) one report r ∈ M(x) that cannot be sent by any lower priority type.

∃r ∈ M(x), r /∈
⋃

x
x′,x′ 6=x

M(x′) (4.1)

This is the key restriction that tends to be violated in models with uncertainty about in-

formation endowment, such as Dye (1985) or Jung and Kwon (1988), because types that did

not receive information cannot separate. Note that this condition does not require each type to

have a report that no other type can send.

Second, each type must be unwilling to pool with lower types. To be more precise, whenever

Equation (4.1) is satisfied, there exists a report r0(x) that maximizes U(P(φ({x})), r) over the

set of reports that satisfy (4.1). Then, the second condition for unravelling to occur is:

U(P(φ({x})), r0(x)) ≥ max U(P(φ(M−1(r) ∩ {x′ : x 
 x′})), r) (4.2)
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This second condition is generally violated in models that feature disclosure costs, as in Jovanovic

(1982) and Verrecchia (1983), and in which less informative reports tend to involve lower costs

The next Lemma follows immediately.

Lemma 4.1 Suppose that a PRE exists. The unravelling property holds if and only if Equations

(4.1) and (4.2) hold.

I present next sufficient conditions under which the unravelling property does not hold when

the simplified approach of Section 3.3 can be applied. One benefit of the simplified approach is

that the absence of unravelling can be demonstrated from properties of the dominance order.

Theorem 4.1 Suppose that there exists two distinct types x and x′ such that (i) x � x′, (ii)

x′ � x and (iii) either condition (A) or conditions (B1)-(B3) hold. Then, the unravelling

property does not hold.

Theorem 4.1 illustrates that a failure of unravelling can be summarized as a mismatch be-

tween the ability to issue reports and the underlying value to buyers. When lower types (ac-

cording to the value order) are less constrained to send reports, they will strategically choose to

pool with higher-value constrained types and prevent the unravelling property.,

As an interesting aside, note that the unravelling property leads to a situation in which all

sellers receive a price that is entirely based on their observed information x̃. But, as noted in

example 6 earlier, that a seller discloses her information for a cost (i.e., a reduction in utility)

can be reinterpreted, in a lemon’s market, as a situation in which the seller retains her asset

and incurs a discount for the trade inefficiency. In other words, any environment in which the

unravelling property leads to an analogous model in which the market breakdown due to a

lemon’s problem. To put this differently, while disclosure is commonly-viewed as a solution to

the lemon’s problems (Viscusi (1978), Jovanovic (1982)), the mathematical representation of the

unravelling is equivalent to that of the market breakdown. One implication of this is that any

result about disclosure has a close analogue in the context of a lemon’s market.19

4.2. The social value of withholding

In this Section, I re-explore an old question of the voluntary disclosure literature. A number

of unravelling results have shown that having the option not to release information might not
19This similarity has been somewhat clouded in the literature because a large portion of the disclosure literature

has used an assumption of additive costs while the lemon’s literature favors a multiplicative cost; there is, however,
no fundamental reason in either type of model why the cost should be specified in a particular manner.
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affect communication; nevertheless, this unravelling property requires restrictive assumptions

that are typically not satisfied in most voluntary disclosure models (of which I have shown a few

examples). This leaves open the following more general question: does the option to withhold

information implies a negative informational externality that is detrimental to at least some of

the sellers? This question is of particular interest in the context of financial reporting given

that, over the last century, many regulatory actions have removed the option to withhold in the

US, e.g., a publicly traded firm cannot withhold an annual report or its mandatory Securities

and Exchange Commission (SEC) filings, cannot withhold an audit opinion or, in theory at

least, cannot withhold material information. This evolution is in sharp contrast with the more

“optional” disclosures that were the norm pre-SEC and remains the object of much unresolved

controversy (Stigler (1964), Dye and Sunder (2001), Bushee and Leuz (2005), Greenstone, Oyer

and Vissing-Jorgensen (2006)).

A seller who strategically withholds information does not make a false statement, regardless

of the underlying information. Hence, I model the option to withhold as a special report rnd

which is available to all types and involves no cost to the seller.

Definition 4.2 The disclosure problem (Q) has a non-disclosure report rnd if (i) rnd ∈ M(x)

for any x ∈ X, (ii) for any p, r, U(p, rnd) ≥ U(p, r).

I am equipped next to answer whether the option to withhold can be socially costly. This

question is of importance because, as long as the reporting space does not solely include the

non-disclosure message for any type, a regulator could potentially prohibit non-disclosure at,

plausibly, minimal enforcement cost (since this would only involve observing the publicly released

report). In fact, even if some types had no other information to disclose (e.g., the uninformed

type in Dye (1985)), one could fathom that some alternative disclosure would involve collecting

additional information for a possibly very high cost and which might not have been optimal

absent regulation - see Shavell (1994) for an example.

Theorem 4.2 Let (Q) be a disclosure problem with a non-disclosure report rnd and let (Q′)

be an associated disclosure problem with M ′(x) = M(x)\{rnd} for all x. Assume that (Q) and

(Q′) admit a PRE Γ and Γ′, respectively. Then, the allocation (uΓ(x))x∈X Pareto dominates the

allocation (uΓ′
(x))x∈X .

I show in Theorem 4.2 that, regardless of the uses of information or the specification of the

reporting space, non-disclosure has a social value in a very strong sense: it makes all types
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better-off and, generically, at least one type strictly better-off. The reason for this is as follows.

The PRE maximizes the welfare of each type sequentially, according to the priority order. Types

that choose to withhold always rank last according to the priority order so that any regulation

that solely affects their behavior can have no effect on types with greater priority. In fact,

removing the option to withhold can only hurt those that would have preferred to withhold.20

4.3. Mandatory disclosure

I discuss next whether requiring certain types to make a fully-revealing disclosure would have

social value. I introduce first the following characteristic for problems in which mandating

disclosure is feasible.

Definition 4.3 A disclosure problem (Q) has the disclosure property if for any type x ∈ X

except at most for one type x0, there exists a “disclosure” report rD(x) defined by M−1(rD(x)) =

{x}.

The problem (Q) has the disclosure property if each type can send a separating report, except

for one type that would then be fully revealed by sending any of her feasible reports. Note that

the disclosure property is (almost) without loss of generality given that it is always possible to

assume that this property holds but such that U(p, rD(x)) is sufficiently low for certain types so

that it would never be in the best interest of the seller to send the disclosure report.

I am interested next whether, in general, imposing that certain types should send their disclo-

sure report, even if this involved no public monitoring cost, would be desirable. To motivate this

idea, note that (like in most persuasion games) the PRE need not attain a first-best allocation

if a planner could select which signals are sent by each type.

Theorem 4.3 Let (Q) be a disclosure problem with the disclosure property and (Q′) be an

associated disclosure problem in which M(x) = {rD(x)} for any x ∈ Ω for which a disclosure

report exists. Assume that both problems admit a PRE Γ and Γ′, respectively, and one of these

reports rD(x) is used in Γ. Then, the following holds:

(i) The allocation (uΓ′
(x))x∈X does not Pareto dominate the allocation (uΓ(x))x∈X .

(ii) If Ω = {x : x 
 x̂} for some x̂, the allocation (uΓ(x))x∈X Pareto dominates the allocation

(uΓ′
(x))x∈X .

20Note that this property would not necessarily hold over the entire set of REs and relies on the characterization
of the PRE.
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What forms of mandatory disclosure requirements could have social value? Imposing un-

ambiguous disclosures does not. Part (i) establishes that, in the sense of Pareto-efficiency, no

disclosure requirement can be beneficial to all sellers if it mandates some firms to use their dis-

closure signal (recall that, more generally, some mandatory disclosure schemes could not meet

condition (i) if they involved some form of mandatory pooling). Part (ii) further reveals that

imposing a mandatory disclosure for types with higher priority is necessarily welfare-decreasing.

In many commonly-used disclosure models, the notion of priority fully or partly coincides with

the value order, implying that (in these settings) imposing disclosures “at the top” is not desir-

able. By contrast, imposing disclosures over types with low or intermediate priority might be

beneficial to some types since it might allow higher priority types to filter out otherwise unde-

sirable low-value types. For problems in which the dominance order coincides with the value

order (e.g., Jovanovic (1982), Verrecchia (1983)), “bad news” mandatory disclosure can benefit

some sellers while “good news” mandatory disclosure hurts all.

5. Application to continuous problems

5.1. The priority algorithm

I develop in this Section several extensions of the theory for models in which the type space is

continuous. Unlike with finite types, the continuous model does not admit an algorithm which

reveals the priority order and the order must be conjectured from the nature of the problem

under consideration. Nevertheless, the previous analysis suggests the following observation: the

priority algorithm closely tracks the ranking of equilibrium utilities so that, if the ranking of

utilities can be correctly conjectured, this ranking should also point to the priority order, in

which case an algorithm can be properly defined to compute the reporting strategies and actual

utilities achieved. Here, I will show this result formally, and then present three examples in

which this logic can be applied.

Let X be a measurable type space and, for simplicity, I assume that X has the same cardi-

nality as the real line and, without loss of generality, set X = [x, x] equal to a proper bounded

real interval. To ensure that Bayesian expectations are well-defined, I restrict the attention to

REs in which if a report is with measure zero, it is sent by at most one type. Uniqueness is

now defined up to differences over sets that have measure zero. In addition, I need to eliminate

some pathological equilibria that could potentially arise: formally, I restrict the attention to
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REs in which there is no sequence {R−1(xi)}
+∞
i=1 such that R−1(xi) has non-zero probability and

lim Pr(x̃ ∈ R−1(xi)) = 0. The rest of the definitions of a RE and a PRE apply to the continuous

setting presented above so I do not repeat them here.

The general idea to solve continuous problems is to find a manner to conjecture the priority

algorithm. To do so, assume that the modeler can identify from the problem a unique ranking

of utilities (I will show examples later). To be more precise, let ≥̂ indicate a preorder that has

the property that for any two elements x, x′ of X, only one of the following is true: (a) x≥̂x′, or

(b) x′≥̂x. Note that that there is no need, at this stage, to know whether a type will achieve a

strictly greater equilibrium utility. For any such preorder, I define a “disclosure” utility uD(x)

and the “pooling” utility uP (x) as:

uD(x) = sup
r∈M(x)

⋂
x≥̂x′ 6=x

M(x′)

U(P(φ({x})), r) (5.1)

uP (x, Y ) = sup
r∈M(x)

⋃
x≥̂x′ M(x′)

U(P(φ(M−1(r) ∩ Y )), r) (5.2)

The disclosure utility uD(x) can be interpreted as the utility that type x would achieve which

would ensure separation from all types that are lower in the sense of the preorder. The pooling

utility uP (x, Y ) corresponds to the maximal feasible payoff when type x chooses to pool with

some types in a set Y .

Next, let the implied priority algorithm be defined as follows (I omit the dependence on the

preorder to save space).

1. Initialize the algorithm at i = 1 and X1 = X,

2. Select the maximal element x of Xi according to ≥̂. Calculate uD(x) and uP (x,Xi). Set

Ra(x) = argmaxr∈M(x)U(P(φ(M−1(r) ∩ Xi)), r); if this report does not exist, go to step 7.

Otherwise, if uP (x) ≥ uD(x), go to step 3 and, in the remaining case, go to step 4.

3. If Ra(x) /∈
⋃

x≥̂x′ 6=x M(x′), go to step 7. Otherwise, set Ba(Ra(x)) = {x ∈ Xi : Ra(x) ∈

M(x)}, and for any x′ ∈ M−1(Ra(x))∩Xi, Ra(x′) = Ra(x) and P a(Ra(x)) = P(φ(Ba(Ra(x)))).

Set Z = Ba(x). Go to step 5.

4. Determine the set A ⊆ Xi defined by A = {x′ : uD(x′) > uP (x′, Xi ∩ {x′′ : x′≥̂x′′ 6=

x′}). If this set has measure zero, go to step 7. Otherwise, for any x′ ∈ A, set Ra(x) =

argmaxr∈M(x)
⋂

x≥̂x′ 6=x
M(x′)U(P(φ({x})), r). If any of these is not defined, go to step 6. Then,

set Ba(Ra(x)) = {x} and P a(Ra(x)) = P(φ(Ba(x))). Set Z = Ba(x). Go to step 5.
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5. Set Xi+1 = Xi\Z. If Xi+1 = ∅, go to step 2. Otherwise, go to step 6.

6. Complete the off-equilibrium r, with Ba(r) = argminb∈K(r)U(P(φ(b)), r) s.t. K(r) = {b :

if x ∈ b, r ∈ M(x)} and P a(r) = P(φ(Ba(r))). If this is not well-defined, go to step 7 and,

otherwise, end the algorithm.

7. End the algorithm: the algorithm crashed and was unable to identify a tentative PRE.

Note that Γa is a function of the chosen preorder. Further, by contrast to the finite case,

the algorithm is not guaranteed to deliver a proper solution and can “crash” for two reasons.

First, it is possible that a most-preferred report is ill-defined in a problem whenever the set Xi

is not closed or payoffs are discontinuous. Second, the algorithm may run an infinite loop and

never fully exhaust all types. Unfortunately, it is difficult to provide conditions under which the

algorithm works in general but, as I will show later on, specialized problems will immediately

indicate whether the algorithm crashes. As before, let 
̂ denote the priority algorithm implied

by the preorder.

Theorem 5.1 Let ≥̂ be a preorder that satisfies the previous conditions and Γa be the triplet

implied by the priority algorithm. Assume that the algorithm does not crash (reach step 7),

includes a finite number of steps and step 2 always has a unique maximizer. Then, a PRE that

is consistent with preorder ≥̂ must be equal to Γa. If uΓa
(x) ≥ uΓa

(x′) when x
̂x′, γa is a PRE.

Theorem 5.1 offers a helpful constructive argument to obtain PREs in continuous models.

Specifically, as long as the weak ranking of equilibrium utilities in any PRE can be determined

(generally, from the nature of the problem), then a tentative PRE can be obtained from Γa. To

verify this is indeed the unique PRE, it remains to be shown that (a) there is only one weak

ranking, (b) the algorithm completes in a finite number of steps, and (c) the resulting utilities

are monotonic in the steps of the algorithm (and must then confirm the original weak ranking).

I will apply next this principle to find PREs in three continuous models.

5.2. Three Applications

Although Theorem 5.1 does not offer a complete characterization of the equilibrium and some

further analysis will be required to determine a PRE, some straightforward analysis can often

pin down the correct pre-order for the problem. I illustrate this principle with three examples

which also offer some interesting stand-alone results.
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Assume that the state space is S = [s, s], a bounded interval of R, and the true state s̃ is a

continuous random variable with p.d.f. fs(.) and c.d.f. Fs(.).21 The type space is defined as a

collection of subsets of S and always satisfies that s̃ ⊆ x̃. I make an additional restrictions to

avoid technical issues that can arise in continuous variables and which are common to all the

settings. I specialize the market pricing function to have the form, for any measurable subset b

of X,

P(φ(b)) = E(g(s̃|x̃ ∈ b)) (5.3)

where g(.) is a continuous increasing function.

This restriction is with loss of generality but allows me to write prices as a continuous

function of the underlying distribution about the states of the world.22 Note that the restriction

can accommodate a pure-exchange setting (if g(.) is the identity) as well as settings in which

information has social value (if g(.) is convex) or buyers are risk-averse (if g(.) is concave).

The utility function is additively-separable U(p, r) = u(p) − c(r) where u(.) is a continuous

and increasing function. As in Grossman (1981) and Milgrom (1981), assume for now that

r is a measurable closed subset of S and, when reporting r, a truthful report must be such

that x ⊆ r. That is, the disclosure can be less precise than the observed information but

may not contradict it. There is a cost function c(r), which is non-decreasing when a report

is unconditionally more precise (in the sense of Blackwell), i.e., if r ⊆ r′, c(r) ≥ c(r′). The

assumption is intuitively appealing because if a measurement system can verify that the observed

information is compatible with r, then it will imply that the observed information is compatible

with r′. There is no-disclosure report rnd = S whose cost I normalize to c(rnd) = 0.

There could be some minor multiplicity of equilibria that could occur if various equilibrium

reports are interchangeable. To address this, I view PREs in which the reports imply exactly

the same utilities for all types as part of the same equivalence class and define uniqueness up to

this equivalence class.23

Lastly, I make a (innocuous) regularity condition. For any x, y, y′ such that y ≤ y′, assume

21The assumption of a bounded interval is for expositional purposes and does not affect the results.
22Without Equation (5.3), because P(φ(.)) is defined over the measurable subsets of X and thus a topological

presentation of continuity would be required. This makes the analysis more cumbersome but does not add much
economics to the problem. The results are very similar with other formulations of the production problem, such
as the decision problem used in Shavell (1994), i.e., P(φ(b)) = maxk E(s̃r(k) − k|x̃ ∈ b).

23One manner to rule out this multiplicity is to assume that the cost function is strictly decreasing in y′, i.e.,
a coarser report is strictly cheaper to send. However, the multiplicity can only occur when there are types in
[y′, s] that make a different equilibrium report; therefore, there is question as to whether making a report that is
coarser but in a sense that includes higher types that do not want to send this message in the first place should
feature strictly lower costs since, plausibly, it should involve no additional verification and does not reveal less
information.
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that the function U(P(φ([x, max(x, y)])), [x, max(x, y′)]) is not constant over any interval. This

regularity condition is a translation of condition (G); if it is violated, multiple PRE could exist

if the disclosure threshold were to lie exactly at locations where this utility is constant.

5.2.1 Application 1: The canonical disclosure model

I will develop here a solution to the “canonical” disclosure model, in which a seller has a single

piece of information that she may decide to disclose or withhold (Grossman and Hart (1980),

Jovanovic (1982), Verrecchia (1983), Dye (1985), Jung and Kwon (1988)). To do so, I add to the

basic model the following assumptions. First, I set the type space X = {S, {s}s∈S} where x = S

means that the seller does not receive information and x = s means that the seller knows the true

state. Conditional on state s, the seller has probability h(s) ∈ [0, 1) not to receive information.

Note that this formulation is slightly more general than Dye (1985) and Jung and Kwon (1988)

to the extent that, if h(s) is not a constant, a seller who does not receive information is partially

informed and can update her prior to E(s̃|h(s̃) = 1). If a seller does not receive information,

she has to report r = rnd, i.e., M(S) = {rnd}. If a seller does receive information, she can

either report her information or withhold, i.e., for any x ∈ S, M(x) = {rnd, s}. In this problem,

uD(x) = U(P(φ({x}), x) is the utility obtained by informed type x ∈ S when disclosing the

information.

First, note that a no-disclosure REs exists if and only if the following condition holds.

U(P(φ(S)), rnd) ≥ uD(s) (5.4)

Second, I consider whether there are REs that have the unravelling property, namely, all types

perfectly reveal their information. To begin with, consider the Dye (1985) and Jung and Kwon

(1988) setting, in which h(s) /∈ {0, 1} over a set with non-zero measure. Then,

U(P(φ(S)), rnd) > U(P(φ({s}), rnd) ≥ uD(s) (5.5)

Equation (5.5) implies that there is no RE in which the unravelling property holds.

Next, assume that h(s) is always zero for any s, which corresponds to the Jovanovic (1982)

and Verrecchia (1983) environments. Consider the case in which c({s}) > 0. If the unravelling

property holds, it must be the case that only type x = s reports r = rnd and strictly prefers to

do so. But, by continuity, this should also be the case for types x close enough to s, implying

32



a failure of unravelling. Suppose next that c({s}) = 0. Then, an unravelling RE exists if and

only if, for any x ∈ S,

uD(x) ≥ uD(s) (5.6)

Proposition 5.1 The following holds:

(i) A non-disclosure RE exits if and only if Equation (5.4) holds.

(ii) A RE with the unravelling property exists if and only if (a) Prob(h(s̃) = 1) = 1 for all s,

or (b) Prob(h(s̃) = 1) = 0, c({s}) = 0 and Equation (5.6) holds.

Note that it is entirely possible that both an unravelling and a no-disclosure RE co-exist,

making the analysis of such models without the concept of PRE problematic.

I move next to the characterization of partial disclosure REs in which the report rnd occurs

with probability between zero and one. Define an auxiliary function L(z) as follows:

L(z) = {z : x ∈ K,U(P(φ({x})), x) ≤ z}. (5.7)

By continuity of the pricing functional, any RE must be such that the set of informed types that

do not disclose, bnd has the following form:

und = U(P(φ((L(und) ∪ {S})), rnd) (5.8)

Equation (5.8) states that a partial disclosure RE must be such that the utility received con-

ditional on withholding is consistent with the price that would be paid if all sellers better-off

withholding were to do so. Note that und is defined implicitly and is present on both sides of

the Equation; therefore, it needs not have a unique solution. Fortunately, the next Proposition

can make use of Theorem 5.1 to characterize the unique PRE of the problem.

Proposition 5.2 The PRE exists and is unique. Whenever the no-disclosure RE exists, it is

the PRE. Otherwise, in the PRE, all non-disclosers achieve an expected utility u∗
nd given by

the maximal solution of Equation (5.8) and an informed type x ∈ S withholds if and only if

uD(x) ≤ u∗
nd.

The proof of Proposition 5.2 is immediate as a Pareto-dominated RE cannot be a PRE and

a RE with a higher non-disclosure price is preferred by all, strictly so by non-disclosers. 24 Note
24Continuity implies that the supremum of all solutions to Equation (5.8) satisfies this Equation as well.
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that the argument also offers an immediate proof why the RE is unique in a pure Jung and Kwon

(1988) model, without any need to compute the non-disclosure price (or to integrate by parts).

If the price functional is the expected state and there are no disclosure cots (a pure-exchange

setting), no feasible utility vector is Pareto-dominated, implying that there must be a unique

solution to Equation (5.8). The argument further extends to situations in which g(.) is concave

(e.g., risk-averse buyers). For the more general problems in which g(.) is neither linear nor

concave (e.g., real effects) or costs are non-zero (e.g., proprietary costs), there is no guarantee

that the RE is unique; yet, even then, the PRE is unique and selects the RE with the least

amount of voluntary disclosure.

Note that this result includes unravelling as a special case. With unravelling, the lowest

value type does not disclose, implying u∗
nd = uD(s) (note that unravelling only occurs when the

cost of disclosure for the lowest type is zero). This implies that unravelling is a PRE only if

there are no other REs. By contrast, if a no-disclosure RE exists, it is always the PRE of the

model.25

An important property of the model is that, if there are no costs to disclose, the higher

informed types are the most willing to disclose, i.e., L(und) is an interval with upper bound

s. This property does not generalize to the case with disclosure costs, as is made evident from

the functional L(.). Specifically, sellers with the highest disclosure utility net of costs are the

most willing to disclose. If costs are low for “medium” types, sellers with medium value might

disclose while those with high value might not. Nevertheless, the following weaker property can

be shown.

Corollary 5.1 In any PRE that does not have the unravelling property, there exists s0 > s such

all types with s ∈ [s, s0] choose to withhold information.

The idea of this Corollary is straightforward. Types with the lowest value are those that lose

the most from revealing themselves. Therefore, these firms are necessarily the most willing to

withhold.

I move next to the comparative statics of the model. To do so, let (Q) indicate a disclosure

problem and, to obtain strict comparative statics, I assume that the PRE of (Q) is neither the

25Note, lastly, that this PRE has been effectively computed from the priority algorithm obtained earlier. In this
problem, it is easy to see that the ranking of equilibrium utilities must be such that the utility of the uninformed is
(weakly) lowest and, then, the utility of an informed type is increasing in her utility from disclosure uD(x). Thus,
the PRE must maximize the utility of those informed sellers with highest uD(x) first which, in turn, involves
trying to maximize the non-disclosure price but, if it is below uD(x), classify type x as a discloser.
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(corner) solution of no-disclosure or unravelling. Define (Q̂) as a modified problem along one

dimension: (Q̂) is identical to (Q) except that the cost ĉ(x) > c(x) for x = s is greater for all

types (except possibly over a set with measure zero). To make the dependence explicit, I index

the PRE Γ by the problem under consideration.

Corollary 5.2 The PRE Γ(Q) features more disclosure than the PRE Γ(Q̂) and a higher non-

disclosure price.

An increase in the cost of disclosure induces more type to withhold and, given that disclosure

is costly, these types tend to be higher types that positively contribute to the non-disclosure

price. An implication of this feature is that greater disclosure costs always benefits sellers that

were previously non-disclosers.

The comparative static with respect to the information endowment is more ambiguous, as I

will illustrate. Let (Q̂) be defined as the problem with the same cost but a different probability

of information endowment ĥ(s).

Corollary 5.3 If E(s̃|s̃ ∈ L(u∗
nd)) >

∫
ĥ(s)sfs(s)ds (resp., <), the PRE Γ(Q) features less

disclosure (resp., more) disclosure than the PRE Γ(Q̂).

As a special case, if there are no costs of disclosure (thus L(u∗
nd)) is an upper interval and

ĥ(s) = h(s)+k(s), where k(s) is non-decreasing, i.e., the probability of not receiving information

is increased either irrespective of the state or more for good state), the level of strategic disclosure

will be lower. Note also that the opposite effect can occur if there are costs of disclosure, because

the uninformed types might be types that decrease the non-disclosure price, or if low-value events

are more likely to generate no information. The latter effect is, in fact, consistent with the theory

of Dye (1985) and Jung and Kwon (1988) given that a function ĥ(s) that is steeper may imply

that types that do not receive the information are, effectively, better informed about the true

state.

5.2.2 Application 2: Costly communication

A significant limitation of the canonical model is that it limits the forms of communication

that might be made by sellers. As an example, while it may be possible to truthfully disclose

that information x = s has been received, doing so might involve significant proprietary and/or

certification costs. As an alternative to this, the seller might prefer to divulge a less precise
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report r where {x} ⊆ r. In the previous application, this can only be achieved by making no

disclosure but no other coarse disclosure can be made.

I will first develop the idea of coarse disclosures in the context of costly communication and,

mainly for expositional purposes, assume that h(s) = 0 so that all sellers are informed. I will

develop the case of h(s) > 0 separately in the model with no costs, although the two approaches

can be merged together with a little extra notation.

In this model, I restrict the attention to reports that take the form of closed intervals, so

that the cost function is c([y, y′]). This restriction is with loss of generality given that, if it were

extremely cheap to verify non-interval disclosures, then reports that are not intervals could be

sent. Later on, I will provide a sufficient condition on the cost function such that only intervals

reports would be used.

The next Lemma formally establishes that one can characterize a PRE in which sellers report

a lower bound on their observed information.

Lemma 5.1 If Γ is a PRE, it has an equivalent PRE in which sellers report R(x) = [r1(x), s],

where r1(x) is an injective mapping defined over S. In particular, the surplus of a seller with

type x, uΓ(x), is non-decreasing in x.

Lemma 5.3 is closely related to Shin (1994)’s sanitization strategies in which a seller removes

all potentially adverse disclosures from the feasible set. This principle is generalized here to a

problem in which costs restrict how much of this sanitization can occur. Following this general

principle, it is never optimal to disclose an upper bound on the true state but, because of the

cost function, it may not be optimal to simply set r1(x) = x. I also emphasize here that this

property is specific the PRE and would not necessarily hold in all REs of this problem.26

Lemma 5.2 In a PRE, if r1(x) < x, then r1(x′) = r1(x) for any x′ ∈ [r1(x), x).

An implication of Lemma 5.2 is that a seller reporting a lower bound less than her true

observed value will pool with other sellers that have value higher than this lower bound and

issue the same report. In this respect, a PRE may feature several of such pooling regions in

which the issued report imperfectly reveals the observed s̃. In formal terms, a PRE can be

26The reason for this is because of some very counter-intuitive REs in this type of model, in which intermediate
type t sends a report r where max r < s and higher types with x > max r would receive an extremely unfavorable
price for any (off-equilibrium) report with min r ≥ t. This higher type cannot send the report sent by t and thus
will send a much coarser report in the equilibrium with min r < x which in turn might involve an equilibrium
price and utility lower than type t.
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written as a partition of S = {bi} composed only of singletons and intervals, and such that

there is one-to-one mapping between an element of the partition and the achieved utility and

all sellers whose observation is in the same element of the partition make the same report.

The function uD(x) is now introduced, noting that if a seller to discloses some of its infor-

mation, it should always to do by making a disclosure of the form r = [x1, s] in a PRE. As

I have shown, setting r(x) < x would necessarily trigger pooling by lower types while setting

max r < s is potentially costly and, at best, would imply an equivalent equilibrium. I thus define

the partial disclosure utility as:

uP (x, y) = u(E(g(s̃)|s̃ ∈ [x, y])) − c([x, s]) (5.9)

This is the utility obtained when a type sends the equilibrium report [x, s] and the market

believes that all types with s̃ > x would have chosen a different report.

The fact that utilities are monotonic in the observed information strongly suggests to adapt

the priority algorithm to proceed from the highest x̃, sequentially to the lowest x̃. From Theorem

5.1, this can be obtained by applying the priority algorithm and, if it completes in a finite number

of steps, the analysis is then complete. I focus first on situations in which a PRE exists such

that no information is conveyed. That is, all firms report r1(x) = s and issue the uninformative

report.

Proposition 5.3 There exists a no-disclosure PRE if and only if uP (s, s) ≥ uP (x, s) for any

x ∈ S. Then, it is unique PRE.

I turn next to the polar opposite in which all firms fully disclose their information.

Proposition 5.4 There exists a PRE with the unravelling property if and only if, for any x > s,

uP (x, x) > uP (x′, x) as long as x′ < x. Then, it is unique PRE.

The cases of no-disclosure and unravelling are special cases in which the priority algorithm

completes in a single step. Proposition 5.4 develops an extension of the disclosure unravelling

result (Grossman and Hart (1980), Milgrom (1981) and Grossman (1981)) in the presence of

disclosure costs. Unravelling may occur even when certification is costly provided costs increase

sufficiently slowly relative to the benefit of certification. The Proposition has two well-known

special cases. If g(.) and u(.) are linear and c([x, y]) is set equal to zero, the condition for the

existence and uniqueness of the full-disclosure equilibrium simplifies to x′ > E(s̃|s̃ ∈ [x, x′]) for
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all x < x′. This condition is always true and corresponds to the standard unravelling result.

Vice-versa, if c([x, y]) is equal to c > 0 for all x > s, s + ε − c([s + ε, s]) < E(s̃) so that the

condition for unravelling is always violated for ε small enough. This is the standard failure of

unravelling with a fixed disclosure cost in Jovanovic (1982) and Verrecchia (1983).27

The analysis is extended to PREs in which the seller chooses a reporting strategy that conveys

some information to buyers. Applying the priority algorithm implies the following description

of the PRE. First, I define the function ζ(x) in the following manner: ζ(x) is the minimal x′

such that uP (ζ(x), z) maximizes uP (x′, z). I then run the priority algorithm as follows.

1. Initialize the algorithm at z1 = s.

2. Calculate ζ(zi) and consider each of the following cases. If ζ(zi) < zi, go to step 3 and,

otherwise, go to step 4.

3. Set r1(x) = ζ(zi) for any x ∈ (ζ(zi), zi], Ra(x) = [r1(x), s], Ba(Ra(x)) = (ζ(zi), zi] and

P a(Ra(x)) = P(φ(Ba(Ra(x)))). Define Z = Ba(Ra(x)). Go to step 5.

4. Set r1(x) = x for all x such that ζ(x) = x, which is denoted as a set A. Then, set Ra(x) =

[x, s], Ba(Ra(x)) = {x} and P a(Ra(x)) = P(φ({x})). Define Z = A.

5. Set zi+1 = min Z. Whenever zi+1 = s, go to step 6, otherwise, go to step 2.

6. End of the algorithm and complete with off-equilibrium beliefs Ba(r) = {min r} and implied

price for any off-equilibrium report.

Proposition 5.5 There exists a unique PRE (up to off-equilibrium beliefs) which is given by

Γa.

A partially-pooling equilibrium may feature one or more pooling regions in which firms with

different qualities submit the same report. Note that these pooling regions are obtained sequen-

tially starting with sellers with the highest value. Once it is determined that high-value sellers

wish to pool or separate, these sellers are removed from the distribution and the same argument

is invoked over the truncated distribution. As a special case, the Proposition admits as a special

case the Jovanovic (1982) equilibrium in which there is (at most) a single pooling region that

27This is not sufficient in Verrecchia (1983) given that his study uses a support unbounded from below, in
which case a condition on the tails of the distribution (exponential decrease) is required but is satisfied by normal
distributions.
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lies at the lower-tail (low quality sellers do not disclose). More generally, the characterization

reveals that higher value sellers may choose to give some imperfect information.

As an application of this characterization, assume that g(z) = u(z) = z, and s̃ is logconcave

with a truncated expectation ∂E(s̃|s̃ ∈ [x, y])/∂x decreasing in y (this is satisfied by many

common distributions). Then, if c([x, s]) is concave, the priority algorithm implies that there

is a single disclosure region such that types with x ≥ y0 disclose. This is the classic result that

disclosure occurs for high types generalized to a particular class of distributions and utility

functions. Note that, in this case, an increase in disclosures costs expands the non-disclosure

region and leads to a coarser communication. On the other hand, if the cost function c([x, s])

is convex, then any x such that cx > 1 must be part of a pooling region “at the top.” More

generally, the case of a convex cost function could feature multiple pooling regions.

Example: Suppose that x̃ ∼ U [0, 1] and c(x, y) = γ(1 − (y − x)α), then the following holds:

(i) If α > 1, all sellers with x > x1 report r1(x) = x and all sellers with x < x1 report

r1(x) = s where:

x1 − γ(1 − (1 − x1)
α) −

x1

2
= 0 (5.10)

(ii) If α < 1, all sellers with x < x1 report r1(x) = x and all sellers with x > x1 report

r1(x) = x1 where:

(x1 + 1)/2 − γ(1 − (1 − x1)
α) − (1 − γ) = 0 (5.11)

I conclude this Section application by noting that, if sellers can send reports that are not

intervals, the reporting strategy need not be with the form [r1(x), s] because, for high enough

types, it might be cheap to pool only with low types and avoid the adverse price effect of

pooling with too many intermediate types. Even in this scenario, however, a tentative PRE can

be examined by redefining the pooling utility uP (.) in terms of all possible reports and apply step

3 across all such messages. When applied once using the original preoder, this procedure will

yield a new preorder that is reverse-engineered from the priority algorithm. Then, Theorem 5.1

will apply to this new preorder and, given that this order can only deliver the priority algorithm

discussed earlier, implies that a tentative PRE for the game. As I note below, however, the

possibility of non-interval reports can be also ruled out in a class of cost functions.

Theorem 5.2 Suppose that in problem (Q), a seller can report any r that contains {x} and is
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a finite union of closed intervals. Then, if c(.) is only a function of the unconditional probability

of x̃ ∈ r, an equivalent PRE can be obtained with strategies in which r is a closed interval.

The intuition for this Theorem is simple. If the cost function is not biased to make disclosure

of certain realizations of the events more or less costly, then, the utility-maximizing report is

always the report that features pooling with higher types. Therefore, the report features a

strategy in which sellers report that they are above a certain threshold.

5.2.3 Application 3: Uncertain information endowment

I conclude with a development of a version of Dye (1985) and Jung and Kwon (1988) in

which sellers need not be either informed or completely uninformed, and instead various sellers

receive different pieces of information (á la Shin (1994), but with a larger reporting space). Let

a type be defined as an interval x̃ = [x̃l, x̃h] where the bounds of this interval are drawn from

a continuous bivariate distribution fx(., .|s) such that x̃l ≤ s ≤ x̃h with probability one so one

may interpret each sellers has knowing at least a range about s̃. Assume that x̃l|x̃h = xh, s̃ = s

has full support over [s, s] and x̃h|x̃l = xl, s̃ = s has full support over [s, s]. Note that no one

is perfectly informed but there could certain types that have excellent information. The seller

can make a report r that is a closed intervals as long as x ⊆ r and there is no cost to make a

particular report.

Many of the steps and intuitions of the model with costly disclosure apply to this setting, so

that I will mainly focus here on the new facets of this particular model.

Lemma 5.3 If Γ is a PRE, it has an equivalent PRE in which sellers report R(x) = [r1(xl), s],

where r1(.) is an injective mapping defined over S. In particular, the surplus of a seller with

type x, uΓ(x), is non-decreasing in xl.

When sellers are imperfectly informed, they never report any information about their upper

bound, so that the realization of x̃h has no role to play. Then, sellers reporting strategies and

utility depends only on the lower bound of what they observe, which effectively constrains their

reporting choices. This property, in turn, suggests that the pre-order to be used is one in which

a type is higher in the order if xl is higher, which may introduce a distinction between value and

the priority of a type. Interestingly, an algorithm that is very nearly identical to that developped

in the case of costly disclosure, but replacing x̃ by x̃l applies here. To be more precise, one can
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redefine uD(.) and uP (.) as in Section 5.2.2 with a cost set to zero and uP (.) as:

uD(x) = u(E(g(s̃)|x̃l = x) (5.12)

uP (x, y) = u(E(g(s̃)|x̃l ∈ [x, y])) (5.13)

The function ζ(.) is then redefined accordingly.

The priority algorithm obtained in Section 5.2.2 applies to the case and delivers the PRE

for the model. Under certain conditions, the PRE can be derived explicitly. Suppose that uD(x)

has a unique maximum or a unique minimum. Then, there are four possible types of PRE that

may occur in the model.

Proposition 5.6 Suppose that g(x) = x (risk-neutral pricing). Then:

(i) If uD(x) is U-shaped with a unique interior minimum, there is a unique PRE and it features

withholding r1(x) = S for xl ≤ x0 and r1(x) = x (full disclosure of xl) for xl > x0.

(ii) If uD(x) is inverse U-shaped with a unique interior maximum, there is a unique PRE and

it features r1(x) = x0 for xl ≥ x0 (partial disclosure) and r1(x) = x for x < x0.

(iii) If uD(x), there is a unique PRE and it features full disclosure of xl, i.e., r1(x) = x for all

x.

Within Proposition 5.6, part (i) is consistent with the primary insight from Dye (1985) and

Jung and Kwon (1988) that more disclosure should occur for higher outcomes. Naturally, this is

a generalization of their analysis since these models restrict the attention to either x̃l = s̃ = x̃h

or x̃l = s which, in turn, will cause uD(x) to be decreasing for x ∈ (s, s] and with a discontinuity

at x = s (a degenerate U-shape in which the left branch of the U is vertical). I show in part (ii)

that this insight does not entirely generalize to arbitrary information endowments. In fact, the

communication can be more precise for lower realizations of x̃l if uD(x) is inverse-shaped; this

can occur if (sensibly) sellers that observe a low x̃l are also likely to observe a low x̃h. Part (iii),

lastly, develop a weaker notion of unravelling that may nevertheless be present in this model.

Although perfect unravelling cannot occur because sellers do not reveal any information about

x̃h, there is a possibility that the lower bound unravels if the effects present in part (ii) are

strong enough.
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Corollary 5.4 Under the conditions of Proposition 5.6, a decrease in the quality of information

by sellers, defined by x̃h|s̃, x̃l increasing in the sense of the first-order stochastic dominance,

implies a decrease in communication (in the Blackwell sense).

Corollary 5.4 extends the idea that lower information endowments induces types to be weakly

more strategic and pool more, causing total information to decrease as well. This property holds

in the type of equilibria described in part (ii) that do not have the form in Dye (1985) and Jung

and Kwon (1988). Lastly, note that this property is generally not true if there is more than a

single pooling region for x̃l since, in these cases, a change in information endowment will tend

to change which types are pooled together.

6. Concluding remarks

This paper offers a general methodology to solve and analyze a class of games in which a

piece of information can be truthfully disclosed but, beyond the report that is made, there are

no other sources of communication that may reveals the seller’s type. I show that this class of

model has a single reasonable equilibrium that can be explicitly computed in finite games and,

for many classic problems, extends to continuous games. The solution concept addresses the

large multiplicity of rational expectations equilibria that arises in any voluntary disclosure game

in which not all feasible reports are on the equilibrium path.

I offer several theoretical contributions above and beyond the characterization of the perfect

sequential rational expectations equilibrium. First, I provide a set of conditions under which

the equilibrium exists which include, among others, generalized multi-dimensional versions of

the Grossman-Hart-Jovanic-Dye-Verrecchia-Jung-Kwon models, as well as problems with large

reporting spaces. Second, I develop several fundamental properties of such voluntary disclo-

sure frameworks, in particular I analyze conditions under which unravelling occurs and, then,

show that whenever unravelling does not occur, setting a regulation that removes the option to

withhold information leads to a Pareto-decrease in welare. Under certain conditions, requiring

disclosure for higher types is also Pareto-decreasing which may partially rationalize why regu-

lations tend to require more demanding disclosures for low-value types. Third, I illustrate the

predictions of the model within three classic continuous models: (a) a generalization of the Dye-

Verrecchia model with arbitrary costs, real effects and information endowment that correlates

to the state, (b) a generalization of the Verrecchia model in which sellers can make interval
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disclosures, and (c) a generalization of the Dye model in which sellers can be partially informed.

Although the study is not intended to provide all properties for all specialization of vol-

untary disclosure models, it does suggest a general methodology to approach these problems.

This methodology might allow future research to examine previously poorly understood prob-

lems, such as multi-dimensional information or when some types are unconstrained about their

reporting strategies.

Technical Appendix

Proof of Lemma 3.1: Suppose Γ is a PRE that does not coincide with Γa. Let i denote

the first step in the algorithm in which at least one type makes a different report under Γa.

With generic payoffs, this implies that any type x ∈ Xi must achieve U(P (R(x)), R(x)) 6=

U(P a(ri), ri).

I first show that, for all types x ∈ Xi, U(P (R(x)), R(x)) < U(P a(ri), ri). Suppose, by

contradiction, that a type x ∈ Xi exists such that:

U(P (R(x)), R(x)) > U(P a(ri), ri). (A.1)

By construction of ri, there must be a type x′ ∈ Xi such that R(x) ∈ M(x′) and R(x′) 6= R(x).

Then:

U(P (R(x′)), R(x′)) > U(P (R(x)), R(x)).

This last inequality implies that x′ also verifies Equation (A.1) and one can repeat this argument

to find an additional type x′′ such that U(P (R(x′′)), R(x′′)) > U(P (R(x′)), R(x′)). Iteratively,

this implies an infinite sequence of such types, a contradiction.28

The claim establishes that pooling on the message ri must be strictly preferred by all sellers

that can send ri. Therefore, the triple (r0, p0, b0) = (ri, P
a(ri), Ba(ri)) violates PRE.2

Proof of Lemma 3.2: I first show that the existence of a PRE implies that the sequence of

utilities is decreasing. Assume that Γa is the PRE and, by contradiction, suppose that i is the

first step of the algorithm such that U(P a(ri), ri)) < U(P a(ri+1), ri+1)). For Γ to be a RE, no

28Of note, this proof relies on a finite type space, in part because the algorithm itself is only guaranteed to
exhaust all types for the case in which the type space is not countably infinite. If the type space is continuous (of
which some examples will be given later on), the algorithm must be suitably adapted and additional conditions
must hold for its output to be well-defined.
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type in Xi that can send ri should be able to send ri+1, i.e. Xi ∩ M−1(ri) ∩ M−1(ri+1) = ∅.

But, then, at step i,

P(φ(Xi ∩ M−1(ri+1))) = P(φ(Xi+1 ∩ M−1(ri+1))) = P a(ri+1). (A.2)

Conversely, I show that Γa is a PRE when the sequence of utilities is decreasing. Assume

that (U(P a(ri), ri))) is decreasing in i. Note first that if x ∈ Ba(ri) then (a) type x could not

send any of the reports made prior to step i, and (b) type x would be worse-off by sending

a report that is made after step i (or any off-equilibrium). It follows that Γa is a RE. Next,

suppose by contradiction that Γa is not a PRE, in which case there exists (r0, p0, b0) that violates

PRE. Let i be the last step such that b0 ⊆ Xi, i.e., b0 ∩Ba(ri) 6= ∅. The violation of PRE must

make all types in x ∈ b0 ∩ Ba(ri) better-off than under Γa, that is,

U(P a(ri), ri)) < U(P(φ(b0)), r0). (A.3)

Further, by definition of ri, b0 cannot contain all types in Xi that can send r0 and, therefore,

there exists x such that r0 ∈ M(x) and:

U(P a(Ra(x)), Ra(x)) > U(P(φ(b0)), r0) (A.4)

However, because (U(P a(ri), ri))) is decreasing and x ∈ Xi,

U(P a(Ra(x)), Ra(x)) < U(P a(ri), ri)) (A.5)

Equations (A.3), (A.4) and (A.5) imply a contradiction.2

Proof of Theorem 3.1: By Lemma 3.2, I need to verify that the sequence (U(P a(ri), ri)))

is decreasing. By contradiction, suppose that i is the first step of the algorithm such that

U(P a(ri), ri)) < U(P a(ri+1), ri+1)). By condition (A), there exists r such that M−1(r) =

M−1(ri) ∪ M−1(ri+1) and U(p, r) ≥ min(U(p, ri), U(p, ri+1)).

The following holds:

Xi+1 ∩ M−1(r) = (Xi\M
−1(ri)) ∩ (M−1(ri) ∪ M−1(ri+1)) = Xi+1 ∩ M−1(ri+1). (A.6)
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Substituting in the price in the utility functions,

U(P(φ(Xi+1 ∩ M−1(r))), r) ≥ U(P(φ(Xi+1 ∩ M−1(ri+1))), ri+1). (A.7)

Since ri+1 is selected at step i+1, Equation (A.7) must hold at equality, implying that ri+1 = r.

Therefore, M−1(ri) ⊂ M−1(ri+1).

Next, I examine the price that would be attained when sending ri+1 at step i.

P(φ(Xi ∩ M−1(ri+1))) ≥ min(P(φ(Xi ∩ M−1(ri))),P(φ(Xi+1 ∩ M−1(ri+1)))). (A.8)

It then follows that:

U(P(φ(Xi ∩ M−1(ri+1))), ri+1) ≥ U(P(φ(Xi ∩ M−1(ri))), ri). (A.9)

This implies that ri = ri+1, a contradiction.2

Proof of Theorem 3.2: By Lemma 3.1, I need to verify that the sequence (U(P a(ri), ri)))

is decreasing. By contradiction, suppose that i is the first step of the algorithm such that

U(P a(ri), ri) < U(P a(ri+1), ri+1). Note that Xi ∩M−1(ri)∩M−1(ri+1) 6= ∅ (or else, ri = ri+1).

By condition (B2), M−1(ri) = [xi, yi] and M−1(ri+1) = [xi+1, yi+1].

Case 1. Suppose that yi+1 ≤ yi. Then, xi ≥ xi+1.

U(P a(ri), ri) < U(P(φ(bi+1)), ri+1) ≤ U(P(φ(M−1(ri+1) ∩ Xi)), ri+1) (A.10)

This is a contradiction to ri being selected at step i.

Case 2. Suppose that yi+1 > yi and xi+1 ≥ xi.

P(φ(M−1(ri+1) ∩ Xi)) ≥ min(P(φ((xi, yi) ∩ Xi),P(φ((yi, yi+1) ∩ Xi)))︸ ︷︷ ︸
=P(φ(bi))

(A.11)

By condition (B3),

U(P(φ(M−1(ri+1) ∩ Xi)), ri+1) ≥ U(P(φ(M−1(ri+1) ∩ Xi)), ri) ≥ U(P(φ(bi)), ri) (A.12)

This would imply that ri = ri+1, a contradiction.
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Case 3. Suppose that yi+1 > yi and xi+1 < xi. By condition (B),

P(φ(M−1(ri+1) ∩ Xi)) ≥ min(P(φ(bi)),P(φ(bi+1))) (A.13)

By condition (D),

U(P(φ(M−1(ri+1) ∩ Xi)), ri+1) ≥ min(U(P(φ(bi)), ri), U(P(φ(bi+1)), ri+1))︸ ︷︷ ︸
=U(P(φ(bi)),ri)

This implies that ri = ri+1, a contradiction.2

Proof of Theorem 3.3: By construction of algorithm b, I need to show that at step i of

algorithm a, the set bi must include a �−maximal type in Xi. By contradiction, if this is not

the case, there exists x ∈ Xi such that x /∈ bi and x � x′ where x′ ∈ bi. Then, there exists a

report r such that (a) U(p, r) ≥ U(p, ri) for any p and (b) M−1(r) �s M−1(ri). Then,

U(p,P(φ(Xi ∩ M−1(r)))) ≥ U(p,P(φ(Xi ∩ M−1(r)))). (A.14)

This would imply that ri = r, a contradiction to x /∈ bi.2

Proof of Theorem 3.4: In this proof, I use upperscript a to refer to algorithm a and

upperscript b to refer to algorithm b.

Define for any report r ∈ M(x) (resp., r ∈ M(y)), a function Hy(r) (resp., Hx(r)) that

maps to a report in M(y) (resp., M(x)) that satisfies (a) and (b) in Definition 3.3. Then, define

the function Hn(r) = (Hx ◦ Hy)n. By condition (a), for any p, U(p,Hn(r)) is increasing in r

and therefore attains a maximum at Hn(r) = ψ(r). By condition (b), the set M−1(Hn(r)) is

increasing in the sense of �s and must also attain its maximum at M−1(ψ(r)). It then holds

that:

M−1(H(ψ(r))
︸ ︷︷ ︸

=ψ(r)

) �s M−1(Hy(ψ(r))) �s M−1(ψ(r)).

By condition (B1), this implies that M−1(Hy(ψ(r))) = M−1(ψ(r)). From the same argument,

U(p,H(ψ(r))
︸ ︷︷ ︸

=ψ(r)

) ≥ U(p,Hy(ψ(r))) ≥ U(p, ψ(r)).
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It then follows that U(p,Hy(ψ(r))) = U(p, ψ(r)). In a generic problem, it must then hold that

ψ(r) = Hy(ψ(r)). Let M2(x) ⊆ M(x) ∩ M(y) be the set of reports that can be written as

ψ(r), then, by construction of algorithms a and b, a type picked at step i would always choose

a report in M2(x), at which point both type x and y would be included in bi. This establishes

the claim.2

Proof of Theorem 4.1: Assume that (i)-(iii) hold. From Theorem 3.3, x 
 x′, so that let ri

be the report made by x and rj be the report made by x′, where j > i. Suppose by contradiction

that the unravelling property holds.

Assume that condition (A) holds. I show first that M−1(ri) ⊂ M−1(rj). From the construc-

tion of the algorithm, x′ /∈ M−1(ri) so that the two sets cannot be equal. By condition (A),

there exists a report r such that M−1(r) = M−1(ri) ∪ M−1(rj) and:

U(P(φ(Xj ∩ M−1(r))), r) ≥ U(P(φ(Xj ∩ M−1(rj))), rj) (A.15)

It follows that r = rj which, in turn, implies the claim that M−1(ri) ⊂ M−1(rj). Then,

U(P(φ(Xj ∩ M−1(rj))), rj) = U(P(φ({x′}, rj) ≥ U(P(φ(Xi ∩ M−1(ri))), ri)︸ ︷︷ ︸
=U(P(φ({x})),ri)

(A.16)

By Lemma 3.2, this implies that ri = rj , a contradiction.

Assume that conditions (B1)-(B3) hold. As before, x′ /∈ M−1(ri) or else unravelling would not

hold. By conditions (B1) and (B2), this implies that x′ � max M−1(ri), hence max M−1(rj) �

max M−1(ri) and, by condition (B3), U(p, rj) ≥ U(p, ri) for any p.

U(P(φ({x′})), rj) ≥ U(P(φ({x})), ri) (A.17)

By Lemma 3.2, this implies that ri = rj , a contradiction.2

Proof of Theorem 4.2: In this proof, I denote with ’ (prime) the variables that correspond

to problem (Q′). Let j be the last step in the priority algorithm applied to the disclosure problem

(Q). For any i < j, ri 6= rnd or else i would have been the last step. At step j,

U(P(φ(bj)), r) = U(P(φ(Xj)), r) ≤ U(P(φ(M−1(rnd) ∩ Xj︸ ︷︷ ︸
Xj

)), rnd) (A.18)
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Therefore, rj = rnd.

For any i < j, the priority algorithm can achieve the same utility with the smaller set of

messages under (Q′) as under (Q). Therefore, the ri = r′i and all types selected at a step prior

to j achieve the same utility in both problems.

Consider step j, by construction of the priority algorithm,

U(P(φ(Xj), rnd)) ≥ max
r

U(P(φ(M−1(r) ∩ Xj), r)) (A.19)

Therefore, all types in b′j are better-off under (Q) than under (Q’) (strictly so, in a generic

problem). To conclude, note by Lemma 3.2, for any i′ > j,

max
r

U(P(φ(M−1(r) ∩ Xj), r)) ≥ U(P(φ(bi′), ri′)) (A.20)

It then follows that all types in Xj are strictly better-off under (Q) than under (Q′).2

Proof of Proposition 3.1: By Lemma 3.1, there is at most one PRE and it must be given

by the priority algorithm. Suppose, by contradiction, that there exists a first step i such that:

U(P a(ri), ri) < U(P a(ri+1), ri+1) (A.21)

By construction of the algorithm, this can only occur if Xi ∩ M−1(ri) ∩ M−1(ri+1) 6= ∅ and

M−1(ri+1) 6⊆ M−1(ri). In this problem, this implies that M−1(ri) ⊂ M−1(ri+1).

Suppose that ri contains l iterations of NI and (d − l)-uple set of disclosures y. Then, ri+1

must contain l′ > l iterations of NI and a (d − l′)−uple of disclosures y′ where y′ ⊂ y. Then,

U(P(φ(Xi ∩ M−1(ri+1))), ri+1) ≥ U(min(P a(ri+1), P
a(ri)), ri+1) (A.22)

This implies that:

U(P(φ(Xi ∩ M−1(ri+1))), ri+1) ≥ U(P a(ri), ri) (A.23)

This contradicts that ri 6= ri+1.2
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Proof of Theorem 4.3: (i) Let i be a step in the priority algorithm in which x ∈ bi ∩Ω and

a disclosure report is not used. Then,

U(P(φ(bi)), ri) > U(P(φ({x})), rD(x)) (A.24)

Therefore type x will be strictly worse-off under (Q′) and (uΓ′
(x))x∈X cannot Pareto dominat-

evthe allocation (uΓ(x))x∈X .

(ii) The argument used in (i) also implies that any x ∈ Ω is weakly worse-off under (Q′),

strictly if this type did not use rD(x). Types x /∈ Ω are selected after type x̂ which implies that

utilities are computed over the subset of types X\Ω and therefore the PRE for (Q) and (Q′)

coincide.2

Proof of Lemma 5.3: For expositional purposes, I state the proofs with a single type;

however, to be fully rigorous, this proof needs to be applied over a subset of types with non-zero

mass. Suppose that Γ admits a type x such that max R(x) < v. Define a new Γ′ such that all

sellers that were reporting R(x) now report r′ = [min R[x], v] and buyers respond to this price

by offering P (r′) = P (R(x)). Note that if all types with y ∈ [max R(x), s] achieve a utility

uΓ(y) ≥ uΓ(x), these types would not send the report r′ in the new RE and therefore the new

RE is an equivalent RE, and therefore also an equivalent PRE.

For the new Γ′ not to be an RE, it must that for a non-zero mass of types y ∈ [max R(x), s],

uΓ(y) ≥ uΓ(x); denote this set A1. Then, a contradiction to PRE can be obtained by setting

p0 = P (R(x)), r0 = r′ and b0 = A1.2

Proof of Lemma 5.2: Assume that r1(x) < x for some x.

Define K(x) = {x′ : r1(x) ≤ x′ ≤ x}. Let x′ ∈ K(x). Then, R(x) is a feasible message

for type x′ and, vice-versa, by Lemma 5.3, R(x′) is feasible for type x, which then implies that

uΓ(x) = uΓ(x′). Then, there exists an interval T such that u0 = uΓ(x) if and only if x ∈ T . Let

the report r0 be defined as r0 = [min T, s]

Suppose (by contradiction) that r1(x) > min T . For any y ∈ T ,

u0 = u(E(g(s̃)|R(s̃) = R(y))) − c(R(y)) (A.25)
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Slightly rearranging this Equation and taking expectations over y = s̃ ∈ T ,

E(g(s̃)|s̃ ∈ T ) = E(u−1(u0 + c(R(s̃)))|s̃ ∈ T ) (A.26)

u(E(g(s̃)|s̃ ∈ T )) − c(r0) = u(E(u−1(u0 + c(R(s̃)))|s̃ ∈ T ) − c(r0)) (A.27)

There are two cases to consider. First, suppose that there exists a positive mass of such types

y such that c(R(y)) > c(r0). Then:

u(E(g(s̃)|s̃ ∈ T )) − c(r0) > u(u−1(u0)) = u0 (A.28)

Then, setting r0, p0 = E(g(s̃)|s̃ ∈ T ) and b0 as the set of all types in T as well as all types

higher than max T that obtain a utility less than u0 under Γ would contradict that Γ is a PRE.

Second, if c(R(s̃)) = c(r0) for all s̃ ∈ T , then an equivalent PRE can be constructed by

substituting r0 instead of R(s̃) with no effect on the equilibrium utilities.2
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