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A Unified Theory of Tobin’s q, Corporate Investment, Financing, and Risk

Management

Abstract

This paper proposes an analytically tractable dynamic model of corporate investment and

risk management for a financially constrained firm. Following Froot, Scharfstein, and Stein

(1993), we define a corporation’s risk management as the coordination of investment and fi-

nancing decisions. In our model, corporate risk management is a combination of internal liquid-

ity management, financial hedging, investment, and payout decisions. We determine the firm’s

optimal risk management policies as functions of the following key parameters: 1) the firm’s

earnings growth and cash flow risk; 2) the external cost of financing; 3) the firm’s liquidation

value; 4) the opportunity cost of holding cash; 5) investment adjustment and asset sales costs;

and 6) the return and covariance characteristics of hedging assets the firm can invest in. The

optimal cash inventory policy involves two endogenous barriers and the continuous adjustment

in investment and hedging positions in between the barriers. Cash is paid out to shareholders

only when the cash-capital ratio hits the upper barrier, and external funds are raised only when

the firm has depleted its cash. Several new insights emerge from our analysis. For example, we

find that the relation between marginal q and investment differs depending on whether cash or

credit is the marginal source of financing. We also demonstrate the distinct and complementary

roles that cash management and derivatives play in risk management.



I. Introduction

When firms face external financing costs, they must deal with complex and closely intertwined

investment, financing, and risk management decisions. Although the interconnection among these

policies is well appreciated in theory, how to translate this observation into day-to-day risk man-

agement and investment policies still remains largely to be determined. Simple questions such as

when/how corporations should reduce their cash holdings, or when/how they should replenish their

dwindling cash inventory are still not precisely understood. Similarly, the questions of which risks

the corporation should hedge and by how much, or to what extent holding cash inventory is a

substitute for financial hedging through futures, swaps and derivatives are not well understood.

Our goal is to propose the first elements of a tractable dynamic economic framework, in which

corporate investment, asset sales, cash inventory, equity financing, credit line, and dynamic hedg-

ing policies are characterized analytically for a “financially constrained” firm (that is, a firm facing

external financing costs). The baseline model we propose introduces only the essential building

blocks, which are: i) the workhorse neoclassical q model of investment1 featuring a constant invest-

ment opportunity set (Hayashi (1982)); ii) time-invariant external financing costs and cash carry

costs, so that the firm’s financing opportunity set is also constant; iii) four financial instruments:

cash, equity, credit line, and derivatives (e.g. futures). This parsimonious model already captures

many situations that firms face in practice (at least as a first approximation) and yields a rich set

of prescriptions.

A first important result that emerges from our analysis is that with external financing costs

the firm’s investment is no longer determined by equating the marginal cost of investing with

marginal q, as in the neoclassical Modigliani-Miller (MM) model (with no fixed adjustment costs

for investment).2 Instead, corporate investment is determined by the following first-order condition:

marginal cost of investing =
marginal q

marginal cost of financing
.

1Tobin (1969) first introduces q as the ratio of firm market value to the replacement cost of its capital stock.
2See Abel and Eberly (1994) for a general specification of the q theory of investment under the neoclassic setting

with both fixed and variable costs. Fixed costs of investment give rise to ‘inaction’ regions and generate real options
for the firm as in McDonald and Siegel (1986) and Dixit and Pindyck (1994).
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In other words, investment of a financially constrained firm is determined by the ratio of marginal

q to the marginal cost of financing.3 When firms are flush with cash, the marginal cost of financing

is approximately one, so that this equation is approximately the same as the one under MM-

neutrality. But when firms are close to financial distress, the marginal cost of financing may be

much larger than one so that optimal investment may be far lower than the level predicted under

MM-neutrality.

The above first order condition also implies that the relation between marginal q and investment

differs depending on whether cash or credit is the marginal source of financing. We show that when

the marginal source of financing is cash, both marginal q and investment increase with the firm’s

cash holdings, as more cash makes the firm less financially constrained. In contrast, when the

marginal source of financing is a credit line, we show that marginal q and investment move in

opposite directions: marginal q increases with the firm’s leverage, while investment decreases with

leverage. Indeed, an increase in investment helps relax the firm’s borrowing constraint by adding

capital that may be pledged as collateral against the credit line. This explains why marginal

q increases with leverage. However, the more debt the firm has, the more aggressively it cuts

investment to delay incurring equity issuance costs. We thus simultaneously observe an increasing

marginal q schedule and a decreasing investment schedule as the firm takes on more debt.

A second important result concerns the firm’s optimal cash-inventory policy. Much of the

empirical literature on firms’ cash holdings tries to identify a target cash-inventory for a firm by

weighing the costs and benefits of holding cash.4 The implicit idea is that this target level helps

determine when a firm should increase its cash savings and when it should dissave.5 Our analysis,

however, shows that the firm’s cash-inventory policy is much richer, as it involves a combination

of a double-barrier policy, as in Miller and Orr (1966), and the continuous management of cash

reserves in between the barriers through adjustments in investment, asset sales, as well as the

firm’s hedging positions. When cash holdings are higher, the firm invests more and saves less,

3This first-order condition has also been derived in Hennessy, Levy, and Whited (2007).
4See Almeida, Campello, and Weisbach (2004, 2008), Faulkender and Wang (2006), Khurana, Martin, and Pereira

(2006), and Dittmar and Mahrt-Smith (2007).
5Recent empirical studies have found that corporations tend to hold more cash when their underlying earnings

risk is higher or when they have higher growth opportunities (see e.g. Opler, Pinkowitz, Stulz, and Williamson (1999)
and Bates, Kahle, and Stulz (2008)).
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as the marginal value of cash is smaller. When the firm is approaching the point where its cash

reserves are depleted, it optimally scales back investment and may even engage in asset sales. This

way the firm can postpone or avoid raising costly external financing.

At the endogenous upper barrier of the cash-capital ratio it is optimal for the firm to pay out

cash, and at the lower barrier the firm either raises more external funds or closes down. This lower

barrier is attained when the firm runs out of cash and credit, as carrying cash and accessing credit

are costly. Moreover, using internal funds (cash) to finance investment both lowers the cash carry

costs and defers external financing costs. Thus, with a constant investment/financing opportunity

set our model generates a dynamic pecking order of financing between internal and external funds.

The stationary cash-inventory distribution from our model shows that firms respond to the financing

constraints by optimally managing their cash holdings so as to stay away most of the time from

financial distress situations.

A third general result is that in the presence of external financing costs, firm value is sensitive

to both idiosyncratic and systematic risk. To limit its exposure to systematic risk, the firm can

engage in dynamic hedging via derivatives (such as oil or currency futures). To mitigate the impact

of idiosyncratic risk, it can manage its cash reserves by modulating its investment outlays and asset

sales, and also by delaying or moving forward its cash payouts to shareholders.

Our model thus integrates two channels of risk management, one via a state non-contingent

vehicle (cash), the other via state-contingent instruments (derivatives). The main benefit of reduc-

ing the firm’s exposure to systematic risk through financial hedging is the reduction in the firm’s

need to hold costly cash inventory. Derivatives and cash thus play complementary roles in risk

management. However, when dynamic hedging involves higher transactions costs, such as tighter

margin requirements, we also show that the firm reduces its hedging positions and uses cash as a

substitute.

A fourth result concerns the relation between the firm’s beta and its cash holdings. To the extent

that the beta of a financially constrained firm reflects the firm’s exposure to both idiosyncratic and

systematic risk, it should be higher than the beta of an unconstrained (first-best) firm, which reflects

only the firm’s exposure to systematic risk. This intuition is valid in a static setting. However, we
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show that in a dynamic setting in which firms actively manage their cash holdings, a financially

constrained firm can actually have a lower beta than an unconstrained firm. The intuition is as

follows. In anticipation of future financing costs, a financially constrained firm is likely to hold a

significant proportion of its assets in cash, which has a zero beta, while an unconstrained firm does

not hold any cash.

Despite the potential technical complexity of an analysis of dynamic corporate risk management,

our model is sufficiently simple that we are able to provide a precise analytical characterization

of the firm’s optimal policy. We can thus give concrete prescriptions for how a firm should man-

age its cash reserves and choose its investment, financing, hedging, and payout policies, given its

underlying production technology, investment opportunities, financing costs, and market interest

rates. Moreover, we are able to provide a number of interesting comparative statics results. We

can also simulate the stationary distributions for any economic variable of interest such as the

firm’s cash-capital ratio, investment-capital ratio, firm value-capital ratio, and the marginal value

of financing.

There is only a handful of theoretical analyses of firms’ optimal cash, investment and risk man-

agement policies. A key first contribution is by Froot, Scharfstein, and Stein (1993), who develop

a static model of a firm facing external financing costs and risky investment opportunities.6 Our

dynamic risk management problem uses the same contingent-claim methodology as in the dynamic

capital structure/credit-risk models of Fischer, Heinkel, and Zechner (1989) and Leland (1994),

but unlike these theories we explicitly model the wedge between internal and external financing of

the firm and the firm’s cash accumulation process. Our model also extends these latter theories

by introducing capital accumulation and thus integrates the contingent-claim approach with the

dynamic investment/financing literature. The following contributions in that latter literature are

most closely related to ours.

Gomes (2001) is an important early contribution on dynamic corporate investment with external

financing costs. His model, however, does not allow for cash inventory management. Hennessy

6See also Kim, Mauer, and Sherman (1998). Another more recent contribution by Almeida, Campello, and
Weisbach (2008) extends the Hart and Moore (1994) theory of optimal cash holdings by introducing cash flow and
investment uncertainty in a three-period model.
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and Whited (2005, 2007) numerically solve and estimate discrete-time dynamic capital structure

models with investment for financially constrained firms. They explicitly model taxes and allow for

stochastic investment opportunities, but have no adjustment costs for investment.7 Hennessy, Levy,

and Whited (2007) characterize a similar investment first-order condition as ours for a financially

constrained firm. They do not model fixed costs of equity issuance, and their analysis focuses on

firms at the payout or equity issue margins. Using a model related to Hennessy and Whited (2005,

2007), Riddick and Whited (2008) show that saving and cash flow can be negatively related after

controlling for q, because firms use cash reserves to invest when receiving a positive productivity

shock.8

Our paper provides the first analysis of dynamic risk management, combining cash management

and dynamic hedging, and the coordination between the firm’s investment, financing and payout

decisions. Unlike the existing dynamic investment/financing literature, our model exploits the

analytical simplicity of a homogeneous model (linear in the capital stock), for which a complete

analytical characterization of the firm’s optimal investment and financing policies, as well as its

dynamic hedging policy and its use of credit lines is possible.

In terms of methodology, our paper is related to Decamps, Mariotti, Rochet, and Villeneuve

(2006), who explore a continuous-time model of a firm facing external financing costs. Unlike our

set-up, their firm only has a single infinitely-lived project of fixed size, so that they cannot consider

the interaction of the firm’s real and financial policies. Our model also relates to DeMarzo, Fishman,

He, and Wang (2009) who integrate dynamic moral hazard with the q theory of investment (à la

Hayashi (1982)) in a continuous-time dynamic optimal contracting framework. Dynamic agency

conflicts generate an endogenous financial constraint and induce underinvestment in their model.

7Recently, Gamba and Triantis (2008) have extended Hennessy and Whited (2007) to introduce issuance costs of
debt and hence obtain the simultaneous existence of debt and cash.

8In a related study, DeAngelo, DeAngelo, and Whited (2009) model debt as a transitory financing vehicle to meet
the funding needs associated with random shocks to investment opportunities.

5



II. Model Setup

We first describe the firm’s physical production and investment technology, then introduce the firm’s

external financing costs and its opportunity cost of holding cash, and finally state firm optimality.

A. Production Technology

The firm employs physical capital for production. The price of capital is normalized to unity. We

denote by K and I respectively the level of capital stock and gross investment. As is standard in

capital accumulation models, the firm’s capital stock K evolves according to:

dKt = (It − δKt) dt, t ≥ 0, (1)

where δ ≥ 0 is the rate of depreciation.

The firm’s operating revenue at time t is proportional to its capital stock Kt, and is given by

KtdAt, where dAt is the firm’s revenue or productivity shock over time increment dt. We assume

that after accounting for systematic risk the firm’s cumulative productivity evolves according to:

dAt = µdt+ σdZt, t ≥ 0, (2)

where Z is a standard Brownian motion under the risk-neutral measure.9 Thus, productivity

shocks are assumed to be i.i.d., and the parameters µ > 0 and σ > 0 are the mean and volatility

of the risk-adjusted productivity shock dAt. This production specification is often refereed to as

the “AK” technology in the macroeconomics literature.10 Our assumption of the productivity

shocks implies that investment opportunities are constant over time. We intentionally choose

such an environment in order to highlight the dynamic effects of financing frictions, not changing

9As is standard in asset pricing, we assume that the economy is characterized by a stochastic discount factor Λt,
which follows dΛt

Λt
= −rdt − ηdB̂t, where B̂t is a standard Brownian motion under the physical measure P, and η

is the market price of risk (the Sharpe ratio of the market portfolio in the CAPM). Then, Bt = B̂t + ηt will be a
standard Brownian motion under the risk-neutral measure Q. Finally, Zt is a standard Brownian motion under Q,
and the correlation between Zt and Bt is ρ. Then, the mean productivity shock under P is µ̂ = µ + ηρσ.

10Cox, Ingersoll, and Ross (1985) develop an equilibrium production economy with the “AK” technology. See
Jones and Manuelli (2005) for a recent survey in macro.
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investment opportunities, on investment, cash, external financing, and risk management policies.

The firm’s incremental operating profit dYt over time increment dt is then given by:

dYt = KtdAt − Itdt−G(It,Kt)dt, t ≥ 0, (3)

where I is the gross investment and G(I,K) is the additional adjustment cost that the firm incurs

in the investment process. We may interpret dYt as cash flows from operations. Following the

neoclassical investment literature (Hayashi (1982)), we assume that the firm’s adjustment cost is

homogeneous of degree one in I and K. In other words, the adjustment cost takes the homogeneous

form G(I,K) = g(i)K, where i is the firm’s investment capital ratio (i = I/K), and g(i) is an

increasing and convex function. Our analyses do not depend on the specific functional form of g(i),

and to simplify we assume that g(i) is quadratic:

g (i) =
θi2

2
, (4)

where the parameter θ measures the degree of the adjustment cost. Finally, we assume that the

firm can liquidate its assets at any time. The liquidation value Lt is proportional to the firm’s

capital, Lt = lKt, where l > 0 is a constant.

The homogeneity assumption embedded in the adjustment cost, the “AK” production tech-

nology, and the liquidation technology allows us to deliver our key results in a parsimonious and

analytically tractable way. Adjustment costs may not always be convex and the production tech-

nology may exhibit decreasing returns to scale in practice, but these functional forms substantially

complicate the analysis and do not permit a closed-form characterization of investment and financ-

ing policies. As will become clear below, the homogeneity assumption helps reduce the problem

to one with effectively a single state variable, which is easier to solve. See Eberly, Rebelo, and

Vincent (2008) for empirical evidence in support of the Hayashi homogeneity assumption for the

upper quartile of Compustat firms.
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B. Information, Incentives and Financing Costs

Neoclassical investment models (à la Hayashi (1982)) assume that the firm faces frictionless capital

markets and that the Modigliani and Miller (1958) theorem holds. However, in reality, firms often

face important external financing costs due to asymmetric information and managerial incentive

problems. Following the classic writings of Jensen and Meckling (1976), Leland and Pyle (1977), and

Myers and Majluf (1984) a large empirical literature has sought to measure these costs. For example,

Asquith and Mullins (1986) found that the average stock price reaction to the announcement of

a common stock issue was −3% and the loss in equity value as a percentage of the size of the

new equity issue was −31%.11 Also, Calomiris and Himmelberg (1997) have estimated the direct

transactions costs firms face when they issue equity. These are also substantial. In their sample the

mean transactions costs, which include underwriting, management, legal, auditing and registration

fees as well as the firm’s selling concession, are 9% of an issue for seasoned public offerings and

15.1% for initial public offerings.

We do not explicitly model information asymmetries and incentive problems. Rather, to be able

to work with a model that can be calibrated we directly model the costs arising from information

and incentive problems in reduced form. Thus in our model, whenever the firm chooses to issue

external equity we summarize the information, incentive, and transactions costs it then incurs by

a fixed cost Φ and a marginal cost γ. Importantly, when firms face fixed costs in raising external

equity they will optimally tap equity markets only intermittently and when they do they raise funds

in lumps, consistent with observed firm behavior.

To preserve the homogeneity of degree one of our model, we further assume that the firm’s fixed

cost of issuing external equity is proportional to K, so that Φ = φK. Although in practice external

costs of financing as a proportion of firm size are more plausibly decreasing with the size of the firm,

there are conceptual, mathematical, and economic reasons for modeling these costs as proportional

to the size of the firm’s capital stock. First, to preserve stationarity it is natural to model costs as

11In two related studies based on different data, Masulis and Korwar (1986) and Mikkelson and Partch (1986) found
that the average stock price announcement effect of a common stock issue was respectively −3.25% and −4.46%, and
the average loss in equity value as a percentage of issue size was respectively −22% and −29.5%.
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proportional to K for otherwise the firm would simply grow out of its fixed costs.12 Second, this

assumption allows us to keep the model tractable, and generates stationary dynamics for the firm’s

cash-capital ratio, which are empirically plausible. Third, the information and incentive costs of

external financing may to some extent be proportional to the size of the firm. Indeed, the negative

announcement effect of a new equity issue affects the firm’s entire capitalization. Similarly, the

negative incentive effect of a more diluted ownership may also have costs that are proportional to

the size of the firm. Note finally, that when we calibrate the model to reflect the circumstances

of a given firm in practice we can choose the fixed cost parameter φ so that the average issuance

cost for that firm is in the ballpark range of the costs the firm is likely to face in reality. Thus, one

could apply the model by taking lower values of φ for larger firms. The model would then fit the

circumstances faced by the firm, at least to a first approximation, even if fixed external financing

costs as a proportion of firm size happen to be decreasing in the size of the firm.

We denote by Ht the firm’s cumulative external financing up to time t and hence by dHt the

firm’s incremental external financing over time interval (t, t + dt). Similarly, we let Xt denote

the cumulative costs of external financing up to time t, and dXt the incremental costs of raising

incremental external funds dHt. The cumulative external equity issuance H and the associated

cumulative costs X are stochastic controls chosen by the firm. In the baseline model of this section,

external financing is equity.

We now turn to the firm’s cash inventory. Let W denote the firm’s cash inventory. In our

baseline model with no debt, provided that the firm’s cash is positive, the firm survives with

probability one. However, when the firm runs out of cash (Wt = 0) and has no option to borrow,

it has to either raise external funds to continue operating, or it must liquidate its assets.13 If

the firm chooses to raise external funds, it must pay the financing costs specified above. In some

situations the firm may prefer liquidation, e.g. when the cost of financing is too high relative to the

continuation value, or when µ is sufficiently small. Let τ denote the firm’s (stochastic) liquidation

time. If τ =∞, then the firm never chooses to liquidate.

12Indeed, this is a common assumption in the investment literature. See for example Cooper and Haltiwanger
(2006) and Riddick and Whited (2009), among others.

13We generalize this specification in Section VIII by allowing the firm to draw on a credit line.
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The rate of return that the firm earns on its cash inventory is the risk-free rate r minus a

carry cost λ > 0 that captures in a simple way the agency costs that may be associated with free

cash in the firm.14 In the presence of such a cost of holding cash, shareholder value is increased

when the firm distributes cash back to shareholders should its cash inventory grows too large.15

Alternatively, the cost of carrying cash may arise from tax distortions. Cash retentions are tax

disadvantaged because the associated tax rates generally exceed those on interest income (Graham

(2000) and Faulkender and Wang (2006)).

We denote by U the firm’s cumulative (non-decreasing) payout to shareholders, and by dUt the

incremental payout over time interval dt. Distributing cash to shareholders may take the form of

a special dividend or a share repurchase.16 The benefit of a payout is that shareholders can invest

at the risk-free rate r, which is higher than (r − λ) the net rate of return on cash within the firm.

However, paying out cash also reduces the firm’s cash balance, which potentially exposes the firm

to current and future under-investment and future external financing costs.

Combining cash flow from operations dYt given in (3), with the firm’s financing policy given by

the cumulative payout process U and the cumulative external financing process H, the firm’s cash

inventory W evolves according to the following cash-accumulation equation:

dWt = dYt + (r − λ) Wtdt + dHt − dUt, (5)

where the second term is the interest income (net of the carry cost λ), the third term dHt is the

cash inflow from external financing, and the last term dUt is the cash outflow to investors, so that

(dHt − dUt) is the net cash flow from financing. This equation is a general accounting identity,

where dHt, dUt, and dYt are endogenously determined by the firm.

The firm’s financing opportunities is time-invariant in our model, which is not realistic. However,

14This assumption is standard in models with cash. See e.g. Kim, Mauer, and Sherman (1998) and Riddick and
Whited (2008).

15If λ = 0, the firm has no reason to pay out cash since keeping cash inside the firm has no costs, but still has the
benefits of relaxing financing constraints. Another possibility is λ < 0. If the firm is better at identifying investment
opportunities than investors, −λ can be treated as an excess return. We do not explore this case in this paper.

16A commitment to regular dividend payments is suboptimal in our model. We exclude any fixed or variable payout
costs, which can be added to the analysis.
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we choose constant investment and financing opportunities so as to highlight the impact of financing

frictions on investment, firm value, and risk management policies without appealing to arguments

such as market timing incentives induced by time-varying financing opportunities. As we will

show, despite our stylized assumptions, the interaction of fixed/proportional financing costs with

real investment generate several novel and economically significant insights.

Firm optimality. The firm chooses its investment I, cumulative payout policy U , cumulative

external financing H, and liquidation time τ to maximize shareholder value defined below:

E

[∫ τ

0

e−rt (dUt − dHt − dXt) + e−rτ (lKτ +Wτ )

]
. (6)

The expectation is taken under the risk-adjusted probability. The first term is the discounted

value of net payouts to shareholders and the second term is the discounted value upon liquidation.

Optimality may imply that the firm never liquidates. In that case, we have τ = ∞. We impose

the usual regularity conditions to ensure that the optimization problem is well posed. Our opti-

mization problem is most obviously seen as characterizing the benchmark for the firm’s efficient

investment, cash-inventory, dynamic hedging, payout, and external financing policy when the firm

faces external financing and cash carry costs. However, as in the dynamic investment literature with

financial frictions, this formulation can also be viewed as representing a principal-agent problem

with reduced-form financial frictions.17 The main advantage of this short-cut is that we are able

to work with a much more tractable dynamic framework, which in particular easily lends itself to

calibrations. It is clearly desirable to push the analysis further and to explicitly model the agent’s

objective function and incentive constraints.18

17The key simplification relative to a classic principal-agent setup is that we only model agency costs (that is,
the costs of structuring the agent’s compensation to align her interests with those of shareholders) in reduced form.
A natural way of interpreting these costs is as monitoring costs to ensure that the agent acts in the interest of
shareholders.

18For a model of dynamic incentive problem in a q theory of investment framework, see DeMarzo, Fishman, He,
and Wang (2009).
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III. The Neoclassical Benchmark

We first summarize the solution for the neoclassical q theory of investment, in which the Modigliani-

Miller theorem holds. The firm’s first-best investment policy is given by IFB = iFBK, where19

iFB = r + δ −

√
(r + δ)2 − 2 (µ− (r + δ)) /θ. (7)

The value of the firm’s capital stock is qFBK, where qFB is Tobin’ s q given by:

qFB = 1 + θiFB . (8)

Two observations are in order. First, due to the homogeneity property in production , marginal

q is equal to average (Tobin’s) q, as in Hayashi (1982). Second, gross investment I is positive

if and only if the expected productivity µ is higher than r + δ. With µ > r + δ and hence

positive investment, installed capital earns rents. Therefore, Tobin’s q is greater than unity due to

adjustment costs. Next, we analyze the problem of a financially constrained firm.

IV. Model Solution

When the firm faces costs of raising external funds, it can reduce future financing costs by retain-

ing earnings (i.e. hoarding cash) to finance its future investments. Firm value then depends on

two natural state variables, its stock of cash W and its capital stock K. Let P (K,W ) denote

the firm value. We show that firm decision-making and firm value then depend on which of the

following three regions it finds itself in: i) an external funding/liquidation region, ii) an internal

financing region, and iii) a payout region. As will become clear below, the firm is in the external

funding/liquidation region when its cash stock W is less than or equal an endogenous lower barrier

W . It is in the payout region when its cash stock W is greater than or equal an endogenous upper

barrier W . And it is in the internal financing region when W ∈ (W ,W ). We first characterize the

19To ensure that the first-best investment policy is well defined, the following parameter restriction has to be
imposed: (r + δ)2 − 2 (µ − (r + δ)) /θ > 0.
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solution in the internal financing region.

A. Internal Financing Region

In this region, firm value P (K,W ) satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

rP (K,W ) = max
I

(I − δK)PK + [(r − λ)W + µK − I −G(I,K)]PW +
σ2K2

2
PWW . (9)

The first term (the PK term) on the right side of (9) represents the marginal effect of net investment

(I − δK) on firm value P (K,W ). The second term (the PW term) represents the effect of the firm’s

expected saving on firm value, and the last term (the PWW term) captures the effects of the volatility

of cash holdings W on firm value.

The firm finances its investment out of the cash inventory in this region. The convexity of

the physical adjustment cost implies that the investment decision in our model admits an interior

solution. The investment-capital ratio i = I/K then satisfies the following first-order condition:

1 + θi =
PK(K,W )

PW (K,W )
. (10)

With frictionless capital markets (the MM world) the marginal value of cash is PW = 1, so

that the neoclassical investment formula obtains: PK(K,W ) is the marginal q, which at the op-

timum is equal to the marginal cost of adjusting the capital stock 1 + θi. With costly external

financing, on the other hand, the investment Euler equation (10) captures both real and financial

frictions. The marginal cost of adjusting physical capital (1 + θi) is now equal to the ratio of

marginal q, PK(K,W ), to the marginal cost of financing (or equivalently, the marginal value of

cash), PW (K,W ). Thus, the more costly the external financing (the higher PW ) the less the firm

invests, ceteris paribus.

A key simplification in our setup is that the firm’s two-state optimization problem can be

reduced to a one-state problem by exploiting homogeneity. That is, we can write firm value as

P (K,W ) = K · p (w) , (11)
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where w = W/K is the firm’s cash-capital ratio, and reduce the firm’s optimization problem to a

one-state problem in w. The dynamics of w can be written as:

dwt = (r − λ)wtdt− (i(wt) + g(i(wt))dt + (µdt+ σdZt). (12)

The first term on the right-hand side is the interest income net of cash-carrying costs. The

second term is the total flow-cost of (endogenous) investment (capital expenditures plus adjustment

costs). While most of the time we have i(wt) > 0, the firm may sometimes want to engage in asset

sales (i.e. set i(wt) < 0) in order to replenish its stock of cash and thus delay incurring external

financing costs. Finally, the third term is the realized revenue per unit of capital (dA). In accounting

terms, this equation provides the link between the firm’s income statement (source and use of funds)

and its balance sheet.

Instead of solving for firm value P (K,W ), we only need to solve for the firm’s value-capital

ratio p (w). Note that marginal q is PK (K,W ) = p (w) − wp′ (w), the marginal value of cash

is PW (K,W ) = p′ (w), and PWW = p′′ (w) /K. Substituting these terms into (9) we obtain the

following ordinary differential equation (ODE) for p (w):

rp(w) = (i(w) − δ)
(
p (w)− wp′ (w)

)
+ ((r − λ)w + µ− i(w) − g(i(w))) p′ (w) +

σ2

2
p′′ (w) . (13)

We can also simplify the FOC (10) to obtain the following equation for the investment-capital

ratio i(w):

i(w) =
1

θ

(
p(w)

p′(w)
− w − 1

)
. (14)

Using the solution p(w) and substituting for this expression of i(w) in (12) we thus obtain the

equation for the firm’s optimal accumulation of w.

To completely characterize the solution for p(w), we must also determine the boundaries w at

which the firm raises new external funds (or closes down), how much to raise (the target cash-capital

ratio after issuance), and w at which the firm pays out cash to shareholders.
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B. Payout Region

Intuitively, when the cash-capital ratio is very high, the firm is better off paying out the excess

cash to shareholders to avoid the carry carry cost. The natural question is how high the the cash-

capital ratio needs to be before the firm pays out. Let w denote this endogenous payout boundary.

Intuitively, if the firm starts with a large amount of cash (w > w), then it is optimal for the firm to

distribute the excess cash as a lump-sum and bring the cash-capital ratio w down to w. Moreover,

firm value must be continuous before and after cash distribution. Therefore, for w > w, we have

the following equation for p(w):

p(w) = p(w) + (w − w) , w > w. (15)

Since the above equation also holds for w close to w, we may take the limit and obtain the

following condition for the endogenous upper boundary w:

p′ (w) = 1. (16)

At w the firm is indifferent between distributing and retaining one dollar, so that the marginal

value of cash must equal one, which is the marginal cost of cash to shareholders. Since the payout

boundary w is optimally chosen, we also have the following “super contact” condition (see, e.g.

Dumas (1991)):

p′′ (w) = 0. (17)

C. External Funding/Liquidation Region

When the firm’s cash-capital ratio w is less than or equal to the lower barrier w, the firm either

incurs financing costs to raise new funds or liquidates. Depending on parameter values, it may

prefer either liquidation or refinancing by issuing new equity. Although the firm can choose to

liquidate or raise external funds at any time, we show that it is optimal for the firm to wait until

it runs out of cash, i.e. w = 0. The intuition is as follows. First, because investment incurs convex
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adjustment cost and the production is an efficient technology (in the absence of financing costs),

the firm does not want to prematurely liquidate. Second, in the case of external financing, cash

within the firm earns a below-market interest rate (r − λ), while there is also time value for the

external financing costs. Since investment is smooth (due to convex adjustment cost), the firm can

always pay for any level of investment it desires with internal cash as long as w > 0. Thus, without

any benefit for early issuance, it is always better to defer external financing as long as possible. The

above argument highlights the robustness of the pecking order between cash and external financing

in our model. With stochastic financing cost or stochastic arrival of growth options, the firm may

time the market by raising cash in times when financing costs are low. See Bolton, Chen, and

Wang (2009).

When the expected productivity µ is low and/or cost of financing is high, the firm will prefer

liquidation to refinancing. In that case, because the optimal liquidation boundary is w = 0, firm

value upon liquidation is thus p(0)K = lK. Therefore, we have

p(0) = l. (18)

If the firm’s expected productivity µ is high and/or its cost of external financing is low, then it

is better off raising costly external financing than liquidating its assets when it runs out of cash. To

economize fixed issuance costs (φ > 0), firms issue equity in lumps. With homogeneity, we can show

that total equity issue amount is mK, where m > 0 is endogenously determined as follows. First,

firm value is continuous before and after equity issuance, which implies the following condition for

p(w) at the boundary w = 0:

p(0) = p(m)− φ− (1 + γ)m. (19)

The right side represents the firm value-capital ratio p(m) minus both the fixed and the proportional

costs of equity issuance, per unit of capital. Second, since m is optimally chosen, the marginal value

of the last dollar raised must equal one plus the marginal cost of external financing, 1 + γ. This
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gives the following smoothing pasting boundary condition at m:

p′(m) = 1 + γ. (20)

D. Piecing the Three Regions Together

To summarize, for the liquidation case, the complete solution for the firm’s value-capital ratio p (w)

and its optimal dynamic investment policy is given by: i) the HJB equation (13); ii) the investment-

capital ratio equation (14), and; iii) the liquidation (18) and payout boundary conditions (16)-(17).

Similarly, when it is optimal for the firm to refinance rather than liquidate, the complete solution

for the firm’s value-capital ratio p (w) and its optimal dynamic investment and financing policy is

given by: i) the HJB equation (13); ii) the investment-capital ratio equation (14); iii) the equity-

issuance boundary condition (19); iv) the optimality condition for equity issuance (20), and; v) the

endogenous payout boundary conditions (16)-(17). Finally, to verify that refinancing is indeed the

firm’s global optimal solution, it is sufficient to check that p(0) > l.

V. Quantitative Analysis

We now turn to quantitative analysis of our model. For the benchmark case, we set the riskfree

rate at r = 6% and adopt the following technological parameter values. The rate of depreciation

is δ = 10%. The mean and volatility of the risk-adjusted productivity shock are µ = 18% and

σ = 9%, respectively, which are in line with the estimates of Eberly, Rebelo, and Vincent (2008)

for large US firms. These parameters are all annualized. The adjustment cost parameter is θ = 1.5

(see Whited (1992)). The implied first-best q in the neoclassical model is then qFB = 1.23, and the

corresponding first-best investment-capital ratio is iFB = 15.1%. We then set the cash-carrying

cost parameter to λ = 1%. The proportional financing cost is γ = 6% (as suggested in Sufi (2009))

and the fixed cost of financing is φ = 1%, which jointly generate average equity financing costs

that are consistent with the data. Finally, for the liquidation value we take l = 0.9 (as suggested

in Hennessy and Whited (2007)).
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Figure 1: Case I. Liquidation. This figure plots the solution in the case when the firm has to liquidate

when it runs out of cash (w = 0). The parameters are: riskfree rate r = 6%, the mean and volatility of

increment in productivity µ = 18% and σ = 9%, adjustment cost parameter θ = 1.5, capital depreciation

rate δ = 10%, cash-carrying cost λ = 1%, and liquidation value-capital ratio l = 0.9.

Before analyzing the impact of external equity financing, for comparison, we first consider a

special case where the firm is forced to liquidate when it runs out of cash.

Case I: Liquidation. Figure 1 plots the solution in the liquidation case. In Panel A, the firm’s

value-capital ratio p(w) starts at l = 0.9 (liquidation value) when cash balances are equal to 0,

is concave in the region between 0 and the endogenous payout boundary w = 0.22, and becomes

linear (with slope 1) beyond the payout boundary (w ≥ w). In Section IV, we have argued that

the firm will never liquidate before its cash balances hit 0. Panel A of Figure 1 provides a graphic

illustration of this result, where p (w) lies above the liquidation value l+w (normalized by capital)

for all w > 0.
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Panel B of Figure 1 plots the marginal value of cash p′ (w) = PW (K,W ). The marginal value

of cash increases as the firm becomes more constrained and liquidation becomes more likley. It

also shows that the firm value is concave in the internal financing region (p′′(w) < 0). The external

financing constraint makes the firm hoard cash today in order to reduce the likelihood that it will

be liquidated in the future, which effectively induces “risk aversion” for the firm. Consider the

effect of a mean-preserving spread of cash holdings on the firm’s investment policy. Intuitively, the

marginal cost from a smaller cash holding is higher than the marginal benefit from a larger cash

holding because the increase in the likelihood of liquidation outweighs the benefit from otherwise

relaxing the firm’s financial constraints. It is the concavity of the value function that gives rise to

the demand for risk management. Observe also that the marginal value of cash reaches a staggering

value of 30 as w approaches 0. In other words, an extra dollar of cash is worth as much as $30 to

the firm in this region, because it helps keep the firm away from costly liquidation.

Panel C plots the investment-capital ratio i(w) and illustrates under-investment due to the

extreme external financing constraints. Optimal investment by a financially constrained firm is

always lower than first-best investment iFB = 15.1%, but especially when the firm’s cash inventory

w is low. Actually, when w is sufficiently low the firm will disinvest by selling assets to raise cash

and move away from the liquidation boundary. Note that disinvestment is costly not only because

the firm is underinvesting but also because it incurs physical adjustment costs when lowering its

capital stock. For the parameter values we use, asset sales (disinvestments) are at the annual rate

of over 60% of the capital stock when w is close to zero! The firm tries very hard not to be forced

into liquidation, which would permanently eliminate the firm’s future growth opportunities. Note

also that even at the payout boundary, the investment-capital ratio is only i(w) = 10.6%, about

30% lower than the first best level iFB. Intuitively, the firm is trading off the cash-carrying costs

with the cost of underinvestment. It will optimally choose to hoard more cash and invest more at

the payout boundary when the cash-carrying cost λ is lower.

Next, we consider a measure of the investment-cash sensitivity given by i′(w).20 Taking the

20The notion of “investment-cash sensitivity” we define here should be interpreted with caution empirically. While
i′(w) measures how investment changes in response to exogenous shocks to cash holding in the model, the changes in
cash we observe empirically are likely to be correlated with changes in investment opportunities and financing costs.
The same point also applies to the interpretation of “marginal value of cash” p′(w).
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derivative of investment-capital ratio i(w) in (14) with respect to w, we get

i′(w) = −
1

θ

p(w)p′′(w)

p′ (w)2
> 0. (21)

The concavity of p ensures that i′(w) > 0 in the internal financing region, which is confirmed in

Panel D of Figure 1. Remarkably, the investment-cash sensitivity i′(w) is not monotonic in w. In

particular, when the cash holding is sufficiently low, i′(w) actually increases with the cash-capital

ratio. Formally, the slope of i′(w) depends on the third derivative of p(w), for which we do not

have an analytical characterization.

Clearly, liquidation is very inefficient in our model (recall that the marginal value of cash at

liquidation is 30 and asset sale is at an annual rate of 60%). Next we consider the more realistic

setting where the firm is allowed to issue equity provided it pays the financing costs.

Case II: Refinancing. Figure 2 displays the solutions for both the case with fixed financing

costs (φ = 1%) and without (φ = 0). Observe that at the financing boundary w = 0, the firm’s

value-capital ratio p(w) is strictly higher than l, so that external equity financing is preferred

to liquidation in equilibrium. Comparing with the liquidation case, we find that the endogenous

payout boundary (marked by the solid vertical line on the right) is w = 0.19 when φ = 1%, lower

than the payout boundary for the case where the firm is liquidated (w = 0.22). Not surprisingly,

firms are more willing to pay out cash when they can raise new funds in the future. The firm’s

optimal return cash-capital ratio for our parameter values is m = 0.06, and is marked by the vertical

line on the left in Panel A. Without fixed cost (φ = 0), the payout boundary drops to w = 0.14,

substantially lower than the ones with the fixed costs and the liquidation case. In this case, the

firm’s return cash-capital ratio is zero. In other words, the firm raises just enough funds to keep w

above 0. This is consistent with the intuition that the higher the fixed cost parameter φ, the bigger

the size of refinancing (higher return cash-capital ratio m) each time the firm raises cash.

Panel B plots the marginal value of cash p′(w), which is positive and decreasing, confirming

that p(w) is strictly concave for w ≤ w. Conditional on issuing equity and having paid the fixed

financing cost, the firm optimally chooses the return cash-capital ratio m such that the marginal
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Figure 2: Case II. Optimal refinancing at w = 0. This figure plots the solution in the case of

refinancing. The parameters are: riskfree rate r = 6%, the mean and volatility of increment in productivity

µ = 18% and σ = 9%, adjustment cost parameter θ = 1.5, capital depreciation rate δ = 10%, cash-carrying

cost λ = 1%, proportional and fixed financing costs γ = 6%, φ = 1%.

value of cash p′(m) is equal to the marginal cost of issuance 1 + γ. To the left of the return

cash-capital ratio m, the marginal value of cash p′(w) lies above 1 + γ, reflecting the fact that the

fixed cost component in raising equity increases the marginal value of cash. When the firm runs

out of cash, the marginal value of cash is around 1.7, much higher than 1 + γ = 1.06. This result

highlights the importance of fixed financing costs: even a moderate fixed cost can substantially

raise the marginal value of cash in the low-cash region.

As in the previous case, the investment-capital ratio i(w) is increasing in w. It reaches the peak

at the payout boundary w, where i(w) = 11%. Higher fixed cost component effectively increases the

severity of financing constraints, therefore leading to more underinvestment. This is particularly

true in the region to the left of the return cash-capital ratio m, where the investment-capital ratio

21



0 0.01 0.02 0.03
0.02

0.03

0.04

0.05

0.06

0.07

0.08
A. size of equity issuance: m

fixed cost parameter φ

 

 

µ = 18%
µ = 17%

0 0.01 0.02 0.03
0

0.1

0.2

0.3

0.4

0.5

0.6
B. average cost of equity issuance

fixed cost parameter φ

 

 

µ = 18%
µ = 17%

Figure 3: Relative size and average cost of equity issuance. This figure plots the size of equity

issuance relative to capital (m) and the average cost of equity issuance (AC) for different levels of fixed cost

of issuance and expected productivity.

i(w) drops rapidly and even involves asset sales (about 20% of total capital when w approaches

0). Asset sales go down quickly (i′(w) > 10) when w is close to zero. This is because both asset

sales and equity issuance are very costly. In contrast, removing the fixed financing costs greatly

alleviates the under-investment problem, and the investment-capital ratio i(w) becomes essentially

flat except for very low w.

Next, we briefly consider how the optimal size of equity issues m varies with the financing cost

parameters φ and the firm’s expected productivity µ. Intuitively, m should be increasing in φ, as

the firm seeks to lower its average cost of external funds by increasing the size of its issue when

φ is higher. Moreover, one expects m to be concave in φ as the marginal value of cash p′(w) is

decreasing in w. Both features are confirmed numerically in Panel A of Figure 3.

In reality neither financing cost parameters (γ, φ) nor expected productivity µ are easy to

observe. Empirical studies estimating external financing costs have focused on the average cost of

external financing, defined as the ratio of total financing costs and the size of the equity issue m:

AC =
φ

m
+ γ.
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The fixed cost parameter φ of equity issuance is often perceived to be larger for smaller firms,

and therefore one would expect to see these firms to have higher average costs, other things equal.

However, smaller firms are also likely to have higher µ. This will raise the optimal size of their

equity issues m as is highlighted in Panel A. Therefore, the relation between average issuance costs

and firm size is ambiguous. Panel B of Figure 3 demonstrates this observation.

This discussion highlights the importance of heterogeneity and endogeneity issues when mea-

suring issuance costs. It helps explain why there may not be a clear relation between firm size

and average costs of issues in the data, and sheds light on the empirical debate over the nature of

scale economies in equity issuance and whether equity issuance costs are primarily fixed or variable

(see Lee, Lochhead, Ritter, and Zhao (1996), Calomiris and Himmelberg (1997) and Calomiris,

Himmelberg, and Wachtel (1995)).

Average q, marginal q, and investment. We now turn to the model’s predictions on average

and marginal q. We take the firm’s enterprise value – the value of all the firm’s marketable claims

minus cash, P (K,W ) −W – as our measure of the value of the firm’s capital stock. Average q,

denoted by qa(w), is then the firm’s enterprise value divided by its capital stock:

qa(w) =
P (K,W )−W

K
= p(w)− w. (22)

First, note that average q already increase with w. This can be seen from q′a(w) = p′(w) − 1 ≥ 0,

where the inequality follows from the fact that marginal value of cash is weakly greater than unity.

Second, average q is concave provided that p(w) is concave, in that q′′a(w) = p′′(w).

In our model where external financing is costly, marginal q, denoted by qm(w), is given by

qm(w) =
d (P (K,W ) −W )

dK
= p(w)− wp′(w) = (p(w)− w)−

(
p′(w)− 1

)
w. (23)

Recall that in the neoclassical setting (Hayashi (1982)), average q equals marginal q. In our

model, average q differs from marginal q due to the external financing costs. An increase in the

capital stock K has two effects on the firm’s enterprise value. The first effect is captured by the
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Figure 4: Average q and marginal q. This figure plots the average q and marginal q from the three

special cases of the model. The right end of each line corresponds to the respective payout boundary, beyond

which both qa and qa are flat.

term (p(w) − w) and reflects the direct effect of an increase in capital on firm value, holding w

fixed. This term is equal to average q. The second term (p′(w) − 1)w reflects the effect of external

financing costs on firm value through w. Increasing the capital stock mechanically lowers the cash-

capital ratio w = W/K for a given cash inventory W . As a result, the firm’s financing constraint

becomes tighter and firm value drops, ceteris paribus.

Figure 4 plots the average and marginal q for the liquidation case, the refinancing case with no

fixed costs (φ = 0), and the refinancing cost with fixed costs (φ = 1%). The average and marginal

q are below the first best level, qFB = 1.23 in all three cases, and they become lower as external

financing becomes more costly. The marginal value of cash p′(w) is always larger than one due

to costly external financing. As a result, average q increases with w. Also, the concavity of p(w)

implies that marginal q increases with w. From (22) and (23), we see that p′(w) > 1 and w > 0

imply that qm(w) < qa(w), as displayed in Figure 4.

Stationary distributions of w, p(w), p′(w), i(w), average q, and marginal q. We next

investigate the stationary distributions for the key variables tied to optimal firm policies in the

refinancing case (φ = 1%). We first simulate the cash-capital ratio under the physical probability
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Figure 5: Stationary distributions in the case of refinancing. This figure plots the stationary

distributions of 4 variables in Case II with φ = 1%.

measure. To do so, we calibrate the Sharpe ratio of the market portfolio η = 0.3, and assume that

the correlation between the firm technology shocks and the market return is ρ = 0.8. Then, the

mean of the productivity shock under the physical probability is µ̂ = 0.20. Figure 5 shows the

distributions for the cash-capital ratio w, the value-capital ratio p (w), the marginal value of cash

p′ (w), and the investment-capital ratio i (w). Since p(w), p′(w), i(w) are all monotonic in Case II,

the densities for their stationary distributions are connected with that of w through (the inverse

of) their derivatives.

Strikingly, the cash holdings of a firm are relatively high most of the time, and hence the

probability mass for i(w) and p(w) is concentrated at the highest values in the relevant support of

w. The marginal value of cash p′(w) is therefore also mostly around unity. Thus, the firm’s optimal

cash management policies appear to be effective at shielding it from severe financing constraints
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Table I: Moments from the stationary distribution of the refinancing case

This table reports the population moments for cash-capital ratio (w), investment-capital ratio
(i(w)), marginal value of cash (p′(w)), average q (qa(w)), and marginal q (qm(w)) from the station-
ary distribution in Case II (φ = 1%).

w i(w) p′(w) qa(w) qm(w)

mean 0.159 0.104 1.006 1.164 1.163
median 0.169 0.108 1.001 1.164 1.164

std 0.034 0.013 0.018 0.001 0.001
skewness -1.289 -6.866 9.333 -8.353 -3.853
kurtosis 4.364 76.026 146.824 106.580 22.949

and underinvestment most of the time.

Table 1 reports the mean, median, standard deviation, skewness, and kurtosis for w, i(w), p(w),

p′(w), average q (qa(w)) and marginal q (qm(w)). Not surprisingly, all these variables have skewness.

Other than the marginal value of cash p′(w), all remaining five variables have negative skewness

with medians larger than the respective means. The positive skewness for p′(w) is consistent with

the negative skewness of all the other five variables, as p′(w) is highest for low values of w due to

the concavity of p(w). Note also that all these variables have fat tails. Interestingly, the kurtosis

values for p′(w) and qa(w) are large, despite their small standard deviations and the small difference

between the mean and median values of both p′(w) and qa(w).

Existing empirical research on corporate cash inventory has mostly focused on firms’ average

holdings (the first entry in the first row of Table 1) and highlighted that average holdings have

increased in recent years. Our model gives a more complete picture of the dynamics of firm

capital expenditures and cash holdings. It provides predictions on the time series behavior of firm’s

investment and financing policies, their valuation, as well as the cross-sectional distribution of cash

holdings, and the joint distribution of cash holdings, investment, Tobin’ s q, and the frequency of

external financing.

As is apparent from Table I, average cash holdings provide an incomplete and even misleading

picture of firms’ cash management, investment, and valuation. Indeed, one observes that even
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though the median and the mean of the firm’s marginal value of cash p′(w) is close to unity, with a

standard deviation of only 0.018, there is a huge kurtosis (146.8) indicating that firms are exposed

to potentially large financing costs even if their marginal value of cash is close to unity on average.

Despite the tight distributions for average q and i(w), the mean and median of qa(w) are 1.16,

which is about 5% lower than qFB = 1.23, the average q for a firm without external financing costs.

Similarly, the mean and median of i(w) is 0.104, which is about 31% lower than iFB = 0.151, the

investment-capital ratio for a firm without external financing costs. Therefore, simply looking at

the difference between the mean and the median or even the standard deviation for these variables,

one can end up with a misleading description of firms’ financing constraints. The observation that

the ratio of the median to mean marginal value of cash p′(w) is close to unity, in particular, does not

imply that firm financing constraints are small. The endogeneity of firms’ cash holdings mitigates

the time-varying impact of financing costs on investment, but the effects remain large on average.

Even under the assumptions of constant investment and financing opportunity sets, we still

gain significant economic insights from the simulation exercise. In particular, it shows that firms

respond to the financing constraints by optimally managing their cash holdings so as to stay away

most of the time from financial distress situations. We note that the distributions simulated from

the model are not meant to accurately match the data. The accuracy of the simulated distributions

can be substantially improved if we allow for changing investment and financing opportunity sets

and firm heterogeneity.

Comparative statics. We close this section with a comparative statics analysis of firm cash

holdings and investment for the following six parameters: µ, θ, r, σ, φ, λ. We divide these parameters

into two categories. The first three (µ, θ, r) are parameters on the physical side and have direct

effects on investment (see iFB in equation(7)); the rest (σ, φ, λ) only affect investment and firm

value through financing constraints. We examine the effects of these parameters through their

impact on the distributions of cash holdings and investment in Figure 6 and 7.

In Figure 6, the left panels (A, C, and E) plot the cumulative stationary distributions (CDF)

of the cash holdings w, and the right panels (B, D, and F) plot the cumulative distributions of firm
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Figure 6: Comparative statics I: µ, θ, and r. This figure plots the cumulative distribution function

for the stationary distribution of cash-capital ratio (w) and investment-capital ratio (i(w)) for different values

of the mean of productivity shocks µ, investment adjustment cost θ, and interest rate r.

investments i. As Panel A highlights, when mean productivity increases (from µ = 16% to µ = 18%)

firms tend to hold more cash. That is, the cumulative distributions of firms for higher values of µ

first-order stochastically dominate the distributions for lower values of µ. This is intuitive, since the

return on investment increases with µ so that the shadow value of cash increases. Still, one might

expect firms to spend their cash more quickly for higher µ as the value of investment opportunities

rises, so that the net effect on firm cash holdings is ambiguous a priori. In our baseline model, the

net effect on w of a higher µ is positive, because investment adjustment costs induce firms to only

gradually increase their investment outlays in response to an increase in µ.

The effect of an increase in µ on investment is highlighted in Panel B. Firms respond to an
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increase in µ by increasing investment. For µ = 16% firms are disinvesting as i(w) is negative for

all firms. For µ = 17% nearly all firms are making positive investments, with most firms bunched

at an investment level of roughly i(w) = 3.5%. Finally, for µ = 18% most firms are investing close

to i(w) = 11%.

The effects of an increase in investment adjustment cost θ and interest rate r on cash holdings

and investment are also quite intuitive. As Panel D shows, an increase in θ has a negative effect

on investment. If firms invest less, one should expect their cash holdings to increase almost me-

chanically. However, this turns out not to be the case. Firms have a lower shadow value of cash

if they anticipate lower future investment outlays. Therefore they end up holding less cash, as is

illustrated in Panel C. Similar comparative statics hold for increases in the risk-free rate r: with

higher interest rates firms invest less and therefore hold less cash. This is indeed the case, as is

illustrated in Panel E and F.

The effects of an increase in the idiosyncratic volatility of productivity shocks are shown in

Panels A and B of Figure 7, where the stationary distribution is plotted for values of σ = 7%,

σ = 9% and σ = 11%. We change σ by changing the idiosyncratic volatility while holding the

systematic volatility fixed, so that the risk-adjusted mean productivity shock µ is unaffected. Again,

it is intuitive that firms respond to greater underlying volatility of productivity shocks by holding

more cash. Higher cash reserves, in turn, tend to raise the average cost of investment, so that

one might expect a higher σ to induce firms to scale back investment. Similarly, an increase in

external costs of financing φ ought to induce firms to increase their precautionary cash holdings

and to scale back their capital expenditures. This is exactly what our model predicts, as shown

in Panel C and D. The effect of an increase in the carry cost λ ought to be to induce firms to

spend their cash more readily, by disbursing it more frequently to shareholders or investing more

aggressively. Interestingly, although cash holdings decrease with λ, as seen in Panel E, the net

effect on investment is negative, as Panel F shows. A higher λ makes it more expensive for firms

to maintain its buffer-stock cash holdings and indirectly raises the cost of investment.

Finally, one clear difference between Figure 6 and 7 is that, unlike the physical parameters,

the parameters σ, φ, λ have rather limited effects on investment. This result implies that firms can

29



0 0.05 0.1 0.15 0.2 0.25
0

0.5

1
A. CDF (w)

 

 
σ = 7%
σ = 9%
σ = 11%

−0.2 −0.1 0 0.1
0

0.5

1
B. CDF (i)

 

 
σ = 7%
σ = 9%
σ = 11%

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1
C. CDF (w)

 

 
φ = 0
φ = 1%
φ = 5%

−0.2 −0.1 0 0.1
0

0.5

1
D. CDF (i)

 

 
φ = 0
φ = 1%
φ = 5%

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

cash-capital ratio: w

E. CDF (w)

 

 
λ = 0.5%
λ = 1.0%
λ = 1.5%

−0.2 −0.1 0 0.1
0

0.5

1

investment-capital ratio: i(w)

F. CDF (i)

 

 
λ = 0.5%
λ = 1.0%
λ = 1.5%

Figure 7: Comparative statics II: σ, φ, and λ. This figure plots the cumulative distribution function

for the stationary distribution of cash-capital ratio (w) and investment-capital ratio (i(w)) for different values

of the volatility of productivity shocks σ, fixed costs of external financing φ, and carry cost of cash λ.

effectively adjust their cash/payout/financing policies in response to changes in financing or cash

management costs, limiting the impact on the real side (investment).

VI. Risk and Return

In this section, we investigate how the firm’s investment, financing, and cash management policies

affect the risk and return of the firm. In order to highlight the impact of financing constraints on

the firm’s risk and returns, we adopt the benchmark asset pricing model (CAPM), which measures

the riskiness of an asset with its market beta. We use rm and σm to denote the expected return
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and volatility of the market portfolio.

Without financial frictions (the MM world), the firm implements the first-best investment policy.

Its expected return is constant and is given by the classical CAPM formula:

µFB = r + βFB (rm − r) , (24)

where

βFB =
ρσ

σm

1

qFB
, (25)

and ρ is the correlation between the firm’s productivity shock dA and returns of the market portfolio.

We can derive an analogous conditional CAPM expression for the instantaneous expected return

µr(w) of a financially constrained firm by applying Ito’s lemma (see Duffie (2001)):

µr(w) = r + β(w) (rm − r) , (26)

where

β(w) =
ρσ

σm

p′(w)

p(w)
(27)

is the conditional beta of the financially constrained firm.

Our analysis highlights how idiosyncratic risk affects the beta of a financially constrained firm.

Idiosyncratic risk, as systematic risk, causes earnings fluctuations and induces underinvestment for

firm facing external financing costs. Thus, through its effect on p(w) and p′(w), idiosyncratic risk

affects beta.

Equation (27) implies that the beta for a financially constrained firm is monotonically decreasing

with its cash-capital ratio w. The cash-capital ratio w has two effects on the conditional beta: first,

an increase in w relaxes the firm’s financing constraint and reduces underinvestment. As a result,

the risk of holding the firm is lower. Second, the firm’s asset risk is also reduced as a result of the

firm holding a greater share of its assets in cash (whose beta is zero). Both channels imply that

the conditional beta β(w) and the required rate of return µr(w) decreases with w.

31



Interestingly, when w is sufficiently high, the beta for a firm facing external financing costs can

be even lower than the beta for the neoclassical firm (facing no financing costs). We may illustrate

this point by rewriting the conditional beta as follows:

β(w) =
ρσ

σm

p′(w)

(p(w) − w) + w
=
ρσ

σm

p′(w)

qa(w) +w
, (28)

where qa(w) = p(w) − w is the firm’s average q (the ratio of the firm’s enterprise value and its

capital stock). Although qa(w) < qFB and p′(w) > 1, the second term, w, in the denominator of

β(w) can be so large that β(w) < βFB . Intuitively, as a financially constrained firm hoard cash to

reduce external financing costs, the firm beta becomes a weighted average of the asset beta and the

beta of cash (zero). With a large enough buffer stock of cash holdings relative to its assets, this

firm can be even safer than neoclassical firms facing no financing costs and holding no cash.

Panel A of Figure 8 plots the firm’s value-capital ratio p(w) for three different levels of idiosyn-

cratic volatility (5%, 15%, 30%). The other parameter values for this calculation are rm−rf = 6%,

σm = 20%, and the systematic volatility is fixed at ρσ = 7.2% (assuming ρ = 0.8 and σ = 9%). As

expected, it shows that firm value is higher and the payout boundary w is lower for lower levels of

idiosyncratic volatility.

Panel B plots the marginal value of cash p′(w) for the same three levels of idiosyncratic volatility.

It shows, as expected, that p′(w) is decreasing in w for each level of idiosyncratic volatility. The

figure also reveals that for high values of w, the marginal value of cash p′(w) is higher for higher

levels of idiosyncratic volatility. But, more surprisingly, for low values of w the marginal value of

cash is actually decreasing in idiosyncratic volatility. The reason is that when the firm is close to

financial distress, a dollar is more valuable for a firm with lower idiosyncratic volatility, which is

more likely to avoid raising external funds.

Panel C plots the investment-capital ratio for the three different levels of idiosyncratic volatility.

We see again that for sufficiently high w, investment is decreasing in idiosyncratic volatility, whereas

for low w, it is increasing. That is, when w is low, firms with low idiosyncratic volatility engage in

more asset sales. Again, this latter result is driven by the fact that a marginal dollar has a higher
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Figure 8: Idiosyncratic volatility, firm value, investment, and beta. In the refinancing

case (φ = 1%), fixing all other parameters while using three different levels of idiosyncratic volatility

(5%, 15%, 30%), this figure plots the firm value-capital ratio, marginal value of cash, investment-capital

ratio, and the ratio of the conditional beta of a constrained firm to that of an unconstrained firm (first best).

The right end of each line corresponds to the respective payout boundary.

value for a firm with lower idiosyncratic volatility. Therefore, such a firm will sell more assets to

replenish its cash holdings.

Panel D plots conditional betas normalized by the first-best beta: β(w)/βFB. For the same

firm, β(w) is decreasing in the cash-capital ratio w. At low levels of w, the firm’s normalized beta

β(w)/βFB can approach a value as high as 1.8 for idiosyncratic volatility of 5%. On the other hand,

β(w) is actually lower than βFB for high w. For example, the conditional beta can be as low as

60% of the first-best beta in the case of 30% idiosyncratic volatility. As we have explained above,

this is due to the fact that a financially constrained firm endogenously hoards significant amounts

of cash, a perfectly safe asset, so that the mix of a constrained firm’s assets may actually be safer
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than the asset mix of an unconstrained firm, which does not hoard any cash.

The rankings of beta across the firms with different idiosyncratic volatility depends on w. For

large cash-capital ratio w, the beta is increasing in the idiosyncratic volatility. However, when the

level of w is low, firms with low idiosyncratic volatility actually have higher beta. The rankings of

beta are driven by the ratio p′(w)/p(w), which can be inferred from the top two panels.

These observations from Panel D have important implications about cross sectional studies of

betas and cash holdings for financially constrained firms. First, after controlling for technology

parameters and financing costs, the model predicts an inverse relation between returns and corpo-

rate cash holdings, which has been documented by Dittmar and Mahrt-Smith (2007) among others.

Our analysis points out that this negative relation may not just be due to agency problems, as they

emphasize, but may also be driven by the changing asset risk composition of the firm.

Second, for a cross section of firms with heterogeneous production technologies and external

financing costs, it is crucial to take into account the endogeneity of cash holdings when we compare

firm betas. As we have seen, a constrained firm’s beta can be either higher or lower than the beta

of an unconstrained firm. Similarly, a firm with high external financing costs is more likely to hold

a lot of cash, but its conditional beta (and expected return) may still be higher than for a firm with

low financing costs and low cash holdings. Thus, a positive relation between returns and corporate

cash holdings in the cross section of heterogenous firms may still be consistent with our model (see

Palazzo (2009) for a related model and supporting empirical evidence).

VII. Dynamic Hedging

In addition to cash inventory management, the firm can also reduce its cash flow risk by investing

in financial assets (an aggregate market index, options, or futures contracts) which are correlated

with its own business risk. Consider, for example, the firm’s hedging policy using market index

futures. Let F denote the futures price. Under the risk-adjusted probability, the futures price

evolves according to:

dFt = σmFtdBt, (29)
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where σm is the volatility of the market portfolio, and Bt is a standard Brownian motion that is

partially correlated with Zt (with correlation coefficient ρ).

Let ψt denote the fraction of total cash Wt that the firm invests in the futures contract. Futures

contracts often require that the investor hold cash in a margin account, which is costly. Let κt

denote the fraction of the firm’s total cash Wt held in the margin account (0 ≤ κt ≤ 1). In addition

to the carry cost as cash in the standard interest-bearing account, cash held in this margin account

also incurs the additional flow cost ǫ per unit of cash. We assume that the firm’s futures position

(in absolute value) cannot exceed a constant multiple π of the amount of cash κtWt in the margin

account.21 That is, we require

|ψtWt| ≤ πκtWt. (30)

As the firm can costlessly reallocate cash between the margin account and its regular interest-

bearing account at any time, the firm will optimally hold the minimum amount of cash necessary

in the margin account. That is, provided that ǫ > 0, optimality implies that the inequality (30)

holds as an equality. When the firm takes a hedging position in a futures index, its cash then

evolves as follows:

dWt = Kt (µdAt + σdZt)− (It +Gt) dt+ dHt − dUt + (r− λ)Wtdt− ǫκtWtdt+ ψtσmWtdBt. (31)

Before analyzing optimal firm hedging constrained by costly margin requirements, we first

investigate the case where there are no margin requirements for hedging.

A. Optimal Hedging with No Frictions

With no margin requirement (π = ∞), the firm carries all its cash in the regular interest-bearing

account and is not constrained in the size of the futures positions ψ. Firm value P (K,W ) then

21For simplicity, we abstract from any variation of margin requirement, so that π is constant.
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solves the following HJB equation:

rP (K,W ) = max
I,ψ

(I − δK)PK(K,W ) + ((r − λ)W + µK − I −G(I,K))PW (K,W )

+
1

2

(
σ2K2 + ψ2σ2

mW
2 + 2ρσmσψWK

)
PWW (K,W ) (32)

The only difference between (32) and the HJB equation (9) with no hedging is the coefficient of

the volatility term (the last term on the second line), which is now affected by hedging. Since firm

value P (K,W ) is concave in W , so that PWW < 0, the optimal hedging position ψ is determined

simply by minimizing that coefficient with respect to ψ. The FOC for ψ is:

(
ψσ2

mW
2 + ρσmσWK

)
PWW = 0.

Solving for ψ, we obtain the firm’s optimal hedging demand:

ψ∗(w) = −
ρσ

wσm
. (33)

Thus, controlling for size (capital K), the firm hedges more when its cash-capital ratio w is low.

Intuitively, the benefit of hedging is greater when the marginal value of cash p′(w) is high. Sub-

stituting ψ∗(w) into the HJB equation (32) and exploiting homogeneity, we obtain the following

ODE for the firm’s value-capital ratio under hedging:

rp(w) = (i(w) − δ)
(
p (w)− wp′ (w)

)
+ ((r − λ)w + µ− i(w) − g(i(w))) p′ (w) +

σ2
(
1− ρ2

)

2
p′′ (w) .

(34)

Note that the ODE above is the same as (13) in the case without hedging except for the variance

reduction from σ2 to σ2(1− ρ2).

In sum, with frictionless hedging (no margin requirements and ǫ = 0), the firm completely

eliminates its systematic risk exposure via hedging. The firm thus behaves exactly in the same way

as the firm in our baseline model of Section II with only idiosyncratic volatility σ
√

1− ρ2.
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B. Optimal Hedging with Margin Requirements

Next, we consider the more realistic setting with a margin requirement given by (30). The firm

then faces both a cost of hedging and a constraint on the size of its hedging position. As a result,

the firm’s HJB equation now takes the following form:

rP (K,W ) = max
I,ψ,κ

(I − δK)PK(K,W ) + ((r − λ)W + µK − I −G(I,K) − ǫκW )PW (K,W )

+
1

2

(
σ2K2 + ψ2σ2

mW
2 + 2ρσmσψWK

)
PWW (K,W ) (35)

subject to:

κ = min

{
|ψ|

π
, 1

}
. (36)

Equation (36) indicates that there are two candidate solutions for κ (the fraction of cash in the

margin account): one interior and one corner. If the firm has sufficient cash, so that its hedging

choice ψ is not constrained by its cash holding, the firm sets κ = |ψ|/π. This choice of κ minimizes

the cost of the hedging position subject to meeting the margin requirement. Otherwise, when the

firm is short of cash, it sets κ = 1, thus putting all its cash in the margin account to take the

maximum feasible hedging position: |ψ| = π.

The direction of hedging (long (ψ > 0) or short (ψ < 0)) is determined by the correlation

between the firm’s business risk and futures return. With ρ > 0, the firm will only consider taking

a short position in futures as we have shown. If ρ < 0, the firm will only consider taking a long

position. Without loss of generality, we focus on the case where ρ > 0, so that ψ < 0.

First, consider the cash region with an interior solution for ψ (where the fraction of cash allocated

to the margin account is given by κ = −ψ/π < 1). The FOC with respect to ψ is:

ǫ

π
WPW +

(
σ2
mψW

2 + ρσmσWK
)
PWW = 0.
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Using homogeneity, we may simplify the above equation and obtain:

ψ∗(w) =
1

w

(
−ρσ

σs
−
ǫ

π

p′(w)

p′′(w)

1

σ2
s

)
. (37)

Consider next the low cash region. The benefit of hedging is high in this region (p′(w) is high

when w is small). The constraint κ ≤ 1 is then binding, hence ψ∗(w) = −π for w ≤ w−, where the

endogenous cutoff point w− is the unique value satisfying ψ∗(w−) = −π in (37).

Finally, when w is sufficiently high, the firm chooses not to hedge, as the net benefit of hedging

approaches zero while the cost of hedging remains bounded away from zero. More precisely, we have

ψ∗(w) = 0 for w ≥ w+, where the endogenous cutoff point w+ is the unique solution of ψ∗(w+) = 0

using (37).

In summary, there are three endogenously determined regions for optimal hedging. For suf-

ficiently low cash (w ≤ w−), the firm engages in maximum feasible hedging (ψ(w) = −π). All

the firm’s cash is in the margin account. In the (second) interior region w− ≤ w ≤ w+, the firm

chooses its hedge ratio ψ(w) according to equation (37) and puts up just enough cash in the margin

account to meet the requirements. For high cash holdings (w ≥ w+), the firm does not engage in

any hedging to avoid the hedging costs.

We now provide quantitative analysis of the impact of hedging on the firm’s decision rules and

firm value. We choose the following parameter values: ρ = 0.8, σm = 20% (the same as in Section

VI); π = 5, corresponding to 20% margin requirement; ǫ = 0.5%; the remaining parameters are

those for the baseline case in Section V.

In Figure 9, several striking observations emerge from the comparisons of the frictionless hedg-

ing, the hedging with costly margin requirements, and the no hedging solutions.

First, Panel A makes apparent the extent to which hedging may be constrained by the margin

requirements. On the one hand, when w > w+ = 0.11, the firm chooses not to hedge at all because

the benefits of hedging are smaller than the costs due to margin requirements. On the other hand,

it hits the maximum hedge ratio for w < w− = 0.07. Thus, just when hedging is most valuable,

the firm will be significantly constrained in its hedging capacity. As a result, the firm effectively
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Figure 9: Optimal hedging. This figure plots the optimal hedging and investment policies, the firm

value-capital ratio, and the marginal value of cash for Case II with hedging (with or without margin require-

ments). In Panel A, the hedge ratio for the frictionless case is cut off at −10 for display. The right end of

each line corresponds to the respective payout boundary.

faces higher uncertainty under costly hedging than under frictionless hedging. It follows that the

firm chooses to postpone payouts to shareholders (the endogenous upper boundary w shifts from

0.10 to 0.14). The firm also optimally scales back its hedging position in the middle region due to

the costs of hedging.

Second, Panel B reveals the surprising result that for low cash-capital ratios, the firm may

underinvest even more when it is able to optimally hedge (whether with or without costly margin

requirements) than when it cannot hedge at all. This is surprising, as one would expect the firm’s

underinvestment problem to be mitigated by hedging. After all, hedging reduces the firm’s earnings

volatility and thus should reduce the need for precautionary cash balances. This rough intuition

is partially correct as, indeed, the firm does invest more for sufficiently high values of w, when it
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engages in hedging.

But why should the firm invest less or disinvest more for low values of w? The reason can be

found in Panels C and D. Panel C plots p(w) under the three settings and confirms the intuition

that hedging increases firm value. As expected, p(w) is highest under frictionless hedging and lowest

without hedging. However, remarkably, not only is p(w) higher with hedging, but the marginal

value of cash p′(w) is also higher, when w is low. Panel D plots the marginal values of cash under

the three solutions. Observe that the marginal value of cash is actually higher for low values of w,

when the firm engages in hedging. With a higher marginal value of cash, it is then not surprising

that the firm sells its assets more aggressively and hedges its operation risk in order to lower the

likelihood of using costly external financing.

How much value does hedging add to the firm? We answer this question by computing the net

present value (NPV) of optimal hedging to the firm for the case with costly margin requirements.

The NPV of hedging is defined as follows. First, we compute the cost of external financing as the

difference in Tobin’s q under the first-best case and q under Case II without hedging. Second, we

compute the loss in adjusted present value (APV), which is the difference in the Tobin’s q under

the first-best case and q under Case II with costly margin. Then, the difference between the costs

of external financing and the loss in APV is simply the value created through hedging. On average,

when measured relative to Tobin’s q under hedging with a costly margin, the costs of external

financing is about 6%, the loss in APV is about 5%, so that the NPV of costly hedging is of the

order of 1%, a significant creation of value to say the least for a purely financial operation.

VIII. Credit Line

Our baseline model of Section II can also be extended to allow the firm to draw down a credit line.

This is an important extension to consider, as many firms in practice are able to secure such lines,

and for these firms, access to a credit line is an important alternative source of liquidity than cash.

We model the credit line as a source of funding the firm can draw on at any time it chooses up

to a limit. We set the credit limit to a maximum fraction of the firm’s capital stock, so that the
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firm can borrow up to cK, where c > 0 is a constant. The logic behind this assumption is that the

firm must be able to post collateral to secure a credit line and the highest quality collateral does

not exceed the fraction c of the firm’s capital stock. We may thus interpret cK to be the firm’s

short-term debt capacity. We also assume that the firm pays a constant spread α over the risk-free

rate on the amount of credit it uses. That is, the firm pays interest on its credit at the rate r+ α.

Sufi (2009) shows that a firm on average pays 150 basis points over LIBOR on its credit lines. This

essentially completes the description of a credit line in our model. We leave other common clauses

of credit lines-such as commitment fees and covenants-as well as the endogenous determination of

the limit cK to future research.

Since the firm pays a spread α over the risk-free rate to access credit, it will optimally avoid

using its credit line or other costly external financing before exhausting its internal funds (cash)

to finance investment. The firm does not pay fixed costs in accessing the credit line, so it also

prefers to first draw on the line before tapping equity markets as long as the interest rate spread α

is not too high.22 Our model thus generates a pecking order among internal funds, credit lines and

external equity financing.

As in the baseline model, in the cash region, the firm value-capital ratio p(w) satisfies the ODE

in (13), and has the same boundary conditions for payout (16-17). When credit is the marginal

source of financing (credit region), p(w) solves the following ODE:

rp(w) = (i(w) − δ)
(
p (w)− wp′ (w)

)
+ ((r + α)w + µ− i(w)− g(i(w))) p′ (w) +

σ2

2
p′′ (w) , w < 0

(38)

When the firm exhausts its credit line before issuing equity, the boundary conditions for the timing

and the amount of equity issuance are similar to the ones given in Section IV. That is, we have

p(−c) = p(m) − φ − (1 + γ)(m + c), and p′(m) = 1 + γ. Finally, p(w) is continuous and smooth

everywhere, including at w = 0, which gives two additional boundary conditions.

Figure 10 plots the firm’s value-capital ratio p(w), the marginal value of liquidity p′(w), the

22When α is high and equity financing costs (φ, γ) are low, the firm may not exhaust its credit line before accessing
external equity markets. For our parameter values, we find that the pecking order results apply between the credit
line and external equity.
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Figure 10: Credit line. This figure plots the model solution with credit line and external equity. Each

panel plots for two scenarios: one without credit line (c = 0) and the other with credit line (c = 20%). The

spread on the credit line is α = 1.5% over the risk-free rate r.

investment-capital ratio i(w), and the investment-cash sensitivity i′(w), when the firm has access

to a credit line. As can be seen from the figure, having access to a credit line increases p(w). This

is to be expected, as access to a credit line provides a cheaper source of external financing than

equity under our chosen parameter value for the spread on the credit line: α = 1.5%. Second,

observe that with the credit line option the firm hoards significantly less cash, and the payout

boundary w drops from 0.19 to 0.08 when the credit line increases from c = 0 to c = 20% of the

firm’s capital stock. Third, without access to a credit line (c = 0), the firm raises lumpy amounts

of equity mK (with m = 0.06 for φ = 1%) when it runs out of cash. In contrast, when c = 20%,

the firm raises 0.1K in a new equity offering when it has exhausted its credit line, so as to pay off

most of the debt it has accumulated on its credit line. But, note that for our baseline parameter
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choices, the firm still remains in debt after the equity issuance, as m = −0.10. Fourth, the credit

line substantially lowers the marginal value of liquidity. Without the credit line, the marginal value

of cash at w = 0 is p′(0) = 1.69, while with the credit line (c = 20%), the marginal value of cash

at w = 0 is p′(0) = 1.01, and the marginal value of cash at the point when the firm raises external

equity is p′(−c) = 1.42.

It follows that a credit line substantially mitigates the firm’s underinvestment problem as can

be seen in Panel C in Figure 10. Without a credit line (c = 0), the firm engages in significant asset

sales (i = −21.4%) when it is about to run out of cash. With a credit line, however (c = 20%),

the firm’s investment-capital ratio is i(0) = 11.7% when it runs out of cash (w = 0). Even when

the firm has exhausted its credit line (at w = −20%), it engages in much less costly asset sales

(i(−c) = −7.9%). Finally, observe that the investment-cash sensitivity is substantially lower when

the firm has access to a credit line. For example, when the firm runs out of cash, the investment-

cash sensitivity is only i′(0) = 0.27, much smaller than when the firm has no credit line and has to

issue external equity to finance investment (i′(0) = 11.8).

Next, we turn to the effect of liquidity (cash and credit) on average q, marginal q, and invest-

ment.

The left panel of Figure 11 plots the firm’s marginal q and average q for two otherwise identical

firms: one with a credit line (c = 20%), and the other without a credit line (c = 0). First we see

that average q increases with w in both credit and cash regions, because q′a(w) = p′(w) − 1 ≥ 0.

The inequality follows from the result that the marginal value of liquidity p′(w) ≥ 1.

Second, recall that marginal q is related to average q as follows in both regions:

qm(w) = qa(w) − (p′(w)− 1)w.

When the firm is in the cash region, marginal q lies below average q, because p′(w) ≥ 1 and w > 0.

The intuition is that a unit increase in capital K lowers the firm’s cash-capital ratio w = W/K,

which causes the firm to be more financially constrained, thus making marginal q lower than average

q. In contrast, when the firm is in the credit region (w < 0), increasing K raises the firm’s debt
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Figure 11: Investment and q with credit line. The left panel plots the average q (qa) and marginal

q (qm) from the case with credit line (c = 0.2) and without credit line (c = 0) up to the respective payout

boundaries. The right panel plots the average q, marginal q, the ratio of marginal q to marginal value of

liquidity (qm/p
′) on the left axis, and investment-capital ratio (i) on the right axis. These results are for the

case with credit line (c = 0.2).

capacity (credit line limit cK) and lowers its leverage, which relaxes the firm’s borrowing constraint.

This effect causes marginal q to be larger than average q for w < 0.

While both average q and investment i(w) are increasing in w in both credit and cash regions,

marginal q is not monotonic in w. This can be seen from the following:

q′m(w) = −p′′(w)w.

Because w can be either signed, marginal q decreases in w when w > 0 and increases in w when

w < 0. Moreover, while average q is always below the first-best q, marginal q may exceed the

first-best marginal q when the firm is in the credit region (due to the debt capacity channel), as

seen in Figure 11. We also observe that the quantitative differences between average and marginal

q are much larger in the credit region than in the cash region.

It is sometimes argued that when there are no fixed costs of investment marginal q is a more
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Table II: Conditional moments from the stationary distribution of the credit line

model

This table reports the population moments for cash-capital ratio (w), investment-capital ratio
(i(w)), marginal value of cash (p′(w)), average q (qa(w)), and marginal q (qm(w)) from the station-
ary distribution in the case with credit line.

w i(w) p′(w) qa(w) qm(w)

A. credit region
mean -0.040 0.104 1.030 1.188 1.190

median -0.030 0.108 1.023 1.188 1.189
std 0.034 0.015 0.023 0.001 0.002

skewness -1.214 -3.071 4.186 -3.387 9.011
kurtosis 4.228 19.200 34.462 20.552 125.634

B. cash region
mean 0.055 0.124 1.002 1.189 1.189

median 0.060 0.125 1.001 1.189 1.189
std 0.024 0.002 0.003 0.000 0.000

skewness -0.569 -1.602 1.636 -2.146 -0.860
kurtosis 2.219 4.710 4.841 6.950 2.388

accurate measure than average q for the firm’s investment opportunities.23 This is indeed true in

the MM world but it is not generally valid in a world where firms face financial constraints. The

right panel of Figure 11 shows that although the investment-capital ratio i(w) increases with w in

the credit region, marginal q actually decreases with w. As a result, marginal q and investment

move in opposite directions in the credit region. To understand this seemingly counterintuitive

result, we must look at the investment Euler equation for a firm facing financial constraints. It is

clear from this equation that investment is driven by the ratio of marginal q to the marginal value

of liquidity p′(w). Now in the credit region, both the marginal value of liquidity p′(w) and marginal

q are high when the firm is close to its credit limit. Indeed, the marginal value of liquidity p′(w)

increases at a higher rate than marginal q when the firm uses up more of its credit line (i.e. when

we move to the left in the credit region), and as a result, the investment-capital ratio falls when

the firm uses more credit.

23Caballero and Leahy (1996) show that average q can be a better proxy for investment opportunities in the
presence of fixed costs of investment.
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Finally, we turn to the analysis of the stationary distribution of firms with access to credit line.

To understand the different behavior in the cash and the credit regions, we report the first four

moments of the distribution plus the medians of the variables of interests (w, i(w), p′(w), qa(w),

and qm(w)) for both the credit region and cash region in Table II. The most significant observation

is that the availability of credit makes the firm’s stationary distribution for these variables much

less skewed and fat-tailed in the cash region. Because liquidity is more abundant with a credit

line, the firm’s marginal value of cash is effectively unity throughout the cash region. However, the

skewness and fat-tails of the distribution now appear in the credit region (note, for example, the

high kurtosis (126) for marginal q in the credit region). Although the firm has a credit line of up

to 20% of its capital stock, it only uses about 4% of its line on average. The reason is that the

firm does not spend much time around the credit line limit. The risk of facing a large fixed cost of

equity induces the firm to immediately move away from its credit limit.24

The cash-capital ratio w, i(w), qa(w), and qm(w) are all skewed to the left in the cash region,

as in our baseline model without a credit line. The intuition is similar to the one provided in

the baseline model. Moreover, because of the firm’s optimal buffer-stock cash holding, there is

effectively no variation in the cash region for the firm’s investment and value. Note also that the

mean and median of marginal q and average q are all equal to 1.189, up to the third decimal point.

Even for the investment-capital ratio i(w), the difference between its median and mean values only

appear at the third decimal point.

Unlike in the cash region, not only is the marginal value of credit p′(w) skewed to the left, but

so is marginal q in the credit region. The left skewness of marginal q and p′(w) are both driven

by the fact that every so often the firm hits the credit limit and incurs large financing costs. In

other words, there is much more variation in the credit region than in the cash region for marginal

q and the marginal value of liquidity p′(w). As marginal q and the marginal value of liquidity move

in the same direction in the credit region, there is, however, much less variation in i(w), which is

monotonically related to the ratio qm(w)/p′(w).

24DeAngelo, DeAngelo and Whited (2009) make a similar observation.
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IX. Conclusion

We introduce external financing costs, an important friction emphasized in modern corporate fi-

nance literature, into the neoclassic q theory of investment. Using a tractable and operational

dynamic economic framework, we show how the firm’s optimal investment, financing, and risk man-

agement policies are interconnected in the presence of external financing costs. In our model, corpo-

rate risk management involves internal liquidity management, financial hedging, investment/asset

sales, and payout. Several new insights emerge from our analysis. For example, we find that the

relation between marginal q and investment differs depending on whether cash or credit is the

marginal source of financing. We also demonstrate the distinct and complementary roles that cash

management and derivatives play in risk management.

Our model can be extended to have time-varying investment and financing opportunities, as

well as endogenous leverage decisions. Allowing for stochastic financing opportunities may generate

rational “market-timing” of financing. As our analysis only looks at risk management in a reduced-

form agency model, it would clearly be desirable explore a model where decision-making by an

incentivized self-interested manager is explicitly modeled.25 Our dynamic tradeoff model does not

explicitly capture the effects of taxes on risk management (see Smith and Stulz (1985) and Graham

and Smith (1999) for early static theory and empirical evidence, respectively). Neither do we

model the impact of strategic considerations, such as building a war-chest to improve the firm’s

competitive position in product markets, on firms’ cash-inventory and risk management decisions

(see Haushalter, Klasa, and Maxwell (2007) and Harford (1999) for empirical evidence). We leave

these extensions to future research.

25Pinkowitz, Stulz and Williamson (2006) and Dittmar and Mahrt-Smith (2007) empirically explores the relation
between the firms’ excess cash holdings and corporate governance. See Dittmar (2008) for a survey of this literature.
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Appendix

Boundary conditions. We begin by showing that PW (K,W ) ≥ 1. The intuition is as follows.

The firm always can distribute cash to investors. Given P (K,W ), paying investors ζ > 0 in cash

changes firm value from P (K,W ) to P (K,W − ζ). Therefore, if the firm chooses not to distribute

cash to investors, firm value P (K,W ) must satisfy

P (K,W ) ≥ P (K,W − ζ) + ζ,

where the inequality describes the implication of the optimality condition. With differentiability, we

have PW (K,W ) ≥ 1 in the accumulation region. In other words, the marginal benefit of retaining

cash within the firm must be at least unity due to costly external financing. Let W (K) denote the

threshold level for cash holding, where W (K) solves

PW
(
K,W (K)

)
= 1. (39)

The above argument implies the following payout policy:

dUt = max{Wt −W (Kt) , 0},

where W (K) is the endogenously determined payout boundary. Note that paying cash to investors

reduces cash holding W and involves a linear cost. The following standard condition, known as

super contact condition, characterizes the endogenous upper cash payout boundary (see e.g. Dumas,

1991 or Dixit, 1993):

PWW (K,W (K)) = 0. (40)

When the firm’s cash balance is sufficiently low (W ≤W ), under-investment becomes too costly.

The firm may thus rationally increase its internal funds to the amount W by raising total amount
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of external funds (1 + γ) (W −W ). Optimality implies that

P (K,W ) = P (K,W )− (1 + γ) (W −W ), W ≤W. (41)

Taking the limit by letting W →W in (41), we have

PW (K,W (K)) = 1 + γ. (42)

Numerical procedure. We use the following procedure to solve the free boundary problem

specified by ODE (13) and the boundary conditions associated with the different cases. First,

we postulate the value of the free (upper) boundary w, and solve the corresponding initial value

problem using the Runge-Kutta method. For each value of w we can compute the value of p(w)

over the interval [0, w]. We can then search for the w that will satisfy the boundary condition

for p at w = 0. In the cases with additional free boundaries, including Case II and the model

of hedging with margin requirements, we search for w jointly with the other free boundaries by

imposing additional conditions at the free boundaries.
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