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Abstract

Are securities markets more liquid when the economy is more liquid? If so,

why? One possibility is that market depth depends on credit constrained inter-

mediaries. This paper offers another explanation, which does not involve frictions

or market segmentation. Measuring market illiquidity by the slope of the repre-

sentative agent’s demand curve for a risky asset, I show that this slope is steeper

when money-like investments (or liquid wealth) represent less of an economy’s as-

sets. That is because an exchange of risky shares for money in such a state induces

greater intertemporal substitution than it does when there are more liquid bal-

ances. Agents are not indifferent to this substitution, and so prices respond more

to trade. Thus market illiquidity fluctuates naturally with the level of real liquid-

ity. This observation has important implication for understanding the causes of

liquidity risk and market fragility.
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1 Introduction

It is not obvious whether or why the ease of transacting in financial markets should be

affected by the amount of liquid wealth in an economy. In times of economic or political

turbulence, however, understanding the connection between market liquidity (the first

notion) and balance-sheet liquidity (the second) may be of crucial policy importance.
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In such situations, preserving the orderly functioning of securities markets is tan-

tamount to preventing extreme market illiquidity. That is, the policy objective facing

authorities is not (presumably) to artificially prop up markets in the face of bad news,

but rather to prevent them from “seizing up” or becoming so illiquid that even small

trades require steep price concessions. This type of illiquidity may inhibit risk sharing

and risk control by making trade prohibitively costly. It also may prevent markets from

correctly transmitting price signals as trades take place at wide spreads and possibly at

off-equilibrium values. Distorted prices, in turn, raise the specter of systemic real effects

if informationless trades trigger solvency constraints at banks and other intermediaries,

leading to broader asset disposals. Such “fire sales” themselves would not be problem-

atic if the remaining unconstrained agents could absorb them. Again, it is not the level

of the market, but its depth, that needs protecting. Dysfunctional markets may mean

inefficient prices.

To combat market illiquidity, central banks will typically signal that they stand ready

to “provide liquidity” to the financial system. Here the word liquidity is being used in

a very different sense. The authorities do not themselves stand ready to make two-way

prices in risky securities. Instead, the liquidity they provide is cash. More specifically,

the Federal Reserve can expand the real monetary base by lending reserves directly or by

open market operations (or by signalling that it is prepared to do both). These actions

raise the percentage of private sector assets that are held in liquid form. Implicitly, then,

central banks attempt to use one type of liquidity to affect the other. The question is:

why should this work? What does the stock market’s willingness to accommodate trade

have to do with the money supply?

This paper seeks to understand how market liquidity might be related to the econ-

omy’s liquidity. For the two do seem to be linked. Not only does the hypothesized

crisis-period interaction seem grounded in fact,1 but there is evidence that the liquidities

are connected in normal times as well.2

A natural and widely-held view of the mechanics of this “liquidity substitution” is

that, in varying the money supply, central banks are tightening or loosening the financ-

1Chordia, Sarkar, and Subrahmanyam (2005) report that bid/ask spreads in stock and bond markets
were negatively correlated with measures of monetary easing during three high-stress periods from 1994
to 1998.

2In monthly data from 1965 through 2001, Fujimoto (2004) finds that several measure of aggregate
illiquidity are significantly lower during expansionary monetary regimes than during contractionary ones.
Vector autoregressions also indicate a significant response of illiquidity to monetary or Fed Funds rate
innovations, at least in the first half of the sample.
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ing conditions which enable intermediaries to make markets for risky securities. This

intuition presupposes the existence of a credit channel through which nominal quantities

affect real financing conditions. It also implicitly relies on some sort of “inventory cost”

model of price setting, whereby bid and ask prices are determined by a financially con-

strained sector whose cost of capital (a shadow cost when their constraint binds) differs

from that of the economy as a whole. Finally, to the extent that intervention is viewed as

beneficial, it must be that these constraints themselves are inefficient, perhaps resulting

from agency problems or asymmetric information.

The view of financing constraints leading to imperfect intermediation has been thor-

oughly developed by Allen and Gale.3 Financially constrained intermediaries are also

the crucial ingredient in the limits-to-arbitrage literature stemming from Shleifer and

Vishny (1997). Gromb and Vayanos (2002) formally model the liquidity provision deci-

sion of arbitrageurs subject to a positive wealth financing constraint. Brunnermeier and

Pedersen (2005) study the effect of a value-at-risk type constraint (whose tightness they

call funding illiquidity) on price concessions demanded by risk-neutral market makers (a

measure of market illiquidity) in a two-period game. The approach of this line of research

is similar in spirit to classical microstructure models of liquidity provision in that the key

features of the institutional setting (determining who is allowed to be an intermediary

and how they may finance themselves) are taken as exogenous.

Here I present an alternative model of the effect of liquid balances on market liquidity,

in which intermediaries play no role. The analysis is based upon the notion of market

illiquidity introduced in Pagano (1989) which quantifies the aggregate price response

to a perturbation in the supply of an asset. This quantity, which is equivalent to the

(inverse) slope of the representative agent’s demand curve, captures the willingness of

the market as a whole to accomodate trade at prevailing prices. Even in a frictionless

equilibrium, this willingness is not unlimited as marginal trades lead to marginal changes

in the risk characteristics of the representative agent’s holdings and hence to marginal

changes in discount rates. Johnson (2006) develops the computation of this elasticity in

general economies and demonstrates that it can have non-trivial dynamics, varying as

the underlying state of the economy varies.

I study the properties of this measure in a simple two-asset economy in which one asset

is money-like because holdings of it can be directly converted to current consumption.

The second asset, which does not have this property, is just a claim to an endowment

3See especially Allen and Gale (2004), and Allen and Gale (2005) for a review.
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stream that is meant to model the stock market. In this setting, agents in the economy

can be said to be more or less liquid depending on the fraction of their assets that are

technologically transformable from savings to consumption. I refer to these transformable

holdings as liquid or (real) cash balances.

This is a standard buffer-stock savings model (Deaton (1991),Carroll (1992), Carroll

(1997)), and a standard result is that the marginal propensity to consume out of available

wealth rises with the percentage of cash holdings. This, in turn, implies that, faced

with a marginal exchange of cash for risky shares, the representative agent will alter

current consumption less when he has more cash, i.e. is more liquid. The intertemporal

substitution aspect of trade is one feature that drives market illiquidity since altering

current consumption changes discount rates. Hence, in this story, the market for shares

of the second asset become endogenously more liquid when the economy as a whole is

more liquid.

This explanation has the virtue of simplicity, relying as it does on elementary prop-

erties of well understood models. But that does not make it right. Financial constraints,

credit channels, and segmented markets all may well contribute to the determination of

market liquidity. The ideas are not mutually exclusive. However they may have very

different implications about the role of institutions and the welfare effects of interven-

tion. In particular, the results here imply that empirical evidence that there is some

linkage between the two types of liquidity cannot necessarily be interpreted as evidence

of incomplete contracts or inefficient markets.

Understanding liquidity dynamics is important for investors as well as policy mak-

ers. Liquidity risk is a topic of significant concern for any participant who may need

to implement a dynamic portfolio strategy. Quantifying that risk, and possibly hedging

it, requires an explicit model of the causes of liquidity fluctuations. To the extent that

these factors are distinct from other, known sources of risk, investors may demand com-

pensation for this risk, thus affecting equilibrium asset values. The model presented here

constitutes an explicit and tractable quantification of time-varying liquidity, providing a

complete description of its interaction with the underlying state variables.

The outline of the paper is as follows. In the next section, I introduce the economic

setting. This is, in effect, the simplest economy one can study in which agents choose

their relative holdings of liquid, consumable assets. I describe the economy formally and

discuss equilibrium properties of consumption, savings, and asset prices. Of particular

importance is the interaction between the consumption covariance of the risky dividend
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stream and the level of liquid balances. In Section 3, I define the concept of market

liquidity and show how to compute it in this model. I analyze the determinants of this

quantity and highlight the intuition behind them. The primary result is that market

liquidity increases with the level of cash holdings. While analytical proofs are mostly

unavailable, the interaction is illustrated, and the intuition developed, through numerical

examples using standard parameter values. The final section summarizes the paper’s

contribution and concludes by highlighting the distinguishing empirical implications of

the model.

2. An Economy with Liquid Balances

The balance sheet of a firm or an individual is said to be liquid when cash constitutes a

high percentage of investments. In this context, “cash” refers to any money-like securities

whose defining property is their ability to be exchanged directly for needed goods and

services, without needing to rely upon the existence of (or conditions in) a secondary

market to convert them to another medium of trade. This is a real property of an

investment, which is equivalent to the concept of reversibility. The contrast with other

assets, whether equipment or intellectual property, is that, even if perfect markets for

claims to these exist, the capital stock committed to them may not itself be transformable

to other uses. This section develops a standard model in which agents choose how much

of their wealth to hold in liquid, convertible form. This percentage of liquid assets then

becomes the main (endogenous) state variable driving consumption and asset prices.

The aim at present is to study the interrelationships this implies between the economy’s

liquidity and the other characteristics of the equilibrium.

2.1 Basic Properties

The setting is as follows. Time is discrete and an infinitely-lived representative agent has

constant relative risk aversion (CRRA) preferences over consumption of a single good.

The agent receives a risky stream, Dt, of that good in each period from an endowment

asset. In addition, the agent has access to a second investment technology whose capital

stock can be altered freely each period, and which returns a constant gross rate, R ≡ er ∆t.

For present purposes, the risklessness of the return is secondary. The primary feature of

this investment is that, like cash, it can be drawn down or built up each period.4 By

4In terms of the canonical fruit tree metaphor, it is just preserved fruit.
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contrast, the capital stock of the endowment asset can be neither increased nor decreased.

This is a version of the classic buffer-stock savings model (Deaton (1991), Carroll

(1992)), a mainstay of the consumption literature. I use it here to investigate the behav-

ior of the price of the endowment stream, which in that literature is interpreted as labor

income, but which I interpret as dividends. The fact that claims to dividends may be

tradeable (whereas labor income is not) in no way alters the equilibrium construction.

Labor models also sometimes impose the constraint that investment in the savings tech-

nology must be positive, ruling out borrowing. This is intuitively sensible as a property

of aggregate savings as well, but need not be imposed here, because it will hold endoge-

nously anyway in the cases considered below.5 Moreover it is worth pointing out that

there are also no financial constraints in the model. Agents in this economy may write

any contracts and trade any claims with one another.

For parsimony, I have not included any other stochastic shocks to agent’s supply of

goods, such as labor income, which might be interpreted as a direct “liquidity shock”.

A natural way of doing so would be to make these proportional to dividends but with a

transitory component. This specification would then look exactly like the process used

for total risky income in the original buffer stock models (as in (Carroll 1997)). Separate

idiosyncratic shocks are not needed, however, to deduce the effects of time-varying liquid

balances on consumption and prices.

While the transformable investment was described as a technology, this asset could

also be viewed as one-period riskless bonds (T-bills). Models with elastically supplied

bonds are common in the asset pricing literature, but typically are used in conjuction with

constant absolute risk aversion (CARA) utility functions. CARA utility is unsuitable here

because it necessarily implies that demand for the risky asset is independent of the level

of savings or liquid wealth. To my knowledge, the asset pricing implications of a riskless

storage technology in a CRRA economy have not previously been analyzed.

Since consumption units carried over from one period to the next are perfectly fungible

with current-period output, it is also natural to think of agents’ total goods-on-hand as

their “cash” balances, which can either be consumed or saved. They are like (commodity)

money in that their consumption utility does not require any further transformation.

Although the term “cash” is occasionally used below for these balances, it is worth

clarifying that there is no fiat money in the economy. All quantities are real.

5With lognormal dividend shocks and CRRA preferences, agents will never borrow in a finite horizon
economy. The policies below are limits of finite horizon solutions. When these limits exist and appro-
priate transversality conditions are satisfied, they are also solutions to the infinite horizon problem.
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Since the aggregate stock of liquid savings is determined endogenously, there is no role

for a government sector in the model. Nevertheless, one can still consider the effect of

policy actions that alter the real quantity of liquid balances. Central bank interventions

that change the net supply of bank deposits (i.e the montary base) could be an example

of such an action. I return to this topic in Section 2.3 below.

Setting the notation, the investor’s problem is to choose a consumption policy, Ct, to

maximize

Jt = Et

[∑

k=1

βk C1−γ
t+k

1− γ

]
,

where β ≡ e−φ is the subjective discount factor, and I have set the time interval to unity

for simplicity. A key variable is the total amount of goods, Gt, that the agent could

consume at time t, which is equal to the stock of savings carried into the period plus new

dividends received:

Gt = R(Gt−1 − Ct−1) + Dt.

The end-of-period stock of goods invested in the transformable asset will be denoted

Bt ≡ Gt − Ct. It is also useful to define the “income” received each period It ≡ (R −
1)Bt−1 + Dt = (R− 1)(Gt −Dt)/R + Dt. Although this quantity plays no direct role, it

helps in understanding savings decisions.

To take the simplest stochastic specification, I assume Dt is a geometric random walk:

Dt+1 = Dt R̃t+1, log R̃t+1 ∼ N (µ− σ2

2
, σ2)

so that dividend growth is i.i.d. with mean eµ. Including a transient component (as

would be appropriate in labor models) will not alter the features of the model under

consideration here. As it is, the model is defined by five parameters: R, β, γ, µ, and σ.

The state of the economy is characterized by Gt and Dt which together determine

the relative value of the endowment stream. It is easy to show the optimal policy must

be homogeneous of degree one in either variable. So it is convenient to define

vt = Dt/Gt

which takes values in (0, 1). This variable can also be viewed as summarizing the real

liquidity of the economy. As vt → 0, the endowment stream becomes irrelevant and

all the economy’s wealth is transformable to consumption whenever desired, and income

fluctuations can be easily smoothed. As vt → 1 on the other hand, all income effectively
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comes from the endowment asset whose capital stock cannot be adjusted. Since cash

holdings are small, agents have little ability to dampen income shocks.

The agent’s decision problem is to choose how much of his available goods to consume

at each point in time. Intuition would suggest that he will optimally consume less of the

total, Gt, when v is low than when v is high, since, in the former case consuming the

goods amounts to eating the capital base, whereas in the latter case, Gt is mostly made

up of the income stream, Dt, which can be consumed with no sacrifice of future dividends.

This property is, in fact, true very generally.6

Proposition 2.1 Assume the infinite-horizon problem has a solution policy h ≡ C/G =

h(v) such that h(v) < 1. Then,

h′ > 0.

Note: all proofs appear in Appendix A.

This result can also be understood by noting that ∂C(D, G)/∂D = h′ so that the

assertion is only that consumption increases with (risky) income, which is unsurprising

when shocks to D are permanent. Moreover, the result holds for much more general

preferences. This follows from the results of Carroll and Kimball (1996) who show that

∂2C/∂G2 < 0 whenever u′′′ u′/[u′′]2 > 0. Concavity implies that 0 < C −G ∂C/∂G and

the latter quantity also equals h′.

That h rises with v is essentially the only feature of the model that is necessary for the

subsequent results. However further useful intuition about the dynamics of the model

can be gained by considering how consumption behaves at the extreme ranges of the

state variable vt.

In the limit as vt → 1 the economy would collapse to a pure endowment one (Lucas

1978) if the agent consumed all his dividends, i.e. if h(1) = 1. This will not happen if

the riskless savings rate available exceeds what it would be in that economy. That is, if

1

R
< Et

[
β

[
Ct+1

Ct

]−γ

|h(1) = 1

]
= Et


β

[
Gt+1h(vt+1)

Gth(1)

]−γ

|h(1) = 1


 = Et

[
β

[
R̃t+1

]−γ
]

(1)

then the agent’s marginal valuation of a one-period riskless investment, assuming no

savings, exceeds the cost of such an investment. So no savings cannot be an equilibrium,

6Indeed, even the hypothesis h < 1 in the proposition is not necessary. The proof of the more general
case is cumbersome, and is omitted.
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and the conclusion is that the inequality (1) implies h(1) < 1. In the lognormal case, this

is equivalent to r > φ + γµ− γ(1 + γ)σ2/2, the right-hand expression being the familiar

interest rate in the Lucas (1978) economy.7

As dividends get small relative to cash, vt → 0, the economy begins to look like

one with only the riskless asset. For such an economy, it is straightforward to show

that the optimal consumption fraction is h0 ≡ (R − (Rβ)1/γ)/R. Now if the agent’s

consumption fraction approached this limit (which it does, h() is continuous at zero8),

his cash balances would grow at rate approaching (Rβ)1/γ. If this rate exceeds the rate of

dividend growth then vt will shrink further. However, in the opposite case, the agent is

dissaving sufficiently fast to allow dividends to catch up. Hence vt will tend to rebound.

Thus the more interesting case is when

(Rβ)1/γ < Et

[
R̃t+1

]
(2)

or r < φ + γµ under lognormality. A somewhat stronger condition would be that the

agent actually dissaves as vt → 0. This would mean consumption Gth0 exceeds income

(R − 1)(Gt − Dt)/R + Dt or, at v = 0, h0 < (R − 1)/R, which implies (Rβ)1/γ < 1 or

simply r < φ.

With (1) and (2), then, the state variable vt is mean-reverting.9 This requirement

is not necessary for any of the results on prices or liquidity. However it makes the

equilibrium richer. As an illustration, I solve the model for the parameter values shown

in Table 1.

The parameters are fairly typical of calibrations of aggregate models when the endow-

ment stream is taken to be aggregate dividends (with R approximating the real interest

rate), and the preference parameters are all in the region usually considered plausible.

Figure 1 plots the solution for the consumption function for these parameters. Analytical

solutions are not available. However, as the proposition above indicated, h is increasing

and concave. Also plotted is income (as a fraction of G), which is (R − 1 + v)/R. This

7The opposite inequality to (1) is sometimes imposed in the buffer stock literature to ensure dissavings
as vt → 0. In that case, the specification of Dt is altered to include a positive probability that Dt = 0
each period. This assures the agent will never put h = 1.

8This is shown in Carroll (2004) under slightly different conditions. Modification of his argument to
the present model is straightforward.

9Stationarity of v implies stationarity of consumption as a fraction of available wealth C/G = h(v).
Both are general properties under the model of Caballero (1990) who considers CARA preferences.
Clarida (1987) provides sufficent conditions under CRRA preferences when dividends are i.i.d. Szeidl
(2002) generlizes these results to include permanent shocks. No assumption about the long-run properties
of the model are used below.
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Table 1: Baseline Parameters.

Parameter Notation Value

coefficient of relative risk aversion γ 6
subjective discount rate φ = − log β 0.05
return to cash r = log R 0.02
dividend growth rate µ 0.04
dividend volatility σ 0.14
time interval ∆t 1 year

shows the savings behavior described above: for small values of v agents dissave, whereas

they accumulate balances whenever v exceeds about 0.12.

The graph also indicates that, away from the origin the function h is actually quite

close to linear in v. Numerical experimentation indicates that this is a robust qualitative

feature of solutions. With it, some of the dynamic properties of the endogenous state

variables become easier to understand.

Analysis of the variable wt ≡ (Gt − Dt)/Dt = RBt−1/Dt is more tractable than of

vt. This is the ratio of beginning-of-period cash balances (i.e. before dividends and

consumption) to dividends, and the two are related by w = 1
v
− 1. So the consumption

function h(v) can be expressed equivalently as h(w). Then we can write wt+1 in terms of

time-t quantities as follows:

wt+1 =
R([Gt −Dt] + Dt − Ct)

Dt R̃t+1

=
R

R̃t+1

(1− h(wt))(wt + 1).

Let the random ratio R/R̃ define a new mean-zero variable Z̃:

R

R̃t+1

≡ Z̃t+1 + Z̄

with Z̄ ≡ E(R/R̃) which is e(r−µ). Subtracting wt from wt+1 gives

∆wt+1 = Z̄[(1− h(wt))(wt + 1)]− wt + [(1− h(wt))(wt + 1)] Z̃t+1. (3)

This expression isolates the first and second moments of the w innovations. Their forms

become clearer if we invoke the linear approximation for the function h. Specifically,
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Figure 1: Optimal Consumption
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The dark line is the optimal consumption function h(v) ≡ C/G plotted against the ratio of dividends
to total goods-on-hand v ≡ D/G. Also shown is income as a fraction of G plotted as a dashed line. All
parameter settings are as in Table 1.

h(v)
.
= h0 + (h1 − h0)v ⇒ h(w)

.
=

h0w + h1

w + 1
.

Plugging this expression into equation (3) gives

∆wt+1
.
=

(
Z̄[(1− h1) + (1− h0)wt]− wt

)
+ [(1− h1) + (1− h0)wt] Z̃t+1.

=
(
Z̄(1− h1)− [1− Z̄(1− h0)]wt

)
+ [(1− h1) + (1− h0)wt] Z̃t+1. (4)

Here we see that wt is approximately an affine process. The coefficient on −wt in the

deterministic part of this specification can be interpreted as the speed of mean reversion.

Using the expression given above for h0 and the definition of Z̄, the coefficient becomes

1− (Rβ)1/γE(1/R̃) = 1− e
(r−φ)

γ
−µ .

= µ− (r − φ)

γ
.

This shows that the inequality (2) imposed earlier also implies (up to an approximation)

that the process wt mean-reverts, and, indeed, characterizes the degree of mean reversion
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by the degree to which that inequality holds. Taking the parameter values given above,

the coefficient in the expression evaluates to 0.045 which corresponds to a characteristic

time scale (or half-life) of 15.4 years. In this economy, then, this is the “business cycle

frequency” which governs the endogenous changes in liquidity, which, in turn, determine

the consumption and saving behavior.

Having (approximately) characterized the dynamics of the state variable wt (and

hence vt), we can directly infer the consumption dynamics by again appealing to the

linear approximation of h(). Since

Ct/Dt = h(vt)/vt = h(wt)(wt + 1)
.
= h0wt + h1,

consumption growth has two sources. The first is simply the growth rate of dividends,

which is i.i.d. The second is the growth in the linear transformation of wt which itself is

an affine process. This second term’s expected growth will be high when wt is itself low

or when v is high. Intuitively, when v is high, current consumption is less than income.

But since v is expected to mean revert, agents expect to be saving less in the future.

That is, their consumption growth will benefit from the cyclical boost that will come

from freer spending in more liquid times.

Consumption volatility varies in a similar, though more complicated, fashion. Divi-

dend innovations are perfectly negatively correlated with the shocks Z̃ driving w. So the

two components of consumption growth work in opposite directions. And, from equation

(4), the component h0wt + h1 will have percentage changes equal to

(1− h1) + (1− h0)wt

h1

h0
+ wt

times those of Z̃t+1. This fraction is increasing in w and typically less than unity.10 It

follows then that consumption volatility decreases as w increases (or as v decreases).

While the mathematical analysis is somewhat opaque, the intuition is simple. The con-

sumption stream is necessarily mostly made up of dividends when liquid wealth is low.

And dividends are more volatile than cash.

To get a sense of the degree of variation of the consumption moments, I first evaluate

them numerically for the baseline parameter values. The results are shown in Figure 2.

Since agents smooth consumption, the standard deviation is below that of the dividends

10As w →∞ it goes to (1−h0)R = (Rβ)1/γ which could exceed unity. In that case, positive dividend
shocks would lower consumption.
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themselves. More notably, the moments vary significantly as the liquidity of the economy

varies.

Figure 2: Consumption Moments
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The left panel plots the conditional mean of log consumption growth, and the right hand panel plots
the conditional standard deviation. The horizontal axis is v, the liquid balances ratio. All parameter
settings are as in Table 1.

But how much does that liquidity vary? Figure 3 shows the unconditional distribution

of v, calculated by time-series simulation. Its mean and standard deviation are 0.204 and

0.065 respectively, implying a plus-or-minus one standard deviation interval of (0.139,

0.269). Using this distribution to integrate the conditional consumption moments, the

unconditional mean and volatility of the consumption process are 0.031 and 0.110. In

terms of dynamic variation, the standard deviation of the conditional mean and volatility

are 0.0051 and 0.0079, respectively.

To recap, this subsection has shown some important, basic properties of consumption

in this model. The propensity to consume current goods, h(), is increasing in the liquidity

ratio, v, the percentage of current wealth coming from dividends. Subject to some

parameter restrictions, this percentage (or equivalently w) is stationary, with a degree of

mean-reversion determined by µ, r, φ, and γ. The consumption ratio, h, and consumption

growth are then also stationary with the same characteristic time-scale. Remarkably,
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Figure 3: Unconditional Distribution of Dividend-Cash Ratio
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The figure shows the unconditional distribution of v, the dividend-to-cash ratio, as computed from a
40,000 realizations of a time-series simulation. The first 500 observations discarded and a Gaussian
kernel smoother has been applied. All parameter settings are as in Table 1.

although the exogenous environment is i.i.d., states with high and low levels of liquidity

(or accumulated savings) seem very different. When liquidity is low, consumption is more

volatile and income is saved; when liquidity is high, agents dissave and, though expected

consumption growth is lower, it is smoother. These consumption dynamics lead to the

main intuition needed to understand asset pricing in this economy.

2.2 Asset Prices

Having seen that consumption is less volatile when liquid balances are high, one can

immediately infer that discount rates will be lower in these states since marginal utility

is smoother and hence the economy is less risky. Not only is this true, but a second factor

reinforces this conclusion in terms of the risk of the stock market. When liquid balances

are high, dividends also make up a lower fraction of consumption, hence, mechanically,

the correlation of dividends with consumption is lower. Thus a claim on the dividend

stream has less fundamental exposure when G is high relative to D.

Analytical expressions are again not attainable, and one must compute asset prices

numerically from the usual first-order condition. With the current notation, and in terms
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of the price-dividend ratio g = g(v) ≡ P/D, this condition is

g(vt) = βEt




(
vth(vt+1)

vt+1h(vt)
R̃t+1

)−γ

[1 + g(vt+1)] R̃t+1


 .

The function g(v) can then be found by iterating this mapping on the unit interval.11

Once g is obtained, the distribution of excess returns to the claim can be evaluated from

(Pt+1 + Dt+1)

Pt

= R̃t+1 [1 + g(vt+1)]/g(vt).

Figure 4 plots both the price-dividend ratio, g, and the price-goods ratio, f , for the

parameter values in Table 1. The first function affirms the intuition above that the

dividend claim must be more valuable when v is lower. In fact, g becomes unbounded

as v approaches zero. This is not troublesome however, because it increases slower than

1/v = G/D. The plot of f(v) = vg(v) goes to zero at the origin, indicating that the total

value of the equity claim is not explosive. Indeed, f is monotonically increasing in v,

which lend support to the interpretation of v as measuring the illiquidity of the economy,

since this function is the ratio of the value of the non-transformable asset to the value of

the transformable one.

In light of the lack of closed form results, it is worth mentioning here the features

of the pricing function that will matter below. Referring again to the figure, the fact

that g explodes while f does not essentially bounds the convexity of g to be no greater

than that of v−1 in the neighborhood of the origin. While not visually apparent, a

similar convexity bound holds on the entire unit interval.12 While the generality of this

property is conjectural, extensive numerical experimentation suggests that it is robust.

The curvature of the asset pricing function as a function of v is the key determinant of

how much exogenous shocks to asset supplies will affect prices. As will be shown below

in Section 3, that is tantamount to determining the liquidity of the securities market.

Figure 5 evaluates the expected excess returns and volatility as a function of v for

the same parameter values. The plot verifies that expected returns are time-varying and

predictable in this model, despite the constant dividend dynamics. When the economy

is liquid, stock prices are high (as measured by the price-dividend ratio), expected excess

11It is actually simpler to solve for the price-goods ratio f(v) ≡ P/G = vg(v) which is not singular at
the origin.

12 Technically, the requirement is g′′ ≤ 2(g′)2/g which holds for functions of the form Av−α as long
as α ≤ 1.
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Figure 4: Asset Pricing Functions
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The left panel plots the ratio g ≡ P/D, and the right hand panel plots P/G. The horizontal axis is v,
the dividends-to-cash ratio. All parameter settings are as in Table 1.

returns and volatility are low. The model thus offers a rich theory of time varying mo-

ments, which seems in accordance with the empirical facts about aggregate predictability.

Intriguingly, it points to a new state variable, the economy’s overall real liquidity, as a

driving factor behind the asset moment dynamics.

2.3 Intervention

Before addressing stock market liquidity, it is useful to extend the model by thinking

about how the equilibrium would be affected by changes in the relative supplies of the

assets. In particular, consider an intervention (e.g. by the central bank) aimed at adjust-

ing the economy’s real liquidity. Interestingly, such interventions – subject to a simple

condition – can be easily incorporated in the model without altering the savings or pricing

laws.

Specifically, let today be t and assume that at some τ > t a random process will dictate

a positive quantity ∆G to be added to the representative agent’s cash holdings, Gτ , in

exchange for a number of shares ∆X(1) of the endowment stream, to be determined so
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Figure 5: Asset Return Moments
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The left panel plots the conditional mean of continuously compounded excess returns, and the right
hand panel plots their conditional standard deviation. The horizontal axis is v, the dividend-cash ratio.
All parameter settings are as in Table 1.

that the agent is indifferent to the exchange, i.e. it leaves his value function unchanged. In

other words, the central bank engages in an open-market transaction at the competitive

market price. What would such an intervention accomplish?

From a comparative static point of view, the answer is immediate. A purchase by

the central bank simply shifts the ratio v to the left, as the numerator decreases and the

denominator increases. To be careful, the previous notation needs to be augmented to

reflect the variable number of shares of the endowment claim (heretofore implicitly set

to one). So write

vt ≡ Dt

Gt

=
D

(1)
t X

(1)
t

Gt

.

That is, the superscript will denote per-share quantities. Thus, also, P (1) = D(1) g(v) will

be the per-share price of an endowment claim. If the representative agent sells shares,

then, his stream of dividends is lowered, which is what v measures. The per-share

dynamics of the D process is not changed however.

Thus, other than the perturbation to vτ , the economy is unaltered by the intervention.
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Its effect therefore, according the analysis above, would be to increase the price-dividend

ratio and lower the risk premium, as well as to increase consumption relative to income

and to reduce the volatility of consumption and of the stock market. This is perhaps

a surprising result: a feasible intervention (i.e. involving no net transfer of wealth,

by assumption) succeeds in altering the real economy in a non-trivial, and seemingly

desirable, manner.

Is this conclusion justified from a dynamic point of view? Or would rational antic-

ipation of the intervention at τ alter the equilibrium at t, rendering the comparative

statics invalid? As the following proposition shows, the analysis is actually robust to

interventions quite generally.

Proposition 2.2 Let {τk}K
k=1 be an increasing sequence of stopping times t < τ1 . . . τK,

and let {δk}K
k=1 be a sequence of random variables on R+. Suppose that at each stopping

time an amount ∆Gτk
= Gτk

(δk − 1) of goods are added to the representative agent’s

holdings in exchange for an amount of shares ∆X
(1)
k that leaves his value function un-

changed. (If no such quantity exists, no exchange takes place.) Then, the value function,

J = J(v, D), consumption function, h(v) , and pricing function, P (v,D), at time t are

identical functions to those in the economy with no interventions when the endowments

are fixed at their time-t amounts.

The underlying logic of the proposition is simple: since the agent knows the inter-

vention won’t alter his value function at the time it occurs, the ex ante probability

distribution of future value functions is unchanged. Hence today’s optimal policies are

still optimal, regardless of the intervention, which means the value function today is

unaltered.

The key assumption, that the exchanges are value-neutral, is equivalent to imagining

that decentralized agents compete perfectly in an auction for the shares and that the

intervening entity then acts as a price taker. Implicitly, then, this entity is viewed as

possessing real assets (or capable of creating them) prior to the intervention, but as

not participating in the economy otherwise. Finally, although the stochastic nature

of the interventions is essentially unrestricted in the propositions, there is an implicit

assumption that the realization of the random variables does not alter agent’s information

set by conveying information about future values of D. Not ruled out, are intervention

amounts and times that depend on the current state of the economy.

To summarize, then, the liquidity of the economy, defined as the ratio of real balances

to non-transformable assets, can evolve via two different mechanism. First, exogenous
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dividend shocks and endogenous savings decisions drive the ratio v higher or lower every

period. Second, discrete interventions can periodically re-start the stochastic evolution

from a new point. One might naturally view the central bank as intervening to add real

liquidity to the economy when it gets “too low”, thus altering the stationary distribution

of v, or even enforcing a stationary distribution if the parameter values did not ensure

that v would otherwise have one.13

This completes the depiction of a simple economy in which there is a real savings

technology and a single source of randomness. In this setting, the percentage of liquid

assets is an endogenous state variable that determines all relative prices. Interestingly,

although the agent faces the exact same external uncertainty in all states (dividend

growth is i.i.d.), high liquidity and low liquidity states seem quite different. In particular,

when liquid balances are low, asset prices are low relative to fundamentals and both

consumption and asset prices are volatile.

3 Changes in Market Liquidity

In what sense can financial claims in the economy described above be said to be illiquid?

After all, no actual trade in such claims takes place in the model, and, if it did, there are

no frictions to make transactions costly.

Nevertheless, these observations do not mean that the market’s demand curve for risky

securities is flat. In fact, in general, this will not be the case: marginal perturbations

to a representative agent’s portfolio will marginally alter his discount rates, altering

prices. This paper uses the magnitude of this price effect – essentially the slope of the

representative agent’s demand curve – as the definition of a claim’s degree of illiquidity.

It measures the price impact function that would be faced by an investor who did wish

to trade with the market (i.e. with the representative agent) for whatever reason.14

Likewise, it measures the willingness of an agent (who has the holdings and preferences

of the representative agent) to accommodate small perturbations to his portfolio.

Like the market price itself, this elasticity can be defined and computed whether

13Of course, in the context of the model, any such policy is irrelevant from a welfare standpoint since,
by assumption, agents’ value functions are unaffected.

14There is a long history of price impact and trading cost models in the market microstructure lit-
erature. To my knowledge, Pagano (1989) was the first to identify the slope of the aggregate demand
function – as opposed to the demand of an ad hoc market maker – as an equilibrium measure of liquidity.
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or not the marginal perturbations actually take place in equilibrium. If the economy

were disaggregated, and some subset of agents experienced idiosyncratic demand shocks

forcing them to trade, they would incur trading costs as prices moved away from them in

proportion to their required quantities. To the extent that these idiosyncratic demands

do not alter aggregate risk and preferences, this liquidity trading may be regarded as

going on in the background of any representative agent economy. The details of the

trading needs do not effect the market illiquidity and need not be modeled explicitly.

Formally, the definition proposed in Johnson (2006) views the value and price func-

tions of the representative agent as functions of his holdings, X(0) and X(1), of any two

of the available assets. Illiquidity of asset one with respect to asset zero is then defined

by the change in that agent’s marginal valuation of asset one following a value-neutral

exchange of the two assets, holding all other asset supplies fixed.

Definition 3.1 The illiquidity I = I(1,0) of asset one with respect to asset zero is the

elasticity

I = −X(1)

P (1)

dP (1)(Θ(X(1)), X(1))

dX(1)
= −X(1)

P (1)

(
∂P (1)

∂X(1)
− P (1)

P (0)

∂P (1)

∂X(0)

)
, (1)

where (Θ(x), x) is the locus of endowment pairs satisfying J(Θ(x), x) = J(X(0), X(1)).

The definition stipulates that the derivative be computed along isoquants of the value

function (parameterized by the curve Θ) and the second equality follows from the obser-

vation that value neutrality implies

dΘ(X(1))

dX(1)
=

dX(0)

dX(1)
= −P (1))

P (0)
.

While the definition depends on the choice of asset zero, in many contexts there is an

asset which it is natural to consider as the medium of exchange. In the model of Section

2 above, the storable asset is the obvious unit since its relative price in terms of goods is

clearly constant, P (0) = 1. This is, in fact, the property which justifies the interpretation

of this asset as cash.15

The elasticity I is a primitive endogenous quantity in any model. It answers the

question: how much does the price move against someone for each share she trades. in

15Technically, one should distinguish between the quantity of claims to a unit of the physical asset
and the capital stock, G, of that asset. But since the exchange rate is technologically fixed at unity, I
make no distinctions below and use G and X(0) interchangeably.
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X(1). Equivalently, it represents the percentage bid/ask spread (scaled by trade size and

in units of X(0)) that would be quoted by competetive agents in the economy were they

required to make two-way prices. Thus, it captures familiar notions of illiquidity from

the microstructure literature. Two simple examples can illustrate the theory, and also

help clarify the computation in subsequent cases.

First, consider pricing a claim at time t to an asset whose sole payoff is at time T

in a discrete-time CRRA economy. As usual, P
(1)
t = Et

[
βT−tu′(CT )DT /u′(Ct)

]
. Further

suppose the asset is the sole source of time-T consumption: CT = DT = D
(1)
T X(1), and

let the numeraire asset be any other claim not paying off at T or t. Then, differentiating,

dP
(1)
t

dX(1)
=

1

u′(Ct)
Et

[
βT−tu′′(CT )(D

(1)
T )2

]
= −γEt


βT−t u

′(CT )

u′(Ct)

D
(1)
T

X(1)


 = −γ

P (1)

X(1)

or I = γ. In this case, the effect of asking the agent to substitute away from time-

T consumption causes him to raise his marginal valuation of such consumption by the

percentage γ, which is also the inverse elasticity of intertemporal substitution under

CRRA preferences. If this elasticity were infinite, the claim would be perfectly liquid.

Notice that the effect is not about risk bearing: no assumption is made in the calculation

about the risk characteristics of the other asset involved. So the exchange could either

increase or decrease the total risk of the portfolio.

Now consider a similar exchange of asset one for units of the consumption good.

Then, in the computation of I, there is an extra term in dP (1)/dX(1) which is

Et

[
βT−tu′(CT )DT

] d

dX(1)

(
1

u′(Ct)

)
= −P (1) u′′(Ct)

u′(Ct)

dCt

dX(1)
= γ

P (1)

Ct

dCt

dX(1)
.

Now the value neutrality condition implies dCt/dX(1) = −P (1) so that I becomes

γ

[
1 +

P (1)X(1)

Ct

]
.

It is easy to show that this is the illiquidity with respect to consumption for a general

(i.e. not just one-period) consumption claim as well. Here the intertemporal substitu-

tion effect is amplified by a (non-negative) term equal to the percentage impact of the

exchange on current consumption: P (1)X(1)/Ct =
∣∣∣(X(1)/Ct) dCt/dX(1)

∣∣∣. This term may

be either large or small depending on the relative value of future consumption. In a pure

endowment economy with lognormal dividends and log utility, for example, current con-
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sumption is Ct = X(1)D
(1)
t and the extra term is price dividend ratio, which is 1/(1−β),

which would be big. The intuition for this term is that marginally reducing current con-

sumption (in exchange for shares) raises current marginal utility. So, if the representative

agent is required to purchase ∆X(1) shares and forego current consumption of P (1)∆X(1),

his discount rate rises (he wants to borrow) and he would pay strictly less than P (1) for

the next ∆X(1) shares offered to him.

In what follows, it will be useful to think of the mechanism in these examples as two

separate liquidity effects. I will refer to that of the first example, captured by the term

γ ·1, as the future consumption effect, and that of the second, captured by γ ·P (1)X(1)/Ct,

as the current consumption effect.

Returning to the model of Section 2, such explicit forms of I in terms of primitives

are not available. (Direct differentiation of the discounted sum of future dividends is

intractable because future consumption depends in a complicated way on the current

endowments.) However it is simple to express I in terms of the functions g (the price-

dividend ratio) and f (the value ratio), which are both functions of v, the dividend-liquid

balances ratio.

Proposition 3.1 In the model described in Section 2,

I = −v(1 + vg(v))
g′(v)

g(v)
= (1− v

f ′(v)

f(v)
)(1 + f(v)).

Illiquidity is positive in this economy because the price-dividend ratio is a declining

function of v. Adding shares in exchange for cash mechanically shifts v to the right. As

discussed above, when shares make up a larger fraction of the consumption stream their

fundamental risk increases and their value declines.

Figure 6 plots illiquidity using the parameter values from Table 1. Notice first the

most basic features, the level and variation of the function. The magnitude of illiquidity

is both significant and economically reasonable. An elasticity of unity implies a one

percent price impact for a trade of one percent of outstanding shares. This is the order

of magnitude typically found in empirical studies of price pressure for stocks. Further,

market liquidity is time-varying in this model. It is not a distinct state variable, of

course, yet it is still risky in the sense of being subject to unpredictable shocks. While

the current parameters restrict v, and hence I, to a rather narrow range, even so, it is

possible for illiquidity to more than double.16

16Incorporating separate transitory “liquidity shocks”, as discussed above, would broaden the stochas-
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Figure 6: Stock Market Illiquidity
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The figure shows the elasticity I as a function of v for the model of Section 2 All parameter settings are
as in Table 1.

This brings us to the topic of how and why market liquidity changes here. The figure

clearly provides the fundamental answer: illiquidity rises when v does. Or, to stress the

main point, the stock market is more liquidity when liquid assets are in greater relative

supply. This is the heart of the paper’s results.

To understand why this occurs, consider the role that the availability of a savings

technology plays in the determination of price impact. In effect, it dampens both of

the illiquidity mechanisms in the pure-endowment examples above. When the liquidity

provider (the representative agent) chooses to use some cash savings to purchase addi-

tional risky shares – instead of being forced to forego consumption – current marginal

utility does not rise as much. In addition, marginally depleting savings today raises the

expected marginal utility of future income, which raise the valuation of future dividends.

Hence the impact of foregone consumption (illustrated in the earlier examples) on both

the numerator and denominator of the marginal rate of substitution are buffered by the

use of savings. But now recall from the last section that the propensity to save when

given an extra unit of G (or to dissave when required to give up a unit) falls with v.

Because h rises with v (for the very general reasons discussed previously), discount rates

tic range of v, increasing the variation in market liquidity.
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are less affected by portfolio perturbations when v is low.

Appendix B analyzes the effects in more detail in the two-period case which corre-

sponds to the previous examples. Even in this case, a formal proof that I is increasing

is unobtainable. However it is possible to isolate the individual terms in I ′ and to see

how each rises with the propensity to consume.

Mechanically, differentiating the expression in the proposition shows that I ′ will be

positive as long as g(v) is not too convex. (See note 12.) In fact, it is sufficient that

log g is concave. And concavity is equivalent to the assertion that g′/g gets bigger (more

negative) as v increases, meaning the percentage price impact of an increase in v is

increasing.

Summarizing, markets are illiquid in this economy (I(v) > 0) because discount rates

rise with the proportion of risky asset holdings. Market’s are increasingly illiquid as cash

balances decline (I ′(v) > 0) because this impact on discount rates itself rises. Discount

rates are affected more strongly by portfolio perturbations when cash is low because

consumption – not savings – absorbs a higher percentage of the adjustment.

Because the liquid balances ratio determines all dynamic quantities in this model, all

the covariances of market liquidity immediately follow from the positive relation between

I and v. In particular, as the economy wanders into the low cash region, not only does

it become more difficult to trade, but also stocks become cheap (the price dividend ratio

falls) and risk premia and volatility go up.

In the stationary economy described by the baseline parameters in Table 1 the steady

state distribution of v is not very diffuse, and the variations in liquidity are not partic-

ularly dramatic. But consider, instead, the parameter set shown in Table 2.

Table 2: Nonstationary Model.

Parameter Notation Value

coefficient of relative risk aversion γ 2
subjective discount rate φ = − log β 0.02
return to cash r = log R 0.02
dividend growth rate µ 0.03
dividend volatility σ 0.10

This version of the model has insufficient risk aversion to induce agents to save, even

as their cash balances dwindle. As a consequence, the model is not stationary. This does
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not present any problem for the computation of I(v), however. Figure 7 shows that, in

fact, there is a dramatic deterioration in market liquidity with v for this economy, with

I(v) rising by almost an order of magnitude between v = 0.25 and v = 0.95, which is

approximately the range v will experience over 20 years.

Figure 7: Stock Market Illiquidity: Nonstationary Economy
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The figure shows the illiquidity, I, as a function of v using the parameter settings shown in Table 2.

Recalling now the notion of intervention incorporated in the model, one could make

this version effectively stationary by imagining a periodic “rescue” by the central bank

when v approaches some higher limit. For example, suppose whenever v exceeds 0.95,

an open-market operation is undertaken (as described in the last section) to re-start

it at 0.25. This would induce the distribution shown in Figure 8. Here the injections

of cash by the central bank in the extreme (high v) states would drastically improve

market conditions.17 The severe sensitivity of prices to volume would be dampened, the

price-dividend ratio would rise, and stock volatility would be quelled.

To an observer of this economy, it could well appear that the periodic deterioration

of prices and increases in volatility occurred because of the lack of market liquidity.

Moreover, the success of the intervention could seem to support the idea that the lack

17Proposition 2.2 justifies this interpretation because the computation of I is not altered by the
possibility of such interventions.
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Figure 8: Unconditional Distribution of Dividend-Cash Ratio
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The figure shows the unconditional distribution of v, the dividend-to-cash ratio, as computed from a
40,000 realizations of a time-series simulation. An intervention rule is applied, restarting the process
at 0.25 whenever 0.95 is hit or exceeded. The first 500 observations discarded and a Gaussian kernel
smoother has been applied. All parameter settings are as in Table 2.

of liquid assets (cash) caused a decline in intermediation, causing the rise in market

liquidity, and leading to the seemingly distressed state.

The model here shows that neither of the above inferences need follow from the

observed linkages. Market illiquidity and risk premia may rise simultaneously without

the former having anything to do with the latter. A decrease in liquid balances can cause

both, but without operating through the constraints of intermediaries. This is not to say

that such constraints cannot have an amplifying effect on risk and risk premia, nor that

understanding the details behind the operation of such constraints is not important for

managing financial systems. However, at a minimum, one must be cautious in inferring

that the degree of market illiquidity is a direct gauge of the importance of constraints.

4. Conclusion

The term “liquid” has (at least) two distinct meanings in finance, depending on

whether it is applied to markets or to the asset holdings of an agent. A market is said

to be liquid when it is easy to trade in the sense that buyers and sellers are readily
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available, at similar prices, to accommodate transaction demand. An agent – a firm, a

person, or an economy – is said to be liquid when a large fraction of its assets are readily

convertible into tangible goods. This paper describes an economic mechanism linking the

two concepts: when cash balances are low agents are less willing to accomodate others’

trade demands because doing so entials more adjustment to current consumption. This is

a primitive economic effect that is not driven by segmented markets, contracting frictions,

information effects, details of microstructure, or irrationality.

I illustrated this theory in the context of a simple model incorporating savings deci-

sions. Although the model is highly simplified (with only one exogenous source of risk),

it provides a a full description of liquidity determination in terms of economic primitives.

Quantitative results show that market liquidity varies significantly with the level of liquid

balances. Moreover the overall dynamic pattern of the economy seems right: when there

is more cash around, the stock market is higher and less volatile, as well as more liquid.

Some of the theory’s other implications are worth highlighting because they differ from

those one would expect based on the intuition of the financial constraint type models

discussed in the introduction.

First, under the present model, the two types of illiquidity would be always linked,

not just in times of stress, i.e. when intermediaries’ constraints bind. Second, the model

suggests that, in explaining market conditions (including liquidity), the economy-wide

level of real liquid balances is a key state variable. However, controlling for the financial

position of the economy as a whole, there should be no role for the financial position of

brokerage firms and other intermediaries in explaining aggregate fluctuations.

More broadly, and more controversially, the model makes the point that time-varying

market liquidity – and even the occurrence of liquidity crises – need not be evidence

of market failure or inefficiency. Even if intervention in credit markets is successful in

promoting market stability, the mechanism may not be through alleviating financing

frictions.
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Appendix

A. Proofs

This appendix collects proofs of the results in the text.

Proposition 2.1

Proof. This proof will restrict attention to policy solutions in the class of limits of solutions

to the equivalent finite-horizon problem. So consider the finite-horizon problem with terminal

date T . Let ht denote the optimal consumption-to-goods ratio at time t.

Clearly ht cannot exceed one, since this would lead to a positive probability of infinitely

negative utility at T . The assumption of the proposition is then that, at each v, we have an

interior solution for ht (at least for T − t sufficiently large). In that case, ht must satisfy the

first order condition

h−γ
t = RβEt

[[(
R(1− ht) + vtR̃t+1

)
ht+1(vt+1)

]−γ
]

where vt+1 = vtR̃t+1/(R(1− ht) + vtR̃t+1). I will assume a C1 solution exists for all t.

An implication of the first order condition is that the expectation

Et





 ht(

R(1− ht) + vtR̃t+1

)
ht+1(vt+1)




+γ
 (1)

must not be a function of vt. I use this fact to prove the following successive properties:

(i) h′t ≤ ht/vt ∀ vt, t.

(ii) −(1− ht)/vt ≤ h′t ∀ vt, t.

(iii) 0 < h′t ∀ vt, t.

For for the first point, assume the property holds for ht+1 but fails to hold for ht. Write

the expectation, above as

Et







ht(vt)
vt

ht+1(vt+1)
vt+1




+γ

R̃−γ
t+1


 . (2)

The hypothesis implies that the derivative with respect to vt of the numerator in the inner

brackets is positive and the derivative with respect to vt+1 of the denominator is negative. Also,

the derivative dvt+1

dvt
is
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RR̃t+1

(R(1− ht) + vtR̃t+1)2
(1− ht + vth

′
t).

The hypothesis on ht implies that (1− ht + vth
′
t) ≥ 1. So dvt+1

dvt
is positive. Together, these

observations imply that an increase in vt will raise the numerator and lower the denominator

of square bracket term in equation (2) for all values of the random variable R̃t+1. Hence

the expectation cannot be constant. The contradiction, combined with the fact that the final

optimal policy is hT = 1, which satisfies the induction hypothesis, proves h′t ≤ ht/vt for all t.

Next, assume −(1 − ht+1)/vt+1 ≤ h′t+1 but that the reverse holds for ht. Differentiate the

denominator of equation (1) to get

1
(R(1− ht) + vtR̃t+1)

(
(R̃t+1 −Rh′t)(R(1− ht) + vtR̃t+1) ht+1 + R̃t+1 R (1− ht + vth

′
t)h

′
t+1

)

Using the result just shown, h′t+1 ≤ ht+1/vt+1. And, by the induction hypothesis, (1− ht +

vth
′
t) < 0. So the smallest the term in large parentheses can be is

(R(1− ht) + vtR̃t+1) ht+1v
−1
t

(
(R̃t+1 −Rh′t)vt + R (1− ht + vth

′
t)

)

= (R(1− ht) + vtR̃t+1) ht+1v
−1
t

(
R(1− ht) + vtR̃t+1

)
> 0.

These observations imply that an increase in vt will lower the numerator and raise the

denominator of the bracketed term in (1) for all values of R̃t+1. Hence the expectation cannot

be constant. The contradiction, combined with the fact that the final optimal policy satisfies

the induction hypothesis, proves −(1− ht)/vt ≤ h′t for all t.

The third step proceeds similarly: assume the inequality (iii) holds for t + 1 but not t. By

the previous point (ii), we now have (1−ht +vth
′
t) ≥ 0 even though h′t < 0. This means dvt+1

dvt
is

always positive. So an increase in vt must increase the denominator and decrease the numerator

of (1), contradicting the constancy of the expectation. Given that hT = 1, the constancy of the

expectation at T − 1 immediately implies that hT−1 must be strictly increasing. Hence hT−1

satisfies the induction hypothesis (iii). So we conclude h′t > 0 for all t < T .

Now the limit of the discrete time maps: h ≡ limt→−∞ ht must also satisfy the condition

that

Et





 h(vt)(

R(1− h) + vtR̃t+1

)
h(vt+1)




+γ


is constant. The limit of increasing functions cannot be decreasing. However it can be flat. But
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if h() is constant, then an increase in vt would still raise (R(1 − ht) + vtR̃t+1) and change the

expectation. So we must also have h′ > 0.

QED

Proposition 2.2

Proof. Let us distinguish, at each intervention date, between the times immediately before and

immediately after the exchange, writing these as e.g., τk− and τk+. (It is immaterial whether

allocation and consumption decisions are made before or after.) Also write the value function

of the representative agent as Jt = J(D(1)
t , X

(1)
t , Gt). Recall the superscript denotes per-share

values, so that the total dividend income of the agent is Dt = D
(1)
t X

(1)
t .

Let Jo
t be the value function of the equivalent economy in which no further interventions

will take place, that is, in which X
(1)
s = X

(1)
t for all s ≥ t, as in the original model. Similarly,

let Jk
t be the value function under the assumption that the kth exchange does not take place.

Then the assumption of the proposition that agents are indifferent to each exchange can be

expressed as Jk
τk− = Jτk+.

Now consider the value function at any date t such that τK−1 < t ≤ τK . This must satisfy

Jt = max
{Ct+n}∞n=0

Et

[ ∞∑

n=0

βn u(Ct+n)

]
.

The expectation can be written

∞∑

j=0

Et




j−1∑

n=0

βn u(Ct+n) +
∞∑

n=j

βn u(Ct+n)|τK = t + j


 P (τK = t + j)

and the inner, conditional expectation is

Et




j−1∑

n=0

βn u(Ct+n) + Et+j




∞∑

n=j

βn u(Ct+n)|τK = t + j


 |τK = t + j


 .

Define the conditionally optimal policy
{
Cj

t+n

}∞
n=1

to be the one that maximizes this latter

expectation. But, by assumption, the solution to

max
{Ct+n}∞n=j

Et+j




∞∑

n=j

βn u(Ct+n)|τK = t + j



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coincides with the same value in the absence of the exchange, which is

max
{Ct+n}∞n=j

Et+j




∞∑

n=j

βn u(Ct+n)|no trade at any date s ≥ t + j


 .

This solution is what was called JK
t+j (times βj−1).

Hence the conditionally optimal policy solves

max
{Ct+n}∞n=0

Et




j−1∑

n=0

βn u(Ct+n)|no trade at any date s < t + j


 + βj−1 JK

t+j

which is the same as JK
t . Since this is true regardless of the conditioning index j, it follows

that Jt = JK
t and also that the optimizing policies of the two problems coincide. Since K is

the last exchange date, we also have that Jt = Jo
t by definition of the latter.

We have shown that the value function and optimal policies are the same at τK−1 < t ≤ τK

as they would be if there were no intervention. By backward induction, the same argument

applies at τK−2 < t ≤ τK−1, and so on. Since the optimal policies and value function are the

same functions as in the no-intervention economy, it follows that the pricing function, and its

derivatives must also be the same.

QED

Proposition 3.1

Proof. The elasticity I can be computed from direct differentiation of P (1) in terms of f or g

using the value-neutral condition dGt/dX(1) = −P (1) and

dvt

dX(1)
=

vt

X(1)
(1 + vtg(vt)) =

vt

X(1)
(1 + f(vt))

which follows from the definition v = D(1)X(1)/G. QED

B. I as a function of v: The Two-period Case.

This appendix analyzes the dependence of I on v in a two-period CRRA economy anal-

ogous to the two-period pure-endowment example in Section 3. This illustrates how

the availability of savings dampens both the current consumption effect and the future
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consumption effect.

Suppose the representative agent has G0 goods today and will receive a dividend XD1

next period which he consumes and then dies. (I suppress the per-share superscript here

to lighten the notation.) If the economy does not have a savings technology, so that

C0 = G0, then, as in the example above, we have

I = γ
[
1 +

XP

C0

]
= γ

[
1 +

XP

G0

]
.

Now add the possibility of investing in cash and, for simplicity, fix the agent’s savings

to be (1−λ)G0 or C0 = λG0 for some fraction λ. Ignore the determination of the optimal

λ and view the price per share today as P (λ). The algebra in calculating I is a little

messy, but worthwhile.

First,

P = P (G0, X; λ) = λγ Gγ
0 βE[(XD0R̃1 + (1− λ)RG0)

−γ D0R̃1]

where I have written D1 = D0R̃1, as before. Differentiating this with respect to X subject

to dG0/dX = −P and scaling by X/P produces three terms in I.

Term I : γ D0Xλγ Gγ−1
0 βE(XD0R̃1 + (1− λ)RG0)

−γR̃1

= γ v0λ
γ βE(v0R̃1 + (1− λ)R)−γR̃1

Term II : −γ D0Xλγ Gγ
0(1− λ)R βE(XD0R̃1 + (1− λ)RG0)

−γ−1R̃1

= −γ v0λ
γ (1− λ)R βE(v0R̃1 + (1− λ)R)−γ−1R̃1

Term III : γ D2
0Xλγ Gγ

0 βE(XD0R̃1 + (1− λ)RG0)
−γ−1R̃2

1/P

= γ v0
E(v0R̃1 + (1− λ)R)−γ−1R̃2

1

E(v0R̃1 + (1− λ)R)−γR̃1

. (3)

The first term can also be written as simply γXP (λ)/G0, which shows that it cor-

responds to the current consumption effect. But now it is also clear, from the second

line, that this term declines as λ does. As the agent saves more, the impact of the

value-neutral trade on current consumption is, of course, smaller.

The second term is another contribution from the effect of altering current consump-

tion which arises because now (unlike in the endowment model) an increase in consump-

tion goods today produces interest income next period. Comparing the second line with
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the fourth, term II is strictly smaller than term I, because the only difference is an extra

factor in the expectation of term II equal to Ψ ≡ (1−λ)R/(v0R̃1 +(1−λ)R) ≤ 1. Calling

the term I integrand Γ, the two terms can also be combined, giving

γ
XP

G0

[
1− EΨ Γ

EΓ

]

= γ λγ βEΓΘ = γ v2
0λ

γ βE(v0R̃1 + (1− λ)R)−γ−1R̃2
1

where Θ ≡ (1 − Ψ) = v0R̃1/(v0R̃1 + (1 − λ)R). And the last equation clearly still

decreases as λ does, vanishing at λ = 0. As one would expect, the total impact of the

current consumption terms is smaller when the current consumption ratio is lower.

Finally, term III is what I referred to as the future consumption effect in the earlier

examples. It can be reexpressed as

γ
EΘ Γ

EΓ
≤ γ.

Again, the ability to store goods lowers this term relative to the endowment economy

cases. Intuitively, the presence of positive savings at date zero lowers the percentage

impact of a change in dividends on future marginal utility. Somewhat less obviously,

term III also decreases as λ does, regardless of the parameter values.18 Loosely, this is

due to the extra term in the numerator, Θ, which behaves like (1− λ)−1.

Hence all the terms in I are less than their counterparts in the corresponding endow-

ment economy, and more so as λ declines. Now recall that the optimal consumption ratio

is λ = h(v) which is an increasing function of v. This shows the mechanism that causes

the liquidity of the market for asset one to increases as the level of liquid balances in the

economy does.19 The reason this happens is because the propensity to consume current

wealth increases as liquid wealth declines, and this propensity, in turn, determines how

big an impact a change in risky asset holdings has on marginal utilities. That impact

dictates the willingness of agents to accommodate trades, or the rigidity of prices.

18This can be shown using the result that two monontonically related random variables must be
positively correlated. The proof is available upon request.

19I have not proven, even in the two-period case, that I(v) must be increasing in v. The argument
above does not consider either the variation of λ with v or the direct effect, i.e. not through the savings
term, of v on I. What the argument shows is that, which ever direction these other terms go, the savings
channel always makes illiquidity rise with v.
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