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Abstract

We embed the notion of banks as monitors into a “two trees” framework, and con-
sider how resources are optimally allocated between an intermediated banking sector
and a risky sector, given that capital moves sluggishly between the two. We characterize
equilibrium as a function of the relative size of the banking sector — the bank share
— and the speed at which capital can move in and out of that sector — the financial
flexibility. There are three main implications of the model. First, the bank share and
financial flexibility are both important determinants of asset prices. Price-dividend ra-
tios are lower, the higher the financial flexibility and the effect on price-dividend ratios
of a shock depends on whether the shock arises in the banking sector or in the risky
sector. Higher financial flexibility leads to a steeper term structure of interest rates
and an inverted term structure is associated with low real growth rates. Second, the
relationship between financial flexibility and real growth rates in the economy is am-
biguous; high financial flexibility may lead to either higher or lower growth rates. Third,
the speed at which capital actually moves into and out of the banking sector is a highly
nonlinear function of the bank share. An implication is that the bank share may remain
perpetually low after a shock to the banking sector. In such cases, the value of financial
flexibility may be extremely high.
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1 Introduction

Banks play a complex and varied role in the financial system. The most important, from

a finance perspective, is how banks’ activities change aggregate risk and therefore affect

growth, welfare and asset prices in an economy. The banking literature, which we survey

below, has long argued that the actions of banks and financial intermediaries change risk in

the economy. For example, having special expertise, a bank can screen potential projects and

channel funds from households to worthy entrepreneurs. Without this screening technology,

households would fund a very different pool of projects. Also, banks may monitor projects

that are in place and either enforce efficient liquidation or good behavior that increases the

likelihood of success. Indeed, banks add value specifically because they can transform risk.

We take as given that banks have this special expertise, and that money invested in the

banking sector has a different risk-reward characteristic than that invested in the uninter-

mediated sector. We model banks as experts who can take actions to reduce project risk.

Changing the size of the banking sector requires either training for new experts or training

in how to shut down a project; however an expert involved in training is not monitoring

ongoing projects. These may therefore fall precipitously in value. We embed this simple

banking model in a general equilibrium asset pricing framework, and can then consider the

effect of this expertise in an economy with risk averse agents. What is the optimal size of

the banking sector? How does financial innovation (the speed with which resources flow into

or out of the banking sector) affect welfare and growth? If there is a shock to the banking

sector, what effect will it have on asset prices and agents’ propensities to absorb risk? Do

shocks to the banking sector and to unintermediated production affect the economy in the

same way? What are the effects of increased financial flexibility in such an economy?

Our paper makes three main contributions. First, we show how financial flexibility

affects the economy when it is endogenously determined. Specifically, we consider a social

planner who changes the relative size of the banking sector while taking into account the

possibility of a crash. We show that the optimal speed of capital reallocation may be

“hump-shaped” as a function of the bank share. This implies that the bank share may

remain perpetually low after a shock to the banking sector. In such cases, the value of

financial flexibility is extremely high. Second, we analyze the relationship between financial

flexibility and real growth rates in the economy. We characterize the conditions under which

financial innovation leads to either higher or lower growth rates — It is a function of the

risk aversion in the economy and the growth and volatility of the unintermediated sector.

Third, we analyze how both the size of the intermediated sector and financial flexibility

determine asset prices. We find that the market’s price-dividend ratio is lower the higher
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the financial flexibility, and is globally minimized at the point that the economy strives

towards. Moreover, the effect on price-dividend ratios of a shock is more severe if the shock

arises in the banking sector than if arises in the risky sector. Finally, the higher the financial

flexibility the steeper the term structure of interest rates, and an inverted term structure is

associated with low real growth rates.

Our model of the banking sector follows both Diamond and Rajan (2000) and Holm-

strom and Tirole (1997). Projects are subject to systematic risk and industry-specific jump

risk. In certain industries, cash constrained owner managers can hire an expert to affect

the risk reward profile of his project. Specifically, after a training period, the expert can

eliminate both sources of risk. Funds flow into the bank controlled sector slowly because

experts must be trained in the expertise required to monitor the owner entrepreneur; they

are subsequently illiquid because the financiers must close down a project to release capital.

Thus, in aggregate, our economy is characterized by two types of sectors, those that are

monitored and those that are not. Because of the fundamental nature of financial inter-

mediaries, capital cannot flow instantaneously between sectors. Further, because of the

scarcity of financial intermediaries, when capital flows into or out of their sector, the jump

risk in their industry increases.

The central planner implements a competitive equilibrium in our economy by optimally

allocating capital between the entrepreneurial sector and the banking sector, given financial

frictions. The entrepreneurial sector grows at a random rate; by contrast, the banking sector

grows deterministically. This captures the idea that banks add value because, through

lending and monitoring, they reduce the risk associated with entrepreneurial activity. We

consider how a representative agent would value the consumption stream from each sector,

and therefore price assets. This is the simplest general equilibrium production economy

within which we can study the effect of a banking sector on asset prices, welfare and growth.

Central to the intuition of our results is how funds flow given the size of each of the

sectors. Suppose that the growth rate in the macro economy is lower than its historical

mean (this could come about because of a shock to the unintermediated sector). In this

case, the size of the banking sector is “too large” and that of the unintermediated sector

is “too small.” The central planner would therefore move capital from one sector into the

other given the constraints on the capital flows in the economy. Over time, the size of

the banking sector would shrink, while money would flow into the unintermediated sector,

which would increase.

The paper is organized as follows. In the next section, we discuss related literature. In

section 3, we introduce the model. In section 4, we discuss asset pricing implications and in

Section 5, we discuss further empirical and policy implications. Finally, section 6 concludes.
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All proofs are deferred to an appendix.

2 Related Literature

For simplicity, much of the banking literature focuses on risk neutral agents. While deep-

ening our understanding of the frictions that lead banks to add value, these models are not

designed to examine how the existence of financial intermediaries affects aggregate risk, and

thus the prices of financial assets and growth rates, in the economy.

We motivate the friction that prevents capital from flowing directly between the two

sectors by appealing to the intuition of Diamond and Rajan (2000, 2001). Briefly, they

present a parsimonious model which motivates the existence of intermediaries, and use the

friction to explore bank funding. A cash constrained entrepreneur with specialized project

knowledge can generate more revenue from a project than anyone else. However, he cannot

commit to work at the project indefinitely. Outside capital is only willing to lend up to

the amount for which it can seize the project, which is less than the entrepreneur could

generate. In this way, projects are not fully financed. However, an outside financier may

train with the entrepreneur and acquire knowledge that enables him, if he were to seize the

project, to run it at a small discount to the entrepreneur. This improves the funding of

projects in the real economy. However, this outside financier in turn cannot commit to run

the project, and so his financial claim is also illiquid.

A somewhat different view is taken by Holmstrom and Tirole (1997), who posit that

intermediaries add value by reducing the propensities of owner-managers to take risks.

Specifically, if banks are properly motivates (i.e., hold an incentive compatible stake in the

projects’ payoff), they can exert costly effort and prevent the manager from “shirking.” If

the manager shirks then he consumes private perquisites and the project fails. Thus, banks

increase the success probability of the underlying project. We combine both of these views

of how banks add value by considering bank capital that is illiquid yet, when deployed, can

affect the risk return trade-off of a project. In this way we can consider the optimal size of

the banking sector and its effect on welfare and growth.

There is a large literature that posits that intermediated lending and bonds are not

perfect substitutes, and that banks cannot instantaneously raise new capital. A clear and

precise description of how a credit channel links monetary policy actions to the real economy

appears in Kashyap and Stein (1993), and also in Bernanke and Gertler (1995). In this

framework, financial frictions affect the real economy because they affect banks’ propensity

to lend; banks’ capital being special, the growth rate of the economy is affected.1 If, through
1Of course, banks play many roles. In addition to lending and monitoring they provide clearing and

settlement services. Our model does not capture these institutional aspects of banking.
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this channel, the asset mix is also changed, then the aggregate risk in the economy must

change. Our model can be viewed as an examination of the real effects of the credit channel.

In terms of the risk and return of the banking sector, our framework is compatible with

any model in which banks reduce the riskiness of firms’ output. For example, Bolton and

Freixas (2006) present a static, general equilibrium model in which banks with profitability

“types” face an endogenous cost of issuing equity in addition to capital adequacy require-

ments. Bonds and bank loans are imperfect substitutes as banks, by refinancing, change the

variability of projects’ cash flows. Firms with high default probabilities choose costly bank

financing over bonds because of these. Monetary policy affects the real economy because it

affects the spread between bonds and bank loans, and changes the average default probabil-

ity (risk) of the undertaken projects. Specifically, a monetary contraction decreases lending

to riskier firms. Further, Holmstrom and Tirole (1997) illustrates general equilibrium in

which intermediaries, who are themselves subject to a moral hazard problem, exert costly

effort and increase the probability of success of each entrepreneur’s project.

Recently, a literature has developed tying financial frictions to the macro economy.

For example, Jermann and Quadrini (2007) demonstrate that financial flexibility in firm

financing can lead both to lower macro volatility and to higher volatility at the firm level.

Further, Dow, Gorton, and Krishnamurthy (2005) incorporate a conflict of interest between

shareholders and managers into a CIR production economy. Auditors are essentially a

proportional transaction cost levied on next period’s consumption. They provide predictions

on the cyclical behavior of interest rates, term spreads, aggregate investment and free cash

flow.

Our work is conceptually related to that of Lagos and Wright (2005), who generate

a monetary model from microfundamentals. Their model of the effect of money supply

on households is much more sophisticated than ours; however, our focus is on the role of

financial intermediaries.

Technically, our paper is related to the vast literature on capital investments under

frictions — although almost all papers in this literature consider one sector economies.

Eberly and Wang (2009) considers a production economy with two sectors and convex

adjustment costs between these, and uses a representative investor with logarithmic utility.

The main focus of their analysis is on investment capital ratios and Tobin’s q. We depart

from this literature by excluding agents’ trade-offs between instantaneous consumption and

investments. In our model, the instantaneous consumption is known — it is the fruits

delivered by the two trees. Our approach allows us to concentrate the analysis on the

effect of shocks for which the first order effect is to bring the economy away from its

optimal risk structure. Mechanically, our model is a “two trees” model, as presented by
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Cochrane, Longstaff, and Santa-Clara (2008), and further extended by Martin (2007). The

fundamental difference between our approach and theirs is that the sizes of our trees are

not exogenous, because they are the result of resource allocation decisions by a central

planner. One consequence of this is that the distribution of sector sizes may be stationary

in our model. Also, we allow for general CRRA utility functions, which will be important for

some of our results. We also deviate from the literature that assumes completely irreversible

capital. Vergara-Alert (2007) considers an economy with two technologies with a duration

mismatch, one of which is completely irreversible. Johnson (2007) develops a two-sector

equilibrium model, but there are no flows into or out of the risky sector in his model,

so investments into that sector are completely irreversible. All these papers exogenously

specify the restrictions on capital movements. In contrast, in our economy, reallocation

of capital to and from each sector is always possible at a cost that is derived from first

principles.

Our work is also related to the literature on liquidity, and especially to Longstaff (2001),

who studies portfolio choice with liquidity constraints in a model with one risky and one

risk-free asset. The constraints that Longstaff (2001) imposes are similar to our sluggish

capital constraints. However, there are several differences between the two papers. Whereas

Longstaff (2001) takes a partial equilibrium approach, with exogenously specified return

processes for the risky and risk-free asset, these processes are endogenously defined for us.

Moreover, Longstaff (2001) allows for stochastic volatility, which we do not, but has to rely

on simulation techniques for the numerical solution, since he has four state variables. This

is nontrivial, since optimal control problems are not well suited for simulation (similarly to

American option pricing problems). We need only one state variable, and can therefore use

dynamic programming methods to solve our model.

3 The Economy

Consider an economy that evolves between times 0 and T . For clarity, we specify the model

in discrete time, and then characterize the continuous-time limit. At any point in time, the

industrial base comprises a very large pool of potential projects, P, run by owner managers

in one of a countable number, M , of different industries. All projects, once initiated,

generate cash flows through a stochastic, constant returns to scale technology. In addition,

some projects may be handled by “experts”, who change the risk reward trade-off of the

underlying cash flows.

In the absence of any intervention, the stochastic, constant returns to scale technology

common to all projects is such that, at discrete points in time, 0,Δt, 2Δt, . . . , capital D
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pays dividends of D × Δt. The law of motion for the capital of a project is

Dt+Δt = Dt × (1 + (μ̂ + p)Δt + ξtσ
√

Δt − dJm
t ),

where ξt are i.i.d. random variables with equal chances of being ±1. These shocks are

systematic; they affect the economy as a whole. They are thus consistent with business

cycle effects. In addition, there are also independent industry specific shocks, dJm
t . With

probability 1 − pΔt, dJm
t = 0, and with probability pΔt, dJm

t = 1. Thus, if an industry

specific shock is realized, the capital stock in that industry is reduced to zero. This is

consistent with an economy in which invested capital is not fungible, and industries can

become obsolete.2

With no expert intervention, there is no explicit cost to starting or closing down a

project; therefore, it is both optimal and feasible for a risk averse social planner to diversify

away all of the industry risk. Given such diversification, for small Δt, capital in aggregate

follows the process

Dt+Δt = Dt × (1 + μ̂ Δt + ξtσ
√

Δt). (1)

In one sector, agents can affect the risk/return profile of any project by consulting an

expert and expending the consumption good. There is a large pool of potential experts,

but at each point in time only a certain number has experience in the existing projects.

Our experts perform two roles: they can both generate funding for a project and, as in

Holmstrom and Tirole (1997), they can affect the entrepreneur’s propensity to take on risk.

An expert is project-specific and requires training. Specifically, as in Diamond and Rajan

(2000, 2001), he needs both time (Δt) and training to understand a project. We assume

that an existing expert is needed to train a new one on each project. Once trained, an expert

can do two things. On any particular project, he can suggest a system that eliminates (ξ)

risk — this is “passive” advice; in addition, if he has studied the project, he can provide

ongoing, or “active”, advice that insulates the project from the industry level Jm shock. For

an expert adapting a project to ξ risk, and so passively monitoring, one can think of him

learning about a project and then installing a management process. When in operation, at

a cost of c = fΔt + σ
√

Δt, the installed technology ensures that ξt = 1. If the project is

shut down, two experts are required to remove the monitoring equipment, which also takes

time Δt. For simplicity, we will assume that f = μ̂ + p. Our cost formulation is consistent

with a model in which, for a fixed cost, machines can be inspected, and flawed ones repaired

before disaster strikes.3 Thus, if a project is monitored, there is a trade-off between the
2These dynamics are consistent with J. Schumpeter’s notion of creative destruction.
3This cost structure is consistent with a simple moral hazard problem in which a project’s manager

consumes private perquisites if he does not exert effort to control the ξ process, but if monitored is induced
to do so and eschew such benefits. As we will be discussing welfare we prefer the main interpretation.
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expected return and the variability of output.

In addition, a trained expert who is a specialist in a project can continuously provide

“active” monitoring, which prevents his project from losing value even if dJ1
t = −1. In this

case, the expert’s advice mitigates industry level risk. We stress that the scarce resource in

this economy is expertise, as opposed to the more plentiful consumption good produced by

the projects.

We denote the size of the industry in which experts work by B. If a set of projects

of total size B are monitored both passively and actively, then they pay dividends B Δt,

and are effectively risk-free. By contrast, projects that are passively monitored, but do not

benefit from an expert’s ongoing active advice, are subject to industry shocks, and the size

evolves as

Bt+Δt = Bt ×
(−dJ1

)
. (2)

Clearly, the aggregate industry dynamics in the presence of experts depend on the tasks

the experts have chosen. Indeed, suppose that only a fraction 1 − α of the current experts

are providing active advice; then the overall industry dynamics are

Bt+Δt = −αBt × dJ1. (3)

Here, α is an important endogenous variable, which depends on the expertise resource

constraint of the economy. Consider a point in time at which a proportion 1 − α are being

actively advised by experts. Then a proportion α are available to train experts in new

projects; they can train new experts to install the passive monitoring technology in Δt

periods. Alternatively, the α experts could help to close down existing projects. Thus, if

the size of the cash flows under expert control either increases or shrinks, dJ risk must

increase.

Letting Δt go to zero, suppose that an instantaneous fraction a flows into the monitoring

sector, where a negative a represents closing down projects and investing the freed up capital

in the unmonitored sector. Then, the fraction of experts not monitoring projects is α = |a|;
the total dynamics of the unmonitored capital (D) and monitored capital (B) become:

dB = B
(
adt − |a|dJ1

)
, (4)

dD = −aB dt + D (μ̂ dt + σ dω) . (5)

Here, |a| ≤ 1, since a = ±1 corresponds to a situation when no projects are industry

monitored, and all human capital is used to initiate or close down projects. A real world

analog might be the furious initiation of new real-estate capital, with a cost in quality,

experienced over the last several years.
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Equations (4,5) describe how moving capital quickly between different types of projects

in the economy has costs in increased risks for crashes. Our ultimate goal will be to find

the policy that optimizes this trade-off in an economy with risk-averse agents, and to find

the implications of such a policy for asset prices, real growth rates and the welfare in the

economy.

As we will be considering how society allocates capital between the two sectors, we

define the monitored share,

z(s) =
B(s)

B(s) + D(s)
.

Notice that, if z is constrained to be zero, then all resources are in the entrepreneurial

sector, and the economy collapses to that presented in Lucas (1978).4 In what follows, we

frequently describe the monitored sector of the economy as “the bank,” the two sectors as

“trees,” and the monitored share as the bank share. It will sometimes be convenient to use

d = log(1 − z) − log(z) = log(D/B).

There is a representative investor with CRRA expected utility, with risk aversion coef-

ficient γ ≥ 1,5 who consumes the output of both trees:

U(t) = Et

[∫ T

t
e−ρ(s−t) (B(s) + D(s))1−γ

1 − γ
ds

]
.

To ensure that the banking sector is never dominated by, and never dominates, the unin-

termediated sector, we restrict its growth rate. Specifically,

Condition 1 : 0 < μ̂ < γσ2.

This ensures that the growth rate is sufficiently low that there is a role for the banking

sector, and yet sufficiently high that it is not dominated in turn.

3.1 The Restricted Central Planner’s Problem

To provide a simple benchmark, we first study a reduced-form problem, assuming that the

instantaneous jump probability of J1, p, is zero (i.e., that there are no jumps), and that the

speed of capital movement is bounded by some exogenously given function, λ, |a|z ≤ λ(z).

This is the restricted central planner’s problem. In equilibrium, of course, the social planner

will trade off the increased jump risk against the desire to move quickly towards the optimal

size of the banking sector.
4The Fisherian consumption model presented in Lucas (1978) follows earlier equilibrium models such as

Rubinstein (1976).
5In the main paper, we focus on the case γ > 1. The derivations for the log-utility case, γ = 1 are left to

the appendix.
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However, for now we assume that capital can only be reallocated at finite speeds, dâ =

aB dt, where

−λ(z) ≤ az ≤ λ(z). (6)

Therefore, λ : [0, 1] → R+represents how easy it is to move capital between the monitored

and unmonitored section of the economy. We consider λ ≡ 0 as a benchmark case, but in

general we assume that λ(z) > 0 for all z ∈ (0, 1).

The class of controls satisfying these two conditions are denoted by Aλ,t,T , or simply by

A when there is no confusion. Although, strictly speaking, the control is â, we will represent

the control by a, and write a ∈ A.6

The central planner maximizes the discounted presented value of the representative

agent’s utility by moving capital between the two sectors. Using the control a, the central

planner hopes to achieve:

V (B,D, t) ≡ sup
a∈A

Et

[∫ T

t
e−ρ(s−t) (B(s) + D(s))1−γ

1 − γ
ds

]
. (7)

The central planner’s reallocation leads to the following dynamics for the capital in the two

sectors:

dB = aB dt, (8)

dD = −aB dt + D (μ̂ dt + σ dω) , (9)

dz = az dt − z(1 − z) (μ̂ dt + σ dω) + z(1 − z)2σ2 dt. (10)

Cochrane, Longstaff, and Santa-Clara (2008) characterize the “two trees” economy in terms

of the relative share of each asset, and also express dynamics for the share. There are two

differences between the drift term for z in our formulation and in theirs, which highlight the

differences in our approaches. First, we allow a central planner to potentially move resources

between the two sectors (our a term). Second, in our case, the difference between the drifts

on the two assets is μ, which comes from the risky tree, whereas in their formulation (with

two identical trees) the difference is zero.

We proceed by characterizing the central planner’s problem for a finite T by finding

a locally optimal control or reallocation (a) that will also be globally optimal. The infi-

nite horizon case follows immediately. Given the central planner’s objective, the Bellman

equation for optimality is

sup
a∈A

[
Vt +

1
2
σ2D2VDD + [μ̂D − aB]VD + aBVB − ρV +

(B + D)1−γ

1 − γ

]
= 0. (11)

6The restriction imposed by (6) leads to a qualitatively quite different situation for the central planner,
compared with unconstrained optimization. As noted in Longstaff (2001), for any bounded λ, any control
in Aλ,t,T will a.s. have bounded variation, as opposed to the optimal control in standard portfolio problems,
which a.s. has unbounded variation over any time period.
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Equation (11) can be simplified by observing that, by homogeneity, we can write

V (B,D, t) = −(B + D)1−γ

1 − γ
w(z, t), (12)

where the normalized value function, w(z, t) ≡ V (z, 1 − z, t). This step allows us to write

derivatives of V in terms of derivatives of w (we present them in Appendix A). Substituting

these into Equation (11), we obtain

sup
a∈A

wt +
1
2
σ2z2(1 − z)2wzz +

[
az − μ̂z(1 − z) + σ2γz(1 − z)2

]
wz

−
[
ρ − μ̂(1 − γ)(1 − z) +

1
2
σ2γ(1 − γ)(1 − z)2

]
w + Fγ(t, z) = 0, (13)

where

Fγ(t, z) =

{ −1, γ > 1,
1−e−ρ(T−t)

ρ

(
μ̂(1 − z) − σ2(1−z)2

2

)
, γ = 1.

(14)

We are now in a position to characterize the optimal adjustment, a, to the banking

sector. Notice that the left hand side of Equation (13) is linear in az. Therefore, az will

always be either the maximum value, λ, or the minimum value, −λ; it is a bang-bang

control.7 So if z ≡ B
B+D is “too low,” the central planner will allocate resources to the

banking sector at the fastest possible rate, while if z is “too high,” resources will flow out

of the banking sector and into the unintermediated sector. Of course, “too high” and “too

low” depend on how an infinitesimal change in the allocation between the sectors affects

the central planner’s continuation value (wz in our notation).

Lemma 1 The optimal reallocation between the two sectors is

az = λ(z)sign(wz), (15)

where wz is the normalized marginal social benefit of moving capital to the banking sector.

To characterize the optimal control, a, we need to solve for the central planner’s optimal

value function. Once a is determined, then it is straightforward to characterize the whole

economy. We state the control problem as a partial differential equation (p.d.e.).

7At points where wz = 0, any az ∈ [−λ, λ] is optimal, so az = λ is an optimal strategy at such points.
However, we adopt the convention that a = 0 when λ = 0.
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Proposition 1 If condition 1 is satisfied, then the value function for a central planner,

who optimally reallocates capital between the banking and unintermediated sectors, is

V (B,D, t) =

⎧⎨⎩ − (B+D)1−γ

1−γ w
(

B
B+D , t

)
, γ > 1

log(B+D)(1−e−ρ(T−t))
ρ + w

(
B

B+D , t
)

, γ = 1,

where w : [0, 1] × [0, T ] → R is the solution to

0 = wt +
1
2
σ2z2(1 − z)2wzz +

(−μ̂z(1 − z) + σ2γz(1 − z)2
)
wz

−
[
ρ − μ̂(1 − γ)(1 − z) +

1
2
σ2γ(1 − γ)(1 − z)2

]
w + Fγ(t, z) + λ(z)|wz |. (16)

0 = w(z, T ). (17)

We note that no boundary conditions are needed at z = 0 and z = 1 to obtain the

solution. The reason, which we elaborate on in the proof in Appendix D, is that the p.d.e.

is degenerate at the boundaries. It is hyperbolic, and the characteristic lines imply outflow

at both boundaries, so no boundary conditions are needed. Indeed, it follows from the proof

of proposition 1 that the reallocation rate, a, is positive close to z = 0, and a is negative

close to z = 1.

Proposition 1, because it is the solution to the social planner’s problem, is a full (if

somewhat opaque) description of what the social planner does after shocks, and therefore

the overall equilibrium characteristics of the economy. It is a fundamental result in the

paper. Indeed, armed with Proposition 1, we can characterize how the optimal mix between

the banking and non-banking sectors depends on the speed with which the economy adjusts.

In Section 3.3 we generalize our method even further, by endogenizing λ when p is nonzero.

We also establish that w, the normalized value function, is intimately related to the price-

dividend ratio in Section 4.

We can consider the effect on social welfare of these reallocations. In order to develop

the economic intuition for our results, we present two benchmark cases: First, we assume

that capital is infinitely flexible; second, that it is perfectly inflexible.To present these

benchmarks more succinctly, we focus on the infinite horizon case, T = ∞, and we fix

B(0) + D(0) = 1; this is without loss of generality.

If capital can be moved instantaneously then, formally, λ(z) = ∞ for any z. Specifically,

this means that the central planner can move from z = B(0)/((B(0) + D(0)) to any z∗
at t = 0+ arbitrarily quickly. Moreover, he can choose capital reallocation strategies with

unbounded variation, and specifically choose dâ = a dt+b dω for arbitrary bounded functions

a and b. For any fixed z, the central planner can, for example, choose

dâ = (1 − z) (μ dt + σ dω) , (18)
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which implies that dz = 0 or, in other words, he can maintain a constant bank share in the

economy.8

In such an economy, it suffices to directly consider the share between the bank sector

and unmonitored sector (z) that maximizes the representative agent’s expected utility. If

z is constant then the total drift and volatility of the economy are also constant. In this

case, we have

Lemma 2 Suppose that capital is fully flexible, λ ≡ ∞, and that the central planner chooses

a constant bank share, z. Then the expected utility of the representative agent is

U∞(z) =

{ 1
1−γ × 1

ρ+(1−γ)((1−z)μ̂−γ(1−z)2σ2/2)
γ > 1

1
ρ2

(
(1 − z)μ̂ − (1 − z)2 σ2

2

)
γ = 1,

which takes on its maximal value, 1
1−γ× 1

ρ+ γ−1
γ

× μ̂

σ2

for γ > 1 and μ̂2

2ρ2σ2 for γ = 1 respectively,

at z∗ = 1 − μ̂
γσ2 .

We let the superscript ∞ denote the adjustment speed. This solution exactly mirrors the

Merton (1969) solution for the portfolio choice problem of an investor allocating wealth

between a risky and a risk free asset, in which the portfolio share of the risky asset is μ̂
γσ2 .

In this case, the risk-free asset (our banking sector), should have a portfolio weight of z∗.9

If capital is perfectly inflexible, then λ(z) = 0 for all z. This corresponds to the two-tree

model of Cochrane, Longstaff, and Santa-Clara (2008). It is shown in Parlour, Stanton,

and Walden (2009) that the expected utility in this case has the form:

Lemma 3 In the infinite horizon economy, T = ∞, define q =
√

μ2 + 2ρσ2. Suppose that

(i) γ = 1. Then, if the initial bank share is 0 < z < 1, the expected utility of the represen-

tative agent is

w(z) =
1
2ρ

( (
2μ2 + σ2(2ρ + q) + μ(σ2 + 2q)

)
2F1

(
1,

q − μ

σ2
,
q − μ

σ2
+ 1,

z

z − 1

)
+ 2

z − 1
z

(
μ2 + ρσ2 − μq

)
2F1

(
1,

q + μ

σ2
+ 1,

q + μ

σ2
+ 2,

z − 1
z

))
/

(
μ2 − μq + 2ρ(σ2 + q)

)
,

8Notice, that this is expression is not obtained from Equation 10, which is based on dâ having zero
quadratic variation, and therefore leaves out Itô terms that are there in the general case. When dâ =

a dt+ b dω, the extra terms 1
2

∂2

∂B2

h
B

B+D

i
× (dB)2 + ∂2

∂D∂B

h
B

B+D

i
× (dB)(dD) are added to (10), which leads

to (18) being the condition for dz ≡ 0.
9The problems are not identical, since the investor in Merton (1969) controls consumption. However, the

optimal portfolio is the same in both settings, so with full flexibility, choosing a constant z∗ = 1/2 − μ/σ2

is indeed optimal.
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where 2F1 is the hypergeometric function. Also, w(1) = 0 and w(0) = μ
ρ2 .

(ii) If γ > 1: then if the initial bank share is 0 < z < 1, the expected utility of the

representative agent is

w(z) =
z1−γ

q(1 − γ)

×
[(

z

1 − z

)μ−q

σ2
(

V

(
z

1 − z
, γ +

q − μ

σ2
, 1 − γ

)
+ V

(
z

1 − z
, γ +

q − μ

σ2
− 1, 1 − γ

))
+

(
1 − z

z

)− q+μ

σ2
(

V

(
1 − z

z
,
q + μ

σ2
, 1 − γ

)
+ V

(
1 − z

z
,
q + μ

σ2
+ 1, 1 − γ

))]
.

Here, V (y, a, b) def=
∫ y
0 ta−1(1 + t)b−1dt is defined for a > 0. Also, w(1) = 1

ρ(1−γ) . Moreover,

define x
def= ρ + (γ − 1)μ − (γ − 1)2 σ2

2 . Then, if x > 0, w(0) = − 1
x . If, on the other hand,

x ≤ 0, then w(0) = −∞.

We note that the definition of z in Parlour, Stanton, and Walden (2009) is as the risky

share, which corresponds to 1 − z in our notation.

We now illustrate the case when there is some, but not full, flexibility. We consider both

the optimal size of the banking sector, and how it is affected by the speed at which capital

can be reallocated. We assume that λ(z) = λz for some constant λ.

First, consider the effect on welfare of different rates of capital reallocation. As one

expects, social welfare is highest when there are no frictions to capital flows. Figure 1 is a

plot of the normalized value function as a function of the size of the banking sector (z). If

capital can be instantaneously reallocated then shocks, such as a catastrophic loss in the

real economy that change the relative size of the two sectors, have no effect on normalized

social welfare. For this reason, the line labeled λ = ∞ is flat. After any untoward change

in the relative sizes of the two sectors, the central planner can instantaneously move the

economy back to the optimal sector mix, and there is no loss in welfare. Such is not the

case when the reallocation rate is bounded.

There is no cost to flexibility in this economy, and so the two lines labeled λ = 4 and

λ = 0.1 are strictly below the welfare when there is complete flexibility. The difference in

social welfare between the fully flexible case and the inflexible case represents the social

loss incurred because of sluggish reallocation of capital. Not surprisingly, the welfare loss

is most severe the further the sectors are from the optimum allocation. The effect is more

several for low z, since that is when the banking sector is small, so the constraint on how

fast capital can be moved is more severe.
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Figure 1: Value function as a function of λ. Limiting cases are λ = 0, when there
is no flexibility for capital reallocation, and λ −→ ∞, which converges to full
flexibility case. Parameters: μ = 2, σ2 = 10/3, ρ = 1, γ = 3.

3.2 The long-term distribution of the bank share

In contrast to the two-trees model with inflexible capital (the λ = 0 case), when capital is

flexible, the long-term share distribution may be stationary.10 This is an appealing property

of the model with capital flexibility, since it avoids the transitory interpretation that always

must be associated with a nonstationary solution.

We derive the stationary probability distribution of z from the optimal control, a ∈ A
and the Kolmogorov forward equation (see Björk (2004)). We have

Proposition 2 Given the optimal control, a ∈ A, to the central planner’s problem that

satisfies 1, let π(t, z) denote the probability distribution of the bank share, z, at time t, with
10Whether a stationary distribution exists depends on whether λ is large enough so that the probabilities

of z → 0 or z → 1 for large T vanish. We will discuss this in more detail in the next section.
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initial distribution π0(z) at t = 0. Then π : [0, 1] × [0,∞) is the solution to the p.d.e.

πt = A∗π,

π(z, 0) = π0(z),

π(0, t) = 0,

π(1, t) = 0.

Here, A∗ is the adjoint to the infinitesimal operator,

(A∗p)(z, t) def= − ∂

∂z

[
(az − μ̂z(1 − z) + σ2z(1 − z)2)p

]
+

σ2

2
∂2

∂z2

[
z2(1 − z)2p

]
.

Therefore, the growth rate of the economy and its volatility will also have stationary dis-

tributions. We show the stationary distribution in Figure 2, for the example we have used

so far.
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Figure 2: Stationary distribution of z Parameters: μ = 2, σ2 = 10/3, ρ = 1, γ = 3,
λ = 4.

3.3 The General Central Planner’s Problem

We now consider the case in which λ is endogenous, i.e., when p > 0 and the central planner

trades off flexibility in reallocation versus increased crash size. This is the general central
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planner’s problem: He trades off increased flexibility, |a|, versus increased crash size, α,

if a crash occurs in the monitoring sector. The maximum speed at which capital can be

reallocated is at az = 1 and the optimization problem, for γ > 1, is therefore

V (B,D, t) ≡ sup
|a(z,t)|≤1

Et

[∫ ∞

t
e−ρ(s−t) (B(s) + D(s))1−γ

1 − γ
ds

]
. (19)

A similar set-up applies for γ = 1. The solution is then characterized by the following

proposition:

Proposition 3 For a solution to the social planner’s problem : V (B,D, t) ∈ C2
(
R

2
+ × [0, T ]

)
,

with control a : [0, 1] × [0, T ] → [−1, 1],

a) If γ = 1,

V (B,D, t) =
log(B + D)

ρ
+ w

(
B

B + D
, t

)
,

where w : [0, 1] × [0, T ] → R solves the following PDE

0 = wt +
1
2
σ2z2(1 − z)2wzz +

(
az − μ̂z(1 − z) + σ2γz(1 − z)2

)
wz

−(ρ + p)w +
1 − e−ρ(T−t)

ρ

(
μ̂(1 − z) − σ2(1 − z)2

2

)
+p

[
log(1 − |a|z)(1 − e−ρ(T−t))

ρ
+ w

(
(1 − |a|)z
1 − |a|z , t

)]
, (20)

where, a(z, t) = α(z, t) sign(wz) and, for each z and t,

α = arg max
α∈[0,1]

α|wz| + p

[
log(1 − αz)(1 − e−ρ(T−t))

ρ
+ w

(
(1 − α)z
1 − αz

, t

)]
. (21)

b) If γ > 1:

V (B,D, t) = −(B + D)1−γ

1 − γ
w

(
B

B + D
, t

)
,

where w : [0, 1] × [0, T ] → R− solves the following PDE

0 = wt +
1
2
σ2z2(1 − z)2wzz +

(
az − μ̂z(1 − z) + σ2γz(1 − z)2

)
wz

−
[
ρ + p − μ̂(1 − γ)(1 − z) +

1
2
σ2γ(1 − γ)(1 − z)2

]
w

−1 + p

[
1 − (1 − |a|z)1−γ + w

(
(1 − |a|)z
1 − |a|z , t

)]
, (22)
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where, a(z, t) = α(z, t) sign(wz) and, for each z and t,

α = arg max
α∈[0,1]

α|wz| + p

[
(1 − αz)1−γ + w

(
(1 − α)z
1 − αz

, t

)]
. (23)

For all γ ≥ 1, the terminal condition is

w(z, T ) = 0.

Equation (23) has a very natural interpretation. Recall that α is the proportion of

experts that participate in the banking sector. Also, αz is the speed with which capital

flows into or out from the banking sector. This is determined by a trade-off between the

benefits of changing the size of the banking sector, αwz , and the cost of a crash that occurs

with probability p. The cost is made up of the instantaneous loss of consumption from a

collapse of the banking tree (the first term) and the utility cost of being away from the

optimal risk structure in the economy (the second term). Even though the central planner

faces no explicit constraint on the speed of capital flows (a ‘λ’ constraint), capital will not

flow instantaneously as there is an endogenous cost to changing the size of the banking

sector.

We solve the equation in Proposition 3, using the parameters from Section 3.1. The

resulting signed control function, az, is shown in Figure 3 The control (α) has different
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Figure 3: Signed optimal control, λ = az as a function of z. Parameters: μ = 2,
σ2 = 10/3, ρ = 1, γ = 3, p = 5%.

values depending on the relative size of the banking sector. Broadly, this suggests that

government intervention or policy responses should optimally vary with this variable.
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Consider a share z close to 0.8 — which is the optimal bank share in the λ = ∞ case.

This is a “laissez faire” region. No resources should flow into or out of the banking sector.

Actively changing the size of the sector might generate crash risk and for small deviations

the utility costs for a crash is sufficiently high so that it outweighs the benefits of getting

closer to the optimum.

For z further away from 0.8, it becomes optimal for the social planner to move capital.

However, the speed at which the bank share can be changed, z decreases with z for low z.

In this region, all the experts are screening new projects, but for low z, the bank sector is

small so that z changes very slowly anyway. The control function is therefore hump-shaped.

The implication of such a hump-shaped control is that the bank share distribution is

typically bimodal, and that there may be a non-zero probability that the bank share becomes

negligible (z → 0) as the horizon of the economy, T , tends to infinity. In Figure 4, we see

that the bank share distribution is bimodal: It is with high probability close to 0.8, but

there is also a nontrivial chance that it is close to 0.
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Figure 4: Bank share distribution with endogenous λ. Parameters: μ = 2, σ2 =
10/3, ρ = 1, γ = 3, p = 5%.

The two peaks of the distribution are reminiscent of models with high and low growth

equilibria. However, in this case, the high and low growth states are both hit with positive

probability. Indeed, the economy can becomes “stuck” in equilibrium in which the banking

sector is small. In some cases, there are not enough bank expertise to bring the economy
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back to the preferred bank share. This implies that after severe shocks, there is no natural

equilibrating market mechanism that will return the economy to optimum banking sector

size.

The general central planner’s problem, solved in Proposition 3, provides us with addi-

tional insights about the trade-offs in the economy and possible outcomes, compared with

the restricted problem, solved in Proposition 1. The general problem, however, is more

challenging than the restricted one. Theoretically, the existence and properties of the solu-

tion to the general problem is harder to analyze. Numerically, the additional optimization

of (21,23) slows down the computations. For several applications, the answers given by the

two methods are similar, and in the remainder of the paper, we will therefore often study

the reduced form restricted problem.

4 Asset Pricing Implications

In the presence of a risk-free asset in zero net supply, the market is effectively complete and

the economy may be implemented through a competitive market. The Euler equation then

implies that the price at date t of an asset that pays a terminal payoff GT ≡ G(BT ,DT , t),

and interim dividends at rate δτ ≡ δ(Bτ ,Dτ , τ), where t ≤ τ ≤ T , is given by

P = (Bt + Dt)γEt

[∫ T

t
e−ρ(s−t) δs

(Bs + Ds)γ
ds + e−ρ(T−t)

(
GT

(BT + DT )γ

)]
. (24)

Equation 24 allows us to study the price-dividend ratio in the market. It is well known that

for γ = 1, the price dividend ratio is always 1
ρ . For γ > 1, the price-dividend ratio depends

on the bank share. In fact, it has a simple expression.

Proposition 4 Given γ > 1, prices of the bank and risky sectors of PB and PD respectively,

then the price-dividend ratio of the market is

PB + PD

B + D
= −w

(
B

B + D
, t

)
,

where w is defined in Proposition 3.

The price dividend ratio of the market is simply minus the normalized value function (recall

that for CRRA preferences, utility is negative). We note that for the special case when p = 0

and λ is exogenously given (the restricted central planner’s problem), the definition of w

reduces to the one in Proposition 1.

This proposition has several immediate implications. For example, it is clear that the

solution to the central planner’s problem minimizes the price-dividend ratios in the economy.
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Corollary 1 For each z, the minimal price-dividend ratio is realized by the solution to the

central planner’s problem.

Corollary 2 The central planner always strives to bring the economy to the globally mini-

mal (over all z) price-dividend ratio.

It also follows that increased financial flexibility (a higher λ in the restricted problem)

always decreases the price-dividend ratio in any state of the world, since it allows the

central planner to implement a higher w, i.e., a lower −w.

Corollary 3 All else equal, price-dividend ratios are lower the higher the flexibility (λ).

We next characterize the term structure, by considering zero coupon bonds. For simplic-

ity, we focus on the restricted central planner’s problem, i.e., with p = 0 and λ exogenously

given. Similar results were obtained for the general central planner’s problem. We have the

following pricing equation:

Proposition 5 The price at t0 of a τ maturity zero coupon bond, where t0 + τ ≤ T , is

p(t0, z), where p is the solution to the following p.d.e.

pt +
1
2
σ2z2(1 − z)2pzz +

[
a − μ̂z(1 − z) + σ2(1 + γ)z(1 − z)2

]
pz

−
[
ρ + μ̂γ(1 − z) − 1

2
σ2γ(1 + γ)(1 − z)2

]
p = 0. (25)

p(z, t0 + τ) ≡ 1, (26)

t0 ≤ t ≤ τ,

0 ≤ z ≤ 1.

The p.d.e. for the bond price is valid whether λ is endogenously or exogenously given.

Observe that, as in the case of the value function, no boundary conditions beyond the

terminal payoff are needed to ensure uniqueness. Further, if a(z) is the stationary control

that does not depend on T (obtained by letting T → ∞), then the whole term structure,

for all z and times to maturity, can be obtained by solving the p.d.e. once. Specifically, the

price of a τ period zero-coupon bond is P τ (z) = p(z,−τ), where p solves (25) with terminal

condition p(z, 0) ≡ 1.

Contrary to the flat term structure in the one-tree model, the yield curve in our economy

is not flat. In fact, it is often upward sloping. That is, real rates display a “liquidity” or

21



“risk” premium for longer horizons. This is due to changes in the representative agent’s

marginal utility and is inherent in the two trees structure, rather than being a consequence

of the central planner’s reallocation of capital (although reallocation heightens the effects).

We use the closed form solutions derived in Parlour, Stanton, and Walden (2009) to calculate

the term structure in the case that λ ≡ 0.
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Figure 5: Zero-coupon yield curve 0-12 years, for different choices of z. μ = 1/3,
σ2 = 1, ρ = 0, γ = 1, λ(z) ≡ 0+, z∗ = 0.08.

The presence of a hump-shaped term structure for some values of z is interesting, since

it is one of the stylized properties of the real world term structure (see Nelson and Siegel

(1987)). The curvature, however, is quite small, and is even smaller for lower values of σ2.

When λ > 0, however, a stronger hump occurs.11 For example, compare Figure 5, in

which λ(z) ≡ 0+, with Figure 6, in which λ(z) ≡ 1. In the latter case, the yield curve

is steeper. Intuitively, with flexible capital, the economy will move back to the optimal

relative size quickly, and so marginal utilities will rise rapidly to the steady state value;

the term structure will thus be steep at short maturities, and then relatively flat. In the

extreme case of λ = ∞, then from the socially optimal level of z, the term structure will

be flat, and the pure expectations hypothesis holds. However, for λ < ∞, there are two

different effects: First, a higher λ will lead to a more steeply sloped yield curve (upward
11For all numerical solutions, we have used the centralized second order finite difference stencil in space,

and the first-order Euler method for the time marching. All figures can be constructed in a matter of seconds,
using nonoptimized Matlab code. Codes are available from the authors upon request. In Hart and Weiss
(2005), a slightly different finite difference scheme is proposed to handle the nonlinearity in the |wz| term.
We have calculated the solutions with these schemes, with similar results.
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Figure 6: Zero-coupon yield curve 0-12 years, for different choices of z. μ = 1/3,
σ2 = 1, ρ = 0, γ = 1, λ(z) ≡ 1, z∗ = 0.2.

or downward) when z is far from z∗. Second, the higher flexibility also implies that, on

average, z will be closer to z∗, so such events are rarer in a flexible economy.

Lemma 4 Economies with high flexibility have larger slopes than economies with low flex-

ibility, but extreme slopes are rarer in economies with high flexibility than in those with low

flexibility.

Finally, we can connect the term structure analysis in the previous section with the presence

of recessions. We have

Lemma 5 Suppose that μ > 0. Then,

(i) in periods when the term structure is inverted (rl < rs), the growth rate of the economy

is low (z > z∗).
(ii) in periods of high growth (z < z∗), a positive shock to the risky sector (dω > 0) leads to

a higher spread (rl − rs ⇑).

(iii) in periods of low growth (z > z∗), a positive shock to the risky sector (dω > 0) may

increase or decrease the spread, rl − rs ⇑⇓.

Thus, a downward sloping term structure is associated with low growth of the economy.
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5 Empirical and Policy Implications

We have already documented several implications for the economy’s behavior and for asset

prices. In this section we present additional implications for the real economy and for

policy. We focus on the restricted problem, in which there are no crashes, so that p = 0

and financial flexibility, λ, is exogenously given. Recall, that z∗ is the optimal proportion

of the banking sector. It is easy to show that, depending on real production parameters

and aggregate risk aversion, the optimal size of the banking sector may either be increasing

or decreasing in the degree of financial flexibility. That is, there will be some economies in

which high financial flexibility lead to small banking sectors, and some economies in which

high financial flexibility leads to large banking sectors. In particular,

Observation 1

• If μ̂
γσ2 < 1/2, then z∗ is lower if λ is high than if λ is low.

• If μ̂
γσ2 > 1/2, then z∗ is higher if λ is high than if λ is low.

If the growth rate in the entrepreneurial sector is high, then increasing the rate at which

capital moves increases the optimal size of the banking sector. In this case, the social

cost of having an inordinately large banking sector (and therefore forgone growth) is very

high. Therefore, as insurance against this state, the central planner decreases the size of

the banking sector to maintain a “buffer.” Because of this, for very low λ, the size of the

banking sector is smaller. As λ increases, the central planner is willing to increase the size

of the banking sector (alternatively, decrease the size of the buffer) because the chance of

the economy spending a long time in the state in which there is no growth is small. Thus,

when the growth rate in the entrepreneurial sector is high, the optimal size of the banking

sector is increasing in the flexibility of capital (λ).

The situation is reversed when the growth rate of capital is quite low. In this case, the

cost to the central planner of ending up with too much capital in the entrepreneurial sector

is high because the return is low relative to the risk. Therefore, he hedges against this

possibility by maintaining a somewhat larger banking sector. As the flexibility of capital

increases, he is willing to reduce the size of the banking sector as he no longer needs a buffer

against the possibility that the entrepreneurial sector will become too large.

The previous discussion suggests that the relationship between the size of the banking

sector and the flexibility of capital is nontrivial. Specifically, financial innovation or govern-

ment policy that increases the speed with which funds can be reallocated between sectors
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may, in equilibrium, either decrease the size of the banking sector or increase it. Also,

increasing financial flexibility may decrease the growth rate of the economy.

Observation 2

If μ̂
γσ2 < 1/2, then the real growth is lower if λ is high than if λ is low.

Thus, in low growth economies, increasing λ, e.g., through financial innovation, will

actually decrease the growth rate of the economy. This observation follows directly from

the previous one. In this economy, the larger the unintermediated sector, the higher the

growth rate. Indeed, the growth rate of the economy is just (1 − z)μ̂. Each dollar invested

in the risky sector grows at an expected rate of μ̂, and the banking sector (by assumption)

has a growth rate of zero. Therefore, increasing the flexibility of capital may decrease

the growth rate of the economy. This suggests that cross-country regressions of economic

performance (including growth rates) on proxies for financial innovation or variables that

measure the speed with which capital flows between the banking and entrepreneurial sectors

are complex to interpret. For example, the work of Levine (1998), drawing on that of

La Porta, de Silanes, Shleifer, and Vishny (1998), considers the effect of legal protections

on the development of banks and subsequent growth rates. Our analysis suggest that

unambiguous causal links are difficult to find because increasing the efficiency of the banking

sector may lead to an overall larger or smaller sector, depending on the fundamentals of the

economy.

More broadly, this observation fits into the long-running debate about the relationship

between economic growth rates and financial innovation. Rather than viewing financial

flexibility as a cause (Schumpeter (1911)) or a consequence (Robinson (1952)) of economic

growth, we focus on economic growth as the natural consequence of the equilibrium risk

appetite of a representative consumer. Specifically, the existence of high financial flexibility

may induce the central planner to maintain a large banking sector and, consequently, a low

stationary growth rate.

So far, we have indexed the economies by the speed with which capital reallocates.

Specifically, if there is a shock to one sector and the economy is no longer at the optimal

size, the central planner will increase or decrease the relative sizes of the two sectors to

ensure that the economy reverts to its long term equilibrium values. Recall, from Lemma 1,

the sign of the reallocation depends on the marginal normalized social benefit of changing

capital between the two sectors (wz). Figure 5 illustrates the sign of control a as a function

of the size of the banking sector.

Recall that maximal resources are devoted to the sector that has shrunk; therefore, the

lines are either along the top of the box, the bottom, or switch (the vertical lines) in the
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Figure 7: Sign of control, a. For high λ, larger domain in which bank investments
occur. Parameters: μ = 2, σ2 = 10/3, ρ = 1, γ = 3.

middle. Clearly, this depends on the speed (λ). Therefore, the triggers (in terms of size of

the banking sector) for capital reallocation differ depending on the speed with which this

occurs. Specifically, consider small bank sectors, so that z ∈ (0, z∗). If reallocation is rapid,

so that λ is large, then if a shock drives the economy into this region, the central planner

will divert resources to the banking sector. By contrast, if reallocation is slow, so that λ

is small, then capital optimally flows to the banking sector for z ∈ (0, z′), where z′ < z∗.
Thus, for z between z′ and z∗, capital is reallocated to the banking sector in the high λ case,

but not in the low λ case. This asymmetry arises from the fact that utility is lower when

all resources are in the banking sector than when all resources are in the entrepreneurial

sector.

It also follows that, comparing two economies with slightly different λ’s, the direction

of capital flow is ambiguous. On the one hand, a higher λ allows capital to move toward z∗
faster, with increases current capital flows. On the other hand, a higher λ may result in a

different optimal z∗, which can lead to a full reversal of capital flows.

Observation 3 A financing innovation can either increase the speed at which capital flows

into a sector, or reverse it. Specifically, in the latter case, small financing innovations and

other (unanticipated) changes in flexibility can have a large impact on capital flows into and

out of the banking sector.
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Indeed, if the economy is in the region, z ∈ (z′, z∗), then, relaxing the constraint slightly

(a marginal increase in λ) may lead to a huge shift toward bank investments (from a = −λ

to a = λ).

The states of the world in which a change in λ lead to large changes in capital flows are

in regions where the value function is quite flat. Intuitively, the central planner only chooses

a “buffer” if the welfare cost of such a strategy is low. Therefore, the effect of a change

in financial flexibility is largest (in terms of capital flows) in states of the world when the

welfare gains are quite small. On the other hand, if the economy is at one of the extremes,

then changing financial flexibility has no effect on the reallocation policy and capital flows,

except for marginally increasing them. It will, however, have a large effect on social welfare.

Observation 4 The effects on capital flows of changes of λ are the largest in states of the

world in which the welfare effects are small. The welfare effects of changes of λ are largest

in states of the world in which the effects on capital flows are small.

In our analysis of the general central planner’s problem, we saw that when the bank

share, z, is low, it may take a very long — or even infinite — amount of time to move

back to the economy’s optimum. This is the state in which relaxing the flow constraints

(increasing λ) has the highest value. In fact, we have

Observation 5 If

ρ + (γ − 1)μ < (γ − 1)2
σ2

2
,

then for economies with large time horizons, T , for the bank share, z, close to 0, the impact

of a change in λ on the value function becomes arbitrarily large, i.e., ∂w
∂λ |z → ∞ when

T → ∞ and z → 0. Here, ∂w
∂λ |z is the derivative of the value function, w, at z, with respect

to a constant change in λ in a neighborhood of z = 0, for an economy with horizon T .

Thus, for such economies, any policy that can increase the flexibility of capital movements

when the bank share is small will be tremendously important, since it avoids a perpetual

trap in which the economy is essentially absent of monitored capital in perpetuity.

This observation is very naturally related to the properties of price dividend ratios.

We have established that the objective of the central planner is to minimize the price

dividend ratios. After a shock, he optimally readjusts the relative capital in the two sectors.

Therefore, changes in the normalized value function differ after shocks, and in particular:

Observation 6 Price-dividend ratios will be differently affected by a shock in the banking

sector than by a shock in the stock sector. Specifically,
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a) If μ̂
γσ2 > 1

2 , then price-dividend ratios are lower after a shock in the bank sector than

after one (of equal size) in the stock sector.

b) If μ̂
γσ2 < 1

2 , then price-dividend ratios are higher after a shock in the bank sector than

after one (of equal size) in the stock sector.

As shown in this section, our model therefore leads to strong testable empirical hypotheses

as well as policy implications.

6 Concluding remarks

We have developed a simple, but rich, framework that incorporates a banking sector, asset

pricing and growth rates, allowing an economic integration of asset pricing and intermedi-

ated finance.

The overall implication of our model is that the share of intermediated capital in the

economy should be closely related to asset prices as well as to fundamental characteristics

of the macro economy such as growth rates. It also suggests that the value of financial

flexibility can be extremely high in some states of the world, since it mitigates the risk of a

perpetually small bank sector.

Our model primarily investigates the real effects of changes in the banking sector. How-

ever, a natural extension would be to model the nominal effects of a banking sector, and to

disentangle the real and nominal effects of the credit channel for monetary policy. Follow-

ing the seminal work of Kocherlakota,12 necessary conditions for the existence of money in

an economy are both imperfect recording keeping and limited enforcement of private con-

tracts. The illiquidity of claims held by the bank that we model presupposes such limited

enforcement, and a natural extension would be also to consider a nominal economy.

12He presents an overview of outstanding monetary questions in Kocherlakota (2002).
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A Derivatives of the Value Function

The derivatives of V in terms of derivatives of w are given by,

Vt = − (B + D)1−γ

1 − γ
wt, (27)

VB = − (B + D)1−γ

1 − γ

(
w

1 − γ

B + D
+ wz

D

(B + D)2

)
, (28)

VD = − (B + D)1−γ

1 − γ

(
w

1 − γ

B + D
− wz

B

(B + D)2

)
, (29)

VDD = − (B + D)1−γ

1 − γ

(
−w

γ(1 − γ)
(B + D)2

+ wz
2γB

(B + D)3
+ wzz

B2

(B + D)4

)
(30)

B Log utility

The derivation for γ = 1 is slightly different. we have

dB = aB dt,

dD = −aB dt + D (μ̂ dt + σ dω) ,

dz = az dt − z(1 − z) (μ̂ dt + σ dω) + z(1 − z)2σ2 dt.

Define

V (B, D, t) ≡ sup
a∈A

Et

[∫ T

t

e−ρ(s−t) log(B + D) ds

]
.

The Bellman equation for optimality is

sup
a∈A

[
Vt +

1
2
σ2D2VDD + [μ̂D − aB] VD + aBVB − ρV + log(B + D)

]
= 0.

By homogeneity, we can write V and its derivatives in terms of D and z:

V (B, D, t) =
log(B + D)

(
1 − e−ρ(T−t)

)
ρ

+ V (z, 1 − z, t)

≡ log(B + D)
(
1 − e−ρ(T−t)

)
ρ

+ W (z, t).

Vt = −e−ρ(T−t) log(B + D) + Wt; (31)

VB =
1 − e−ρ(T−t)

ρ(B + D)
+ Wz

D

(B + D)2
; (32)

VD =
1 − e−ρ(T−t)

ρ(B + D)
− Wz

B

(B + D)2
; (33)

VDD = −1 − e−ρ(T−t)

ρ(B + D)2
+ Wz

2B

(B + D)3
+ Wzz

B2

(B + D)4
. (34)

Substituting these into Equation (11), we obtain

Wt +
1
2
σ2z2(1 − z)2Wzz +

[
az − μ̂z(1 − z) + σ2z(1 − z)2

]
Wz − ρW

+
1 − e−ρ(T−t)

ρ

[
μ̂(1 − z) − σ2(1 − z)2

2

]
= 0.
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C Asset Pricing

Define

Q(B, D, t) ≡ Et

[
GT

(BT + DT )γ

∣∣∣Bt = B, Dt = D

]
. (35)

From Equation (24), we have:

Q(B, D, t) =
eρ(T−t)P (B, D, t)

(B + D)γ
− Et

[∫ T

t

eρ(T−s) δs

(Bs + Ds)γ
ds

]
. (36)

By iterated expectations,
E(dQ) = 0. (37)

Substituting for Q and simplifying, we obtain the following p.d.e. that must be satisfied by P , subject
to the terminal boundary condition P (B, D, T ) = G(B, D, T ):

Pt +
1
2
σ2D2PDD +

[
μ̂D − a(B + D) − σ2D2

B + D

]
PD + a(B + D)PB

−
(

ρ + μ̂
D

B + D
− σ2 D2

(B + D)2

)
P + δ(B, D, t) = 0. (38)

D Proofs

Proof of Proposition 1:
We study the case γ = 1. The case γ > 1 can be treated in an identical way. We first note

that azwz = λ(z) sign(wz)wz = λ(z)|wz |, so (16) is the same as (13). We define a solution to the
central planner’s optimization to be interior if a(t, 0) > 0 and a(t, 1) < 0 in a neighborhood of the
boundaries for all t < T , where the radiuses of the neighborhoods do not depend on t. A solution is
thus interior if it is always optimal for the central planner to stay away from the boundaries, z = 0
and z = 1. From our previous argument, we know that any smooth interior solution must satisfy
(16). What remains to be shown is that the solution to the central planner’s problem is indeed
interior, and that, given that the solution is interior, equations (16) and (17) have a unique, smooth,
solution, i.e., that (16) and (17) provide a well posed p.d.e. (Egorov and Shubin (1992)).13

We begin with the second part, i.e., the well posedness of the equation, given that the solution
is interior. As is usual, we first study the Cauchy problem, i.e., the problem without boundaries,
on the entire real line z ∈ R (or, equivalently, with periodic boundary conditions). We then extend
the analysis to the bounded case, z ∈ [0, 1]. Equation (16) has the structure of a generalized KPZ
equation, which has been extensively studied in recent years, see Kardar, Parisi, and Zhang (1986),
Gilding, Guedda, and Kersner (2003), Ben-Artzi, Goodman, and Levy (1999), Hart and Weiss
(2005), Laurencot and Souplet (2005) and references therein. The Cauchy problem is well-posed, i.e.,
given bounded, regular, initial conditions, there exists a unique, smooth, solution. Specifically, given
continuous, bounded, initial conditions, there is a unique solution that is bounded, twice continuously
differentiable in space and once continuously differentiable in time, i.e., w ∈ C2,1[0, T ]×R (see, e.g.,
Ben-Artzi, Goodman, and Levy (1999)).

Given that the Cauchy problem is well-posed and that the solution is smooth, it is clear that
az = λ(z) sign(wz) will have a finite number of discontinuities on any bounded interval at any point
in time. Moreover, given that the solution is interior, a is continuous in a neighborhood of z = 0
and also in a neighborhood of z = 1. The p.d.e.

0 = wt − ρw + (az − z(1 − z)μ̂ + z(1 − z)2σ2)wz +
σ2

2
z2(1 − z)2wzz + q(t, z),

13The concept of well-posedness additionally requires the solution to depend continuously on initial and
boundary conditions. This requirement is natural, since we can not hope to numerically approximate the
solution if it fails.
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is parabolic in the interior, but hyperbolic at the boundaries, since the σ2

2 z2(1−z)2wzz-term vanishes
at boundaries. For example, at the boundary, z = 1, using the transformation τ = T−t, the equation
reduces to

wτ = −ρw − λ(1)wz .

Similarly, at z = 0, the equation reduces to

wτ = −ρw + λ(0)wz + q(t, 0).

Both these equations are hyperbolic and, moreover, they both correspond to outflow boundaries.
Specifically, the characteristic lines at z = 0 are τ + z/λ(0) = const, and at z = 1 they are
τ − z/λ(1) = const. For outflow boundaries to hyperbolic equations, no boundary conditions are
needed, i.e., if the Cauchy problem is well posed, then the initial-boundary value with an outflow
boundary is well-posed without a boundary condition (Kreiss and Lorenz (1989)). This suggests
that no boundary conditions are needed.

To show that this is indeed the case, we use the energy method to show that the operator
Pw

def= ρw + (a− z(1− z)μ̂ + z(1− z)2σ2)wz + σ2

2 z2(1− z)2wzz is maximally semi-bounded, i.e., we
use the L2 inner product 〈f, g〉 =

∫ 1

0
f(x)g(x)dx, and the norm ‖w‖2 = 〈w, w〉, and show that for

any smooth function, w, 〈w, Pw〉 ≤ α‖w‖2, for some α > 0.14 This allows us to bound the growth
of d

dτ ‖w(t, ·)‖2 by d
dτ ‖w(t, ·)‖2 ≤ α‖w‖2, since 1

2 × d
dτ ‖w(t, ·)‖2 = 〈w, Pw〉. Such a growth bound,

in turn, ensures well-posedness (see Kreiss and Lorenz (1989) and Gustafsson, Kreiss, and Oliger
(1995)).

We define I = [ε, 1 − ε]. Here, ε > 0 is chosen such that wz is nonzero outside of I for all τ > 0.
By integration by parts, we have

〈w, Pw〉 = −ρ‖w‖2 + 〈w, cwz〉 + 〈w, dwzz〉
= −ρ‖w‖2 +

1
2

(〈w, cwz〉 − 〈wz , cw〉 − 〈w, czw〉 + [w2c]10
) − 〈wz , dwz〉 − 〈w, dzwz〉 + [wdwz ]10

= −ρ‖w‖2 − 〈w, czw〉 − λ(1)w(t, 1)2 − λ(0)w(0, t)2 − 〈wz , dwz〉 − 〈w, dzwz〉
≤ (r − ρ)‖w‖2 + γ max

z∈I
w(z)2 − 〈wz , dwz〉 − 〈w, dzwz〉

≤ (
r + σ2 − ρ

) ‖w‖2 + γ max
z∈I

w(z)2 − σ2

2

∫ 1

0

z2(1 − z)2w2
zdz,

where c(t, z) = az − μ̂z(1 − z) + σ2z(1 − z)2 and d(z) = σ2z2(1 − z)2/2. Also, γ = 2 maxz∈I λ(z),
and r = max0≤z≤1 |μ̂z(1 − z) − σ2z(1 − z)2|. Here, the last inequality follows from

−〈wz, dwz〉 − 〈w, dzwz〉 =
σ2

2

∫ 1

0

z(1 − z)
(−z(1 − z)w2

z − (2 − 4z)wwz

)
dz

≤ σ2

2

∫ 1

0

z(1 − z)
(−z(1 − z)w2

z + 2|w||wz |
)
dz

≤ σ2

2

∫ 1

0

z(1 − z)
(
−z(1 − z)w2

z +
z(1 − z)

2
w2

z +
2

z(1 − z)
w2

)
dz

= σ2‖w‖2 − σ2

2

∫ 1

0

z2(1 − z)2w2
zdz,

where we used the relation |u||v| ≤ 1
2 (δ|u| + |v|/δ) for all u, v for all δ > 0. Finally, a standard

Sobolev inequality implies that

γ max
z∈I

w(z)2 ≤ γ

(
ξ

∫
I

wz(z)2dz +
(

1
ξ

+ 1
)∫

I

w(z)2dz

)
,

14Since we impose no boundary conditions, it immediately follows that P is maximally semi-bounded if
it is semi-bounded.
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for arbitrary ξ > 0. Specifically, we can choose ξ = ε2(1 − ε)2/(2γ) to bound

γ max
z∈I

w(z)2 − σ2

2

∫ 1

0

z2(1 − z)2w2
zdz ≤ γ

(
1
ξ

+ 1
)
‖w‖2,

and the final estimate is then

d

dτ
‖w‖2 ≤

(
r + σ2 − ρ +

γ

ξ
+ γ

)
‖w‖2.

We have thus derived an energy estimate, for the growth of ‖w‖2, and well-posedness follows from
the theory in Kreiss and Lorenz (1989) and Gustafsson, Kreiss, and Oliger (1995). Notice that we
also used that a(0, ·) > 0 and a(1, ·) < 0 in the first equation, to ensure the negative sign in front of
the λ(0) and λ(1) terms.

What remains is to show that if condition 1 is satisfied, then indeed the solution is an interior
one. We first note that an identical argument as the one behind Proposition 1 in Longstaff (2001)
implies that the central planner will never choose to be in the region z < 0 or z > 1, since the
non-zero probability of ruin in these regions always make such strategies inferior. Since any solution
will be smooth, the only way in which the solution can fail to be interior is thus if a = 0 for some t,
either at z = 0, or at z = 1.

We note that close to time T , the solution to (13) will always be an interior one, since μ̂(1 −
z) − σ2

2 (1 − z)2 is strictly concave, with an optimum in the interior of [0, 1] and

wz(T − τ, z) =
∫ τ

0

qz(T − s, z)ds + O(τ3) =
τ2

2
(−μ̂ + σ2(1 − z)

)
+ O(τ3),

so the solution to wz = 0 lies at z∗ = 1 − μ̂
σ2 + O(τ), which from Condition 1 lies strictly inside the

unit interval for small τ . Thus, if a solution degenerates into a noninterior one, it must happen after
some time.

We next note that for the benchmark case in which λ(z) ≡ 0, i.e., for the case with no flexibility,
the solution is increasing in z at z = 0 and decreasing in z at z = 1 for all t. For example, at z = 0,
by differentiating (16) with respect to z, and once again using the transformation τ = T − t, it is
clear that wz satisfies the o.d.e.

(wz)τ = −(ρ + μ̂ − σ2)wz + qz(T − τ, 0), (39)

and since qz(T − τ, 0) > 0 and (wz)(0, 0) = 0, it is clear that (wz) > 0 for all τ > 0. In fact, the
solution to (39) is

e−(μ̂+ρ)τ
(
−e−τσ2

ρ + eτμ̂(μ̂ + ρ − σ2) + eτ(μ̂+ρ)(−μ̂ + σ2)
)

ρ(μ̂ + ρ − σ2)

which is strictly increasing in τ , as long as Condition 1 is satisfied. An identical argument can be
made at the boundary z = 1, showing that wz(τ, 1) < 0, for all τ > 0. Now, standard theory of
p.d.e.s implies that, for any finite τ , w depends continuously on parameters, for the lower order
terms, so wz �= 0 at boundaries for small, but positive, λ(z).

For large τ , we know that w converges to the steady-state benchmark case, which has wz �= 0 in
a neighborhood of the boundaries. Moreover, for small τ it is clear that wz �= 0 in a neighborhood
of the boundaries according to the previous argument. Since the solution is smooth in [0, T ]× [0, 1],
and wz �= 0 at the boundaries for all τ > 0, it is therefore clear that there is an ε > 0, such that
wz(t, z) > 0 for all τ > 0, for all z < ε, and wz(t, z) < 0 for all z > 1− ε. Thus, for λ ≡ 0, and for λ
close to 0 by argument of continuity, the solution is interior.

Next, it is easy to show that for any λ, the central planner will not choose to stay at the boundary
for a very long time. To show this, we will use the obvious ranking of value functions implied by
their control functions: λ1(z) ≤ λ2(z) for all z ∈ [0, 1] ⇒ w1(τ, z) ≤ w2(τ, z) for all τ ≥ 0, z ∈ [0, 1],
where w1 is the solution to the central planner’s problem with control constraint λ1, and similarly
for w2.
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Specifically, let’s assume that λ1 ≡ 0, and λ2 > 0. Now, let’s assume that for all τ > τ0,
the optimal strategy in the case with some flexibility (λ2) is for the central planner to stay at
the boundary, z = 1, for some τ0 > 0. From (16), it is clear that w2(τ, 0) = e−ρ(τ−τ0)w2(τ0, 0),
which will become arbitrarily small over time. Specifically, it will become smaller than w1(1− ε, τ),
for arbitrarily small ε > 0, in line with the previous argument, since w1(τ, 0) ≡ 0 for all τ and
w1

z(τ, 0) < −ν, for large τ , for some ν > 0. It can therefore not be optimal to stay at the boundary
for arbitrarily large τ , since w2(τ, 1− ε) ≥ w1(τ, 1− ε) > w2(τ, 0). A similar argument can be made
for the boundary z = 0.

In fact, a similar argument shows that the condition wz = 0 can never occur at boundaries.
For example, focusing on the boundary z = 0, assume that wz = 0 at z = 0 for some τ and define
τ∗ = infτ>0 wz(τ, 0) = 0. Similarly to the argument leading to (39), the space derivative of (13) at
the boundary z = 0 is

(wz)τ = −(μ̂ + ρ − σ2)wz + qz + awzz , (40)

where qz = (−μ̂ + σ2)1−e−ρτ

ρ is strictly positive for all τ > 0. Since, per definition, wz(τ−
∗ , 0) > 0

and wz(τ∗, 0) = 0, it must therefore be that qz + awzz ≤ 0, which, since a(τ, 0) > 0, for τ < τ∗,
implies that w is strictly concave in a neighborhood of τ∗ and z = 0. Moreover, just before τ∗, say
at τ∗ − Δτ , wz is zero at an interior point, close to z = 0, because of the strict convexity of w, i.e.,
wz(τ∗ − Δτ, Δz) = 0. However, at Δz, wz satisfies the following p.d.e., which follows directly from
(13):

(wz)τ = −(μ̂ + ρ − σ2 + O(Δz))wz + (1 + O(Δz))qz + O((Δz)2), (41)

and, since wz = 0, this implies that

(wz)τ = qz + O((Δz)2) > 0, (42)

so at time τ∗, wz(τ∗, Δz) = qz(τ∗ −Δτ, Δz)Δτ + O((Δz)2Δτ) + O((Δτ)2) > 0. However, since wzz
is strictly concave on z ∈ [0, Δz], it can not be that wz(τ∗, 0) = 0 and wz(τ∗, Δz) > 0, so we have a
contradiction. A similar argument can be made at the boundary at z = 1.

We have thus shown that the solution to (13) must be an interior one and that, given that the
solution is interior, the formulation as an initial value problem with no boundary conditions (16,17)
is well-posed. We are done.

Proof of Lemma 1: Follows immediately, since the first order condition implies that a will take
the form of a bang-bang control (see the proof of Proposition 1).

Proof of Lemma 2: The optimal solution follows immediately from the unconstrained portfolio
problem, see., e.g., Merton (1969).

Proof of Lemma 3: See Parlour, Stanton, and Walden (2009).

Proof of Lemma 4: TBD

Proof of Lemma 5: TBD

Proof of Proposition 2: Follows directly from proposition 2 and the Fokker-Planck equation.

Proof of Proposition 3: We have

dB =
(
adt − |a|dJ1

)
dt,

dD = −aB dt + D (μ̂ dt + σ dω) ,
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γ = 1: Define

V (B, D, t) ≡ sup
a∈A

Et

[∫ T

t

e−ρ(s−t) log(B + D) ds

]
.

The Bellman equation for optimality with jump-diffusion processes is then

sup
a∈A

[
Vt +

1
2
σ2D2VDD + [μ̂D − aB] VD + aBVB − (ρ + p)V + log(B + D) + pV ((1 − |a|)B, D, t)

]
= 0.

As before, by homogeneity, we can write V and its derivatives in terms of D and z:

V (B, D, t) =
log(B+D)(1−e−ρ(T−t))

ρ + w(z, t).

Using (31-34), and substituting into (11), we obtain

0 = wt +
1
2
σ2z2(1 − z)2wzz +

[
az − μ̂z(1 − z) + σ2z(1 − z)2

]
wz − (ρ + p)w

+
1 − e−ρ(T−t)

ρ

[
μ̂(1 − z) − σ2(1 − z)2

2

]
+ p

[
1 − e−ρ(T−t)

ρ
log(1 − |a|z)) + w

(
(1 − |a|)z
1 − |a|z , t

)]
.

A similar argument as in the proof of Proposition 1 implies that no boundary conditions are needed,
and the natural terminal condition is w(z, T ) = 0.

γ > 1: Define:

V (B, D, t) ≡ sup
a∈A

Et

[∫ T

t

e−ρ(s−t) (B(s) + D(s))1−γ

1 − γ
ds

]
.

Th Bellman equation for optimality is

0 = sup
a∈A

[
Vt +

1
2
σ2D2VDD + [μ̂D − aB] VD + aBVB − (ρ + p)V +

(B + D)1−γ

1 − γ
+ pV ((1 − |a|)B + D)

]
.

By homogeneity, we can write

V (B, D, t) = − (B + D)1−γ

1 − γ
w(z, t),

which, using (27-30), leads to

0 =
1
2
σ2z2(1 − z)2wzz +

(
az − μ̂z(1 − z) + σ2γz(1 − z)2

)
wz

−
[
ρ + p − μ̂(1 − γ)(1 − z) +

1
2
σ2γ(1 − γ)(1 − z)2

]
w

−1 + p

[
(1 − |a|z)1−γ − 1 + w

(
(1 − |a|)z
1 − |a|z , t

)]
.

A similar argument as in the proof of Proposition 1 implies that no boundary conditions are needed,
and the natural terminal condition is w(z, T ) = 0.
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Proof of Proposition 4 : We have

PD + PB

B + D
= (B + D)γ−1(1 − γ)Et

[∫ T

t

e−ρ(s−t) (Bs + Ds)1−γ

1 − γ
ds

]

= −(B + D)γ−1(1 − γ)
(B + D)1−γ

1 − γ
w(z, t) = −w(z, t).

Proof of Proposition 5:
We show it for the special case when γ = 1. The case γ > 1 follows from a similar argument.
For a bond maturing at date T , G(B, D, T ) = 1, and by homogeneity we can write

P (B, D, t) = P

(
z

1 − z
, 1, t

)
(43)

≡ p(z, t); (44)
Pt = pt; (45)

PB = pz
∂z

∂B
(46)

= pz
D

(B + D)2
; (47)

PD = pz
∂z

∂D
(48)

= pz
−B

(B + D)2
; (49)

PDD = pzz

(
∂z

∂D

)2

+ pz
∂2z

∂D2
(50)

= pzz
B2

(B + D)4
+ pz

2B

(B + D)3
. (51)

Substituting these into Equation (38), and simplifying, we obtain

pt +
1
2
σ2z2(1 − z)2pzz +

[
a − μ̂z(1 − z) + 2σ2z(1 − z)2

]
pz

− [
ρ + μ̂(1 − z) − σ2(1 − z)2

]
p = 0. (52)
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