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Abstract 

The application of predictive data mining techniques in Information Systems research has grown in recent 

years, likely due to their effectiveness and scalability in extracting information from large amounts of data. 

A number of scholars have sought to combine data mining with traditional econometric analyses. 

Typically, data mining methods are first used to generate new variables (e.g., text sentiment), which are 

added into subsequent econometric models as independent regressors. However, because prediction is 

almost always imperfect, variables generated from the first stage data mining models inevitably contain 

measurement error or misclassification. These errors, if ignored, can introduce systematic biases into the 

second stage econometric estimations and threaten the validity of statistical inference. In this commentary, 

we examine the nature of this bias, both analytically and empirically, and show that it can be severe even 

when data mining models exhibit relatively high performance. We then show that this bias becomes 

increasingly difficult to anticipate as the functional form of the measurement error grows more complex, 

or as the number of covariates in the econometric model increases. We review several methods for error 

correction and focus on two simulation-based methods, SIMEX and MC-SIMEX, which can be easily 

parameterized using standard performance metrics from data mining models, such as error variance or the 

confusion matrix, and can be applied under a wide range of econometric specifications. Finally, we 

demonstrate the effectiveness of SIMEX and MC-SIMEX by simulations and subsequent application of 

the methods to econometric estimations employing variables mined from three real world datasets related 

to travel, social networking, and crowdfunding campaign websites. 
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1. Introduction 

The application of data mining1 methods creates appealing opportunities for research across multiple 

disciplines, such as information systems (IS), marketing, economics, and finance. The increasing 

availability of big data and unstructured data further contributes to the popularity of data mining methods 

(Agarwal and Dhar 2014; Chen et al. 2012; Varian 2014). Based on observed data, predictive data mining 

models can be used to automatically generate or estimate variables that researchers are interested in, 

making it an efficient and sophisticated approach to processing large amounts of structured and 

unstructured data. Recent examples include the use of text mining techniques to determine the sentiment 

of text (e.g., Pang et al. 2002; Das and Chen 2007), and the use of image classifiers to predict an 

individual’s gender or race from a profile picture (e.g., Chan and Wang 2014; Rhue 2015), or to detect the 

presence (absence) of various objects in AirBNB property listings (Zhang et al. 2016). 

Many IS studies have recently sought to combine data mining approaches with traditional 

statistical analyses or econometric modeling in a two-stage process. In the first stage, pre-trained data 

mining models are deployed to generate new variables that are not readily available from existing data. In 

the second stage, these generated variables are added into regression models, usually as independent 

regressors. Several papers adopting this two-stage process have uncovered interesting insights and have 

been published in top IS journals (e.g., Gu et al. 2007, 2014; Aggarwal et al. 2012; Lu et al. 2013; 

Moreno and Terwiesch 2014; Wang et al. 2013; Archak et al. 2011). For instance, Aggarwal et al. (2012) 

adopted a text classification model to label sentiments of online blog posts as positive, negative, and 

neutral. They then estimated a regression to demonstrate the effect of message sentiment on venture 

financing outcomes. 

However, an important issue with this two-stage process is that variables generated in the first 

stage almost certainly contain some amount of predictive error, because predictive data mining models 

are imperfect. Such error then carries over to the second stage econometric models, and manifests as 

                                                
1 We use the general term “data mining” throughout the commentary, although the same methodologies are also 

referred to as “machine learning”, “statistical learning”, or “predictive analytics” in various contexts. 



2 

measurement error, if the variable is continuous, or misclassification, if the variable is discrete. For 

example, suppose we have built a text classification model on a training dataset, which predicts the 

sentiment of Facebook posts as either positive or negative, and the model has achieved a recall, or 

sensitivity, of 0.8 for the “positive” class on a holdout, testing dataset. This means that 20% of posts that 

are actually positive are incorrectly classified as negative. These errors, if ignored, can introduce 

systematic biases into the second stage estimations and may, therefore, threaten the validity of the 

subsequent statistical inferences. 

The issue of measurement error and misclassification is not new and has received a great deal of 

attention from econometricians and statisticians (Greene 2003). However, it warrants special attention in 

the new context of big data and increasing interest in combining data mining with econometric modeling 

for the following reasons. First and foremost, measurement error is unobservable in many situations; 

however, here the errors, which originate from imperfect predictions by first stage data mining models, 

can be observed and quantified using standard methods of model evaluation, stemming from confusion 

matrices or continuous measures of error. This provides a clear opportunity to diagnose the error and 

correct for the resulting bias. Second, many if not most studies in IS that have used the two-stage 

approach of combining econometric modeling with data mining have failed to acknowledge the potential 

estimation biases introduced by measurement error or misclassification. We believe that this may derive, 

at least in part, from a lack of understanding or awareness of the issue. Third, the variables obtained from 

the first-stage prediction typically enter the second-stage estimation as independent regressors. Unlike 

error in dependent variables, which typically leads to inflated variance of estimates and decreased model 

fit, error in independent variables generally introduces systematic biases into coefficient estimates 

(Greene 2003), and thus causes serious concerns.2 Yet, most IS researchers seem to be unaware of either 

the potential biases from predictive errors or proper methods to mitigate the biases.  

In this commentary, we hope to bridge this gap by addressing three key issues: (1) To what extent 

                                                
2 In this commentary, we do not consider the issue of error in dependent variables, because it is rare for studies to 

employ predictive models to generate outcome variables for second stage estimations. Indeed, during our review of 

the literature for this commentary, we did not come across any study in the IS literature that has taken this approach. 
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will measurement error or misclassification from data mining models bias estimations in econometric 

analyses that incorporate the output of those models? (2) How can we diagnose the structure of the 

measurement error or misclassification, and the resulting biases, in a particular research setting and 

dataset? (3) How can we mitigate these biases?  

Based on both theoretical reasoning and simulated data, we first demonstrate that measurement 

error and misclassification can indeed introduce considerable biases into several commonly used 

econometric models, such as linear regressions, generalized linear regressions (e.g., Logit, Probit, and 

Poisson models), and panel data regressions. Notably, our simulations are conducted based on commonly 

observed levels of predictive performance in data mining models, in terms of precision and recall. Hence, 

the errors we simulate and the biases we observe are likely to manifest in an actual study.  

Having established the undesirable impact of error on econometric analyses, we then review 

several possible error-correction methods. We focus on two simulation-based methods that lend 

themselves well to mitigating the bias introduced by predictive measurement error and misclassification. 

The Simulation-Extrapolation (SIMEX thereafter) method applies to continuous variables with additive 

measurement error (Cook and Stefanski 1994). The Misclassification-SIMEX (MC-SIMEX thereafter) 

method applies to discrete variables with misclassification (Küchenhoff et al. 2006). We focus on SIMEX 

and MC-SIMEX rather than other approaches such as instrumental variable approach or method-of-

moments for two main reasons. First, SIMEX and MC-SIMEX can easily be applied to a variety of model 

specifications whereas most other methods require model-specific assumptions. Second, SIMEX and MC-

SIMEX can be configured based solely on the observable performance indicators of first-stage data 

mining models, whereas other methods typically require explicit modeling of errors in the second-stage 

estimations. We validate the effectiveness of SIMEX and MC-SIMEX using simulated data, and we then 

apply both methods to three real world datasets. Our results demonstrate the effectiveness of these 

methods in mitigating estimation bias from measurement error and misclassification. Our results also 

reveal the limitation of these or any methods in addressing predictive measurement error issues, when 

first stage data mining performance is problematically low. Finally, we provide a guiding procedure that 
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researchers can follow to diagnose estimation biases and assess the efficacy of specific error correction 

methods in consideration of their research settings, with specific data samples and data mining models. 

This commentary contributes to the IS literature in three ways. First, we describe and raise 

awareness of the issue of measurement error and misclassification in the context of an increasingly 

prevalent methodological practice in IS research, i.e., the integration of data mining and econometric 

analyses. We show that, while predictive error can bias econometric estimations, the ability to quantify 

such error brings the opportunity to correct for estimation biases. Second, we review several existing 

remedial approaches that can address the identified issue, and demonstrate the effectiveness of two 

methods in particular, using both simulations and real-world empirical applications. Third, we propose a 

diagnostic procedure via which researchers can assess the characteristics of the measurement error and 

estimation bias in a particular scenario, with a given sample of data, and thereby choose the best approach 

to address the problem in that setting.  

Measurement error and misclassification may arise in a variety of research settings and are very 

difficult to avoid completely. Therefore, we believe that awareness of the problem and the severity of its 

consequences can help researchers understand the potential risks of combining data mining with 

econometric analyses, and thus to improve the robustness of their conclusions. At the same time, we 

stress that the points raised in this commentary do not necessarily invalidate the results of any past work, 

because the predictive error in the first stage data mining can have variable effects on the subsequent 

econometric estimation. The predictive error may cause attenuation of coefficients in some cases, 

amplification in others, and in some cases it may have little effect at all. Thus, our aim with this 

commentary is to highlight the unique opportunity of error correction in this setting and to provide IS 

scholars with guidance on the implementation of this integrated methodology in as robust a manner as 

possible, going forward. 

2. The Common Practice of Combining Data Mining and Econometric Analyses 

Studies that have adopted the two-stage methodology of combining data mining techniques with 

econometric estimations are becoming prevalent in the IS discipline. A cursory search of recently 
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published issues of top IS journals and conference proceedings revealed at least 13 studies that have used 

this approach; we identified 6 recent studies in Information Systems Research (Gu et al. 2007, 2014; 

Aggarwal et al. 2012; Wang et al. 2013; Moreno and Terwiesch 2014; Singh et al. 2014), 2 in 

Management Science (Archak et al. 2011; Lu et al. 2013), 2 appearing in other journals (Ghose and 

Ipeirotis 2011; Ghose et al. 2012), and 3 in the Proceedings of the International Conference on 

Information Systems (Chan and Wang 2014; Rhue 2015; Zhang et al. 2016).3 The two-stage methodology 

has also been adopted in several fields outside the IS community, such as Marketing (e.g., Tirunillai and 

Tellis 2012), Human-Computer Interaction (e.g., Liu et al. 2012; Zhu et al. 2011, 2012), Economics (e.g., 

Jelveh et al. 2014), and Finance (see Fisher et al. 2016 for a review). In this section, we report and discuss 

several patterns we have observed in these publications. 

The most common application of data mining models in these studies was text classification that 

was used primarily for coding online user-generated content, such as consumer reviews. Another, less 

common use was image classification that was used to identify objects or persons from digital 

photographs (Ghose et al. 2012; Chan and Wang 2014; Rhue 2015; Zhang et al. 2016). Most of the papers 

followed the common approach to develop the classification models.4 To build a classification model, 

researchers first draw a random subsample of observations from the dataset and have them manually 

classified or labeled by human coders based on predefined rules. This manually classified subsample then 

becomes the ground truth for training and evaluating the classifier.5 A classifier is trained using a portion 

                                                
3 We searched for papers that used predictive data mining methods (e.g., classification) and excluded studies that 

only employed dictionary-based natural language processing techniques (e.g., Johnson et al. 2015; Tetlock et al. 

2008) and studies that used exploratory data mining methods (e.g., Wu 2013; Bao and Datta 2014). In this 

commentary, we do not discuss exploratory data mining models, such as topic modeling using Latent Dirichlet 

Allocation (LDA), because they generally do not have prediction-oriented evaluation metrics that can be used to 

make error corrections. 
4 For a comprehensive introduction to data mining or textual classification, readers may refer to Aggarwal (2015) or 

Provost and Fawcett (2013). Varian (2014) also provides an overview of data mining techniques for econometricians. 
5 In this commentary, we focus on predictive errors from data mining models. We do not consider inter-coder 

disagreement or error introduced via the human-labeling process. We believe that disagreements amongst human 

coders are fundamentally different from predictive errors. Manual labeling is most often employed when there is no 

ground truth. Disagreements among coders typically reflect inherent ambiguity or subjectivity in the coding process, 

whereas predictive errors typically reflect the limited learning capacity of data mining models. For subjective or 

open-ended labeling tasks, the issue of coder-introduced error might be less concerning because the labels reflect 

researchers’ subjective belief about “ground truth” and may not contain definitive error. The application of data-
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of the labeled data and then its performance is evaluated using the remaining data, by comparing the 

classifier’s predictions with the ground truth. Some studies (e.g., Ghose and Ipeirotis 2011; Ghose et al. 

2012) have adopted a more advanced evaluation method, known as cross-validation, wherein the labeled 

set is partitioned into K folds, and classifiers are iteratively trained on different sets of (K-1) folds and 

evaluated using the remaining fold. The trained classifiers are then deployed on the unlabeled remainder 

of the dataset to obtain predicted labels. This approach has the benefit of scalability, because hand-coding 

an overwhelmingly large dataset is often infeasible.  

There exist many data mining techniques for building predictive models, including classification 

and regression trees, k-nearest neighbors, naïve Bayes, neural networks, support vector machines, 

Bayesian networks, and various linear and non-linear regression techniques. Some of the techniques were 

developed to predict continuous outcomes (numeric prediction task), some to predict discrete outcomes 

(classification task), and others can be configured for either purpose. Several metrics are available to 

assess their predictive performance. For numeric prediction, evaluations are based on prediction errors, 

i.e., the differences between predicted and actual values. Commonly used metrics include MAE (mean 

absolute error) and RMSE (root mean squared error) (Aggarwal 2015). For classification models, 

commonly used metrics include overall accuracy (the percentage of correct predictions across all classes), 

precision (the percentage of predictions in a given class that are correct), and recall (the percentage of 

cases that truly belong to a given class that are correctly predicted by the model) (ibid). Figure 1 

illustrates these performance metrics using a binary classification model as an example. All papers we 

surveyed used classification models; 6 papers reported the predictive performance of their data mining 

models, with overall accuracy ranging from 60% to 87%, precision ranging from 70% to 100%, and recall 

ranging from 74% to 100%.  

Another pattern we observed was that, in all papers, the variables generated via data mining were 

incorporated into second-stage regressions with many other covariates. Typical second-stage econometric 

                                                                                                                                                       
driven procedures to resolve inter-coder disagreement falls outside the scope of this work. However, for an example 

that discusses the issue of inter-coder disagreement and the use of SIMEX to mitigate its impact, see Hopkins and 

King (2010). 
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models include linear regressions with fixed or random effects, Logit or Probit regressions, systems of 

equations, and vector autoregression (VAR). We also observed that the econometric models were 

typically estimated on a much larger sample than the one used to train the data mining model in the first 

stage. For example, Moreno and Terwiesch (2014) used a labeled sample to train their model that 

comprised 2% of the total dataset. The trained model was then used to generate the variable of interest for 

the remaining 98% of the dataset. As we will show in the next section, the measurement error or 

misclassification that originates from data mining has the potential to introduce systematic biases into 

subsequent econometric estimations. These biases persist in large samples, and are generally harder to 

anticipate or predict as the number of covariates in the econometric model increases. 

Figure 1. Performance Metrics for a Two-Class Classification Model 

 
 Actual  Accuracy = (TP + TN)/(TP + TN + FP + FN) 

 Positive Negative  For positive class: 

Predicted 
Positive TP FP  Precision = TP/(TP + FP), Recall = TP/(TP + FN) 

Negative FN TN  For negative class: 

     Precision = TN/(TN + FN), Recall = TN/(TN + FP) 

Note. The left hand panel is a confusion matrix obtained by evaluating a given predictive model. It summarizes the 

number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). The right hand 

panel lists the performance metrics derived from the confusion matrix, including overall accuracy, precision, and 

recall rates. 

3. Estimation Biases due to Measurement Error or Misclassification 

In this section, we present both analytical and simulation results regarding the biases in coefficient 

estimates caused by measurement error or misclassification, for several commonly used econometric 

models. First, we discuss a simple linear regression with one regressor, containing either measurement 

error or misclassification. In this scenario, the bias can be mathematically derived. Subsequently, for more 

complicated model specifications, we demonstrate the resultant biases using simulated data.  

3.1. Bias in linear regression with one regressor 

Consider a simple linear regression with only one regressor: 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀. If both the dependent and 

independent variables are precisely measured, OLS would yield unbiased, consistent, and efficient 

estimates of 𝛽0  and 𝛽1  (Greene 2003). Now, suppose that instead of 𝑋 we actually observe �̂�, which 

includes error. Regressing 𝑌 on �̂� would yield biased estimates. 
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If 𝑋 is a continuous variable, there are two broad types of measurement error: classical error and 

non-classical error. If the measurement error, 𝑒 , is random and additive – i.e., �̂� = 𝑋 + 𝑒  – and 

independent of both 𝑋 and 𝜀, such error is known as classical measurement error (Carroll et al. 2006). The 

error results in an attenuation bias, that is, the estimated 𝛽1̂  satisfies 𝐸(𝛽1̂|�̂�) = 𝛽1[𝜎𝑋
2/(𝜎𝑋

2 + 𝜎𝑒
2)] , 

which implies that the regression coefficient is underestimated (see Greene 2003 for proof). Given 𝑋, the 

magnitude of the bias depends on the variance of the error, and larger error variance leads to greater bias. 

Measurement error that is not random, not additive, or not independent of 𝑋 and 𝜀 is known as non-

classical measurement error, and we will discuss its impact later.  

If 𝑋 is a discrete variable, the misclassification would also result in a systematic bias in the 

regression coefficient. For simplicity, we can assume �̂�  is a dummy variable and conditionally 

independent of 𝑌  given 𝑋  (i.e., nondifferential misclassification), 6  then the estimated 𝛽1̂  will satisfy 

𝐸(𝛽1̂|�̂�) = 𝛽1[𝑃𝑟(𝑋 = 1|�̂� = 1) − 𝑃𝑟(𝑋 = 1|�̂� = 0)]  (Gustafson 2003, see Appendix A1 for proof). 

Using data mining performance measures, this relationship can be written as follows: 𝐸(𝛽1̂|�̂�) =

𝛽1[𝑃𝑟(𝑋 = 1|�̂� = 1) + 𝑃𝑟(𝑋 = 0|�̂� = 0) − 1] = 𝛽1[𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑐𝑙𝑎𝑠𝑠 1) + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑐𝑙𝑎𝑠𝑠 0) − 1] . That is, 

the magnitude of the bias is determined by the sum of the precision rates for the two classes. Appendix 

A2 provides an example and a graphical illustration of how misclassification can result in estimation bias. 

In extreme cases when the sum of the two precision scores is smaller than 1, the estimated coefficient 

may shift in the opposite direction from the true value, resulting in a coefficient of the opposite sign.  

Finally, note that the above finite sample results also hold asymptotically. For continuous 

measurement error, 𝑝𝑙𝑖𝑚 𝛽1̂ = 𝛽1[𝜎𝑋
2/(𝜎𝑋

2 + 𝜎𝑒
2)] . For binary misclassification, 𝑝𝑙𝑖𝑚 𝛽1̂ = 𝛽1[𝑃𝑟(𝑋 =

1|�̂� = 1) − 𝑃𝑟(𝑋 = 1|�̂� = 0)]. Therefore, coefficient estimates with errors are inconsistent. 

3.2. Bias in more complicated models: Theoretical results 

Considering the above discussion, one might be tempted to conclude that measurement error and 

                                                
6 This assumption is likely to hold if �̂� is generated via a data mining model, because �̂� is only determined by its 

true value, X, and the data mining model, which is usually a separate process from the data-generating process 

reflected by the regression equation. 
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misclassification will typically only produce an attenuation bias in coefficient estimates and, thus, will 

only lead to conservative results and Type II error. However, it is important to note that an amplification 

bias may also manifest. This can happen when either the error structure or the econometric specification 

in the second-stage regression model grows more complicated. 

First, in the case of linear regression with one regressor, amplification bias can manifest under 

non-classical measurement error whose error structure deviates from the random, additive, and 

independent error that we described in Section 3.1. For example, consider a continuous variable with an 

additive measurement error, where the error structure includes both a random component and a systematic 

component in the form of �̂� = 𝑎 + 𝑏𝑋 + 𝑒, 𝐸(𝑒) = 0, where a represents the additive systematic error, b 

represents the multiplicative systematic error, and e represents the random error. The resulting coefficient 

on �̂�  then satisfies 𝐸(𝛽1̂|�̂�) =
𝛽1𝑏𝜎𝑋

2 +𝜌𝑒𝜀σe𝜎𝜀

𝑏2𝜎𝑋
2+𝜎𝑒

2  (Carroll et al. 2006). Attenuation bias happens with a 

classical measurement error, as we illustrated in the previous section, only because we assumed (1) 𝑒 is 

uncorrelated with 𝜀, the regression error term (i.e., 𝜌𝑒𝜀 = 0), and (2) there is no systematic error between 

𝑋 and �̂�, i.e., 𝑏 = 1. In our scenario of interest, the form of the measurement error is determined by the 

data mining model. If the data mining model systematically underestimates the true value, i.e., 𝑏 < 1, 

then the second assumption is no longer true, and the bias in 𝛽1 may manifest as an amplification. An 

amplification bias can occur in misclassification as well. Gustafson (2003) notes that, if a categorical 

variable with more than two levels bears misclassification, no simple conclusion can be drawn about the 

direction of the bias in the estimated coefficient. 

Second, when the second-stage regression specification becomes more complicated, the biases 

can be similarly difficult to anticipate. In multivariate regressions, even when the other variables (i.e., 

those not generated from data mining) are measured without error, the presence of a data mined variable 

with predictive error can cause the coefficient estimates of all variables to be biased in unknown 

directions (Greene 2003; Gustafson 2003; Buonaccorsi 2005). In nonlinear regressions, the directions of 

biases associated with both the variable with error and the other precisely measured variables are also 
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uncertain (Carroll et al. 2006). 

3.3. Bias in more complicated models: Simulation results 

Because analytical, closed form solutions are generally difficult to obtain for complicated regression 

models with measurement error or misclassification, we provide an illustrative numerical analysis based 

on simulation. The simulation was conducted as follows. First, we generated three variables having 

different underlying distributions: 𝑋1 ∼ 𝑁(0, 12) , 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) , and 𝑋3 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−10,10) . 

We modified 𝑋1 and 𝑋2 to introduce measurement error or misclassification (see details in Sections 3.3.1 

and 3.3.3). Second, we generated another normally distributed variable as the error term as 𝜀 ∼

𝑁(0,0. 52). Third, we generated a dependent variable as a function of the independent variables and the 

error term: 𝑌 = 1 + 2 × 𝑋1 + 3 × 𝑋2 + 0.5 × 𝑋3 + 𝜀. The coefficients were fixed in order to quantify the 

magnitudes of estimation biases. In addition to linear regression, we also simulated Logit, Probit, and 

Poisson regressions, as well as a linear regression with fixed effects. For the three generalized linear 

models, we generated dependent variables based on the corresponding distributional assumptions.7 For 

the linear panel data model with fixed effects, the regression estimated was 𝑌𝑖𝑗 = 𝛼𝑖 + 2 × 𝑋1𝑖𝑗 + 3 ×

𝑋2𝑖𝑗 + 0.5 × 𝑋3𝑖𝑗 + 𝜀𝑖𝑗 ,  where 𝛼𝑖 = 𝑖, 𝑖 ∈ {1,2, … ,25} and 𝑗 ∈ {1,2, … ,200} . The 𝛼𝑖  represented the 

panel-specific fixed effects. We also simulated a linear random-effects regression, where 𝛼𝑖  were 

randomly drawn from a standard normal distribution. The results were qualitatively the same as the fixed-

effect model, so we only reported the fixed-effect regression. The results that we report below are based 

on 5,000 observations. We repeated the analysis with 10,000 observations and got similar results with no 

qualitative differences. Below we present three simulation results, respectively showing estimation biases 

caused by classical and non-classical measurement error in 𝑋1, and misclassification in 𝑋2. 

3.3.1. Classical measurement error in 𝑋1 

We first simulated the impact of classical additive measurement error in 𝑋1 with 𝑋1̂ = 𝑋1 + 𝑒, where 𝑒 ∼

𝑁(0, 𝜎𝑒
2) and is independent of 𝑋1, 𝜀, and the other covariates in the simulated regressions. Because 𝑋1 

                                                
7 Let 𝑋𝑏 = 1 + 2𝑋1 + 3𝑋2 + 𝑋3 . 𝑌𝐿𝑜𝑔𝑖𝑡  is drawn from a Bernoulli distribution with 𝑝 =

1

1+𝑒−𝑋𝑏 . 𝑌𝑃𝑟𝑜𝑏𝑖𝑡  is drawn 

from a Bernoulli distribution with 𝑝 = 𝜙(𝑋𝑏). 𝑌𝑝𝑜𝑖𝑠𝑠𝑜𝑛 is drawn from a Poisson distribution with 𝜆 = 𝑒𝑋𝑏. 
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follows a standard normal distribution, we considered three values of 𝜎𝑒 – 0.1, 0.3, and 0.5 – to capture 

different degrees of measurement error. For all simulations in this subsection, 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) and 

contained no misclassification, enabling us to isolate the impact of measurement error in 𝑋1. Table 1 

summarizes our simulation results. For each regression, the first column shows coefficient estimates 

without measurement error (denoted as 𝑏 ) and the second column shows coefficient estimates with 

measurement error in 𝑋1 (denoted as 𝑏′). The third and fourth columns show the relative magnitude of 

estimation bias, calculated using estimated and true coefficient values, respectively. i.e., %1 = (𝑏′ − 𝑏)/𝑏 

and %2 = (𝑏′ − 𝑏𝑡𝑟𝑢𝑒)/𝑏𝑡𝑟𝑢𝑒. We mainly focus on %1 in our subsequent discussion, because this value 

captures the bias purely due to measurement error, whereas %2
 reflects both bias from measurement error 

and error due to noise. For the linear fixed-effects regression, we omit the estimates of the fixed effects, 

due to space consideration. Because the data was simulated, all estimates were statistically significant. 

We therefore do not report standard errors or levels of statistical significance. 

Table 1. Regression Results for 𝑋1 with Classical Measurement Error 

 OLS Logit Probit Poisson Fixed-Effect 

 𝑏 𝑏′ %1
 %2

 𝑏 𝑏′ %1
 %2 𝑏 𝑏′ %1 %2 𝑏 𝑏′ %1 %2 𝑏 𝑏′ %1 %2 

𝜎𝑒 = 0.1 

C 1.004 1.006 0.3% 0.6% 1.002 0.993 -0.9% -0.7% 1.042 1.012 -2.8% 1.2% 0.999 1.232 23% 23.2%     

𝑋1 1.995 1.970 -1.3% -1.5% 1.996 1.954 -2.1% -2.3% 1.979 1.903 -3.9% -4.9% 2.000 1.911 -4.4% -4.5% 1.994 1.977 -0.9% -1.2% 

𝑋2 2.988 2.990 0.1% -0.3% 2.890 2.868 -0.8% -4.4% 2.897 2.822 -2.6% -5.9% 3.000 2.956 -1.5% -1.5% 2.986 2.987 0.03% -0.4% 

𝑋3 0.499 0.500 0.2% 0.0% 0.493 0.489 -0.8% -2.2% 0.484 0.471 -2.7% -5.8% 0.500 0.486 -2.8% -2.8% 0.499 0.499 0% -0.2% 

𝜎𝑒 = 0.3 

C 1.004 1.005 0.2% 0.5% 1.002 0.962 -3.9% -3.8% 1.042 0.911 -12.5% -8.9% 0.999 1.482 48% 48.2%     

𝑋1 1.995 1.833 -8.1% -8.4% 1.996 1.748 -12.4% -12.6% 1.979 1.567 -20.8% -21.7% 2.000 1.760 -12.0% -12.0% 1.994 1.824 -8.5% -8.8% 

𝑋2 2.988 2.980 -0.3% -0.7% 2.890 2.757 -4.6% -8.1% 2.897 2.499 -13.7% -16.7% 3.000 2.866 -4.5% -4.5% 2.986 2.990 0.13% -0.3% 

𝑋3 0.499 0.500 0.2% 0.0% 0.493 0.472 -4.3% -5.6% 0.484 0.421 -13.2% -15.8% 0.500 0.474 -5.1% -5.2% 0.499 0.496 -0.6% -0.8% 

𝜎𝑒 = 0.5 

C 1.004 0.996 -0.8% -0.4% 1.002 0.899 -10.2% -10.1% 1.042 0.765 -26.6% -23.5% 0.999 2.445 144% 144.5%     

𝑋1 1.995 1.595 -20.0% -20.3% 1.996 1.453 -27.2% -27.4% 1.979 1.155 -41.7% -42.3% 2.000 1.337 -33.1% -33.2% 1.994 1.589 -20.3% -20.6% 

𝑋2 2.988 3.011 0.8% 0.4% 2.890 2.678 -7.3% -10.7% 2.897 2.205 -23.9% -26.5% 3.000 2.750 -8.3% -8.3% 2.986 2.983 -0.1% -0.6% 

𝑋3 0.499 0.500 0.2% 0.0% 0.493 0.445 -9.7% -11.0% 0.484 0.357 -26.2% -28.6% 0.500 0.418 -16.4% -16.4% 0.499 0.499 0% -0.2% 

Note. For each regression, b stands for coefficient estimates when no error was introduced, 𝑏′ stands for coefficient 

estimates when error was introduced in 𝑋1. %1 and %2 stand for relative magnitude of estimation bias, calculated 

using estimated and true coefficient values, respectively. 

 

Several patterns emerged that are worth noting. While the coefficient on 𝑋1  was consistently 
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downward biased, coefficients of other variables were biased in different directions. As the magnitude of 

measurement error increased from 0.1 to 0.5, bias in the coefficient of 𝑋1 also increased from -1.3% to -

20% in the case OLS. Compared to OLS, biases in generalized linear models were greater. For example, 

with measurement error of 𝜎𝑒 = 0.5, the coefficient of 𝑋1 in OLS was underestimated by 20%, compared 

to 27.2% in Logit, 41.7% in Probit, and 33.1% in Poisson regression. Bias in the linear fixed-effect model 

was comparable to bias in OLS, and estimates of the fixed effects were unbiased. 

3.3.2. Non-classical measurement error in 𝑋1 

We simulated three types of non-classical measurement error in 𝑋1: (1) 𝑋1̂ = 𝑋1 + 𝑒, 𝑒 ∼ 𝑁(0, 𝜎𝑒
2) and is 

independent of 𝜀 and other covariates, but is correlated with the true value 𝑋1 with 𝜌𝑋1𝑒 = 0.5; (2) 𝑋1̂ =

𝑋1 + 𝑒, 𝑒 ∼ 𝑁(0, 𝜎𝑒
2) and is independent of 𝑋1 and 𝜀, but is correlated with 𝑋3 with 𝜌𝑋3𝑒 = 0.5; (3) 𝑋1̂ =

1 + 0.5𝑋1 + 𝑒, 𝑒 ∼ 𝑁(0, 𝜎𝑒
2) and is independent of 𝑋1, 𝜀, and other covariates. The first two scenarios 

represent random measurement error that is correlated with either the true value or another covariate in 

the second-stage regression, and the third scenario represents systematic independent measurement error. 

All three scenarios of error may occur in data mining model predictions. For simplicity, we only report 

simulation results for linear regressions in Table 2. We obtained similar results for other regressions. 

Table 2. Regression Results for 𝑋1 with Non-Classical Measurement Error 

  Scenario (1) Scenario (2) Scenario (3) 

  𝑏 𝑏′ %1 %2 𝑏 𝑏′ %1 %2 𝑏 𝑏′ %1 %2 

𝜎𝑒 = 0.1 

C 1.004 1.003 -0.1% 0.3% 1.004 1.005 0.1% 0.5% 1.004 -2.817 -380% -381.7% 

𝑋1 1.995 1.884 -5.6% -5.8% 1.995 1.979 -0.8% -1.1% 1.995 3.827 91.8% 91.4% 

𝑋2 2.988 2.983 -0.2% -0.6% 2.988 2.983 -0.2% -0.6% 2.988 2.977 -0.4% -0.8% 

𝑋3 0.499 0.498 -0.2% -0.4% 0.499 0.481 -3.6% -3.8% 0.499 0.498 -0.2% -0.4% 

𝜎𝑒 = 0.3 

C 1.004 1.000 -0.4% 0.0% 1.004 1.006 0.2% 0.6% 1.004 -1.939 -293% -293.9% 

𝑋1 1.995 1.641 -17.7% -18.0% 1.995 1.863 -6.6% -6.9% 1.995 2.903 45.5% 45.2% 

𝑋2 2.988 2.976 -0.4% -0.8% 2.988 2.975 -0.4% -0.8% 2.988 3.006 0.6% 0.2% 

𝑋3 0.499 0.498 -0.2% -0.4% 0.499 0.450 -9.8% -10.0% 0.499 0.500 0.2% 0.0% 

𝜎𝑒 = 0.5 

C 1.004 0.997 -0.7% -0.3% 1.004 1.005 0.1% 0.5% 1.004 -0.971 -197% -197.1% 

𝑋1 1.995 1.412 -29.2% -29.4% 1.995 1.667 -16.4% -16.7% 1.995 1.941 -2.7% -3.0% 

𝑋2 2.988 2.973 -0.5% -0.9% 2.988 2.971 -0.6% -1.0% 2.988 2.995 0.2% -0.2% 

𝑋3 0.499 0.497 -0.4% -0.6% 0.499 0.425 -14.8% -15.0% 0.499 0.498 -0.2% -0.4% 

Note. For each regression, b stands for coefficient estimates when no error was introduced, 𝑏′ stands for coefficient 

estimates when error was introduced in 𝑋1. %1 and %2 stand for relative magnitude of estimation bias, calculated 

using estimated and true coefficient values, respectively. 
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Several patterns emerged that are worth noting. Under scenario (1), where measurement error was 

correlated with the true value of 𝑋1, we observed greater downward bias in the coefficient on 𝑋1 than the 

bias from classical measurement error. Under scenario (2), where the error was correlated with 𝑋3, we 

observed biases in the coefficients of both 𝑋1 and 𝑋3. Under scenario (3), where the measurement error 

was systematic, we observed overestimation of the coefficient of 𝑋1  for 𝜎𝑒 = 0.1  and 𝜎𝑒 = 0.3 , but 

attenuation for 𝜎𝑒 = 0.5 . In other words, as error variance became greater, the bias shifted from 

amplification to attenuation. As noted previously, this result demonstrates numerically that measurement 

error introduced during first-stage data mining tasks do not necessarily result in attenuation and 

conservative estimates; in some cases, it may result in amplified coefficient estimates. 

3.3.3. Misclassification in 𝑋2 

We simulated misclassification by modifying the value of 𝑋2 . We use a misclassification matrix to 

represent the magnitude of misclassification in 𝑋2.8 For a binary variable, the misclassification matrix can 

be denoted as (𝑀00, 𝑀10, 𝑀01, 𝑀11) , where 𝑀𝑎𝑏 = 𝑃𝑟(𝑋2̂ = 𝑏|𝑋2 = 𝑎) . It can also be written, 

equivalently as (𝑀00, 1 − 𝑀11, 1 − 𝑀00, 𝑀11), where 𝑀00 is the recall rate for class 0 (true negative rate) 

and 𝑀11 is the recall rate for class 1 (true positive rate). We generate 𝑋2̂ by adjusting the value of 𝑋2, 

changing it from 0 to 1 with a probability of 𝑀01 and from 1 to 0 with a probability of 𝑀10. Using this 

method, 𝑋2̂ simulates predicted values from a binary classifier, with recall rate 𝑀00 for class 0 and recall 

rate 𝑀11 for class 1. 

To examine the impact of different levels of misclassification, we simulated three scenarios: (1) 

𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8; (2) 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5; 

and (3) 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5. Scenarios (1) and (2) had a skewed Bernoulli 

distribution for the true value of 𝑋2, with 𝑃𝑟(𝑋2 = 1) = 0.3; and scenario (3) had a balanced distribution. 

Scenario (2) and (3) also had greater misclassification than scenario (1). For all simulations in this 

subsection, 𝑋1 ∼ 𝑁(0, 12) and contained no measurement error. Table 3 summarizes the results. 

                                                
8 The misclassification matrix, while different from a confusion matrix, is readily constructed from the confusion 

matrix by calculating the recall rates for each class. 
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Table 3. Regression Results for 𝑋2 with Misclassification 

 OLS Logit Probit Poisson Fixed-Effect 

 𝑏 𝑏′ %1
 %2

 𝑏 𝑏′ %1
 %2 𝑏 𝑏′ %1 %2 𝑏 𝑏′ %1 %2 𝑏 𝑏′ %1 %2 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8 

C 1.004 1.292 28.7% 29.2% 1.002 1.163 16.1% 16.3% 1.042 0.943 -9.5% -5.7% 0.999 1.699 70.1% 69.9%     

𝑋1 1.995 1.995 -0.0% -0.2% 1.996 1.689 -15.4% -15.6% 1.979 1.342 -32.2% -32.9% 2.000 1.878 -6.1% -6.1% 1.994 2.009 0.75% 0.4% 

𝑋2 2.988 1.596 -46.6% -46.8% 2.890 1.106 -61.7% -63.1% 2.897 0.979 -66.2% -67.4% 3.000 1.722 -42.6% -42.6% 2.986 1.583 -47.0% -47.2% 

𝑋3 0.499 0.494 -1.0% -1.2% 0.493 0.413 -16.3% -17.4% 0.484 0.328 -32.3% -34.4% 0.500 0.533 6.5% 6.6% 0.499 0.492 -1.4% -1.6% 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5 

C 1.004 1.768 76.1% 76.8% 1.002 1.370 36.7% 37.0% 1.042 1.131 8.6% 13.1% 0.999 2.671 168% 167.1%     

𝑋1 1.995 2.004 0.5% 0.2% 1.996 1.616 -19.0% -19.2% 1.979 1.221 -38.3% -39.0% 2.000 1.831 -8.5% -8.5% 1.994 2.001 0.35% 0.0% 

𝑋2 2.988 0.282 -90.6% -90.6% 2.890 0.304 -89.5% -89.9% 2.897 0.148 -94.9% -95.1% 3.000 0.205 -93.2% -93.2% 2.986 0.271 -90.9% -91.0% 

𝑋3 0.499 0.493 -1.1% -1.4% 0.493 0.393 -20.4% -21.4% 0.484 0.296 -38.9% -40.8% 0.500 0.536 7.1% 7.2% 0.499 0.492 -1.4% -1.6% 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5 

C 1.002 2.352 135% 135.2% 0.980 1.744 78.0% 74.4% 0.917 1.260 37.4% 26.0% 1.000 3.662 266% 266.2%     

𝑋1 1.995 1.987 -0.4% -0.6% 1.961 1.477 -24.7% -26.2% 1.927 1.091 -43.4% -45.5% 2.000 1.823 -8.8% -8.9% 1.994 1.988 -0.3% -0.6% 

𝑋2 2.997 0.332 -88.9% -88.9% 2.923 0.266 -90.9% -91.1% 2.910 0.243 -91.7% -91.9% 3.000 0.032 -98.9% -98.9% 2.999 0.272 -90.9% -90.9% 

𝑋3 0.499 0.503 0.8% 0.6% 0.502 0.388 -22.8% -22.4% 0.475 0.276 -41.7% -44.8% 0.500 0.480 -4.0% -4.0% 0.499 0.503 0.8% 0.6% 

Note. For each regression, b stands for coefficient estimates when no error was introduced, 𝑏′ stands for coefficient 

estimates when error was introduced in 𝑋2. %1 and %2 stand for relative magnitude of estimation bias, calculated 

using estimated and true coefficient values, respectively. 

 

Once again, several patterns emerged that are worth noting. First, even if a classifier achieved a 

reasonable level of performance in terms of precision and recall, the misclassification could still lead to 

severe bias in the coefficient estimates. For example, scenario (1) represented a binary classifier with an 

80% recall rate for both classes, as well as 63% precision for the positive class and 90% precision for the 

negative class. Based on the published work we have surveyed, this level of performance would be 

considered good in many application domains. However, our simulation showed that the coefficient on 𝑋2 

was underestimated by 46.6% in the OLS regression. Second, we observed similar biases in scenarios (2) 

and (3) although the magnitude of the biases was greater than scenario (1). Due to the greater 

misclassification in scenarios (2) and (3), the coefficient on 𝑋2 was reduced nearly to zero although it 

remained statistically significant. Third, in the linear fixed-effect model, the estimates of the fixed effects 

were also biased to various degrees, ranging from 4% to 33% overestimation. Overall, our simulation 

results demonstrate the biases associated with misclassification, and the risk of making inferences from 

the resultant estimates.  
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4. Bias Correction 

Section 3 provides ample evidence that measurement error and misclassification, which can be introduced 

with the application of data mining techniques, may severely bias the estimates of econometric models. 

This poses serious challenges to the increasingly prevalent practice of combining data mining with 

econometric analysis. However, the good news is that, although data mining models produce predictions 

with error, the standard practice of model performance evaluation affords a readily accessible 

quantification of the error. Quantifying error allows one to employ corrective methods that can mitigate 

subsequent estimation biases. In this section, we first review several existing error-correction methods. 

Then, we focus on two simulation-based methods (SIMEX and MC-SIMEX), which were initially 

developed in the field of biostatistics and can be used to mitigate bias in second-stage econometric 

estimations. We describe the general process which researchers can follow to quantify and correct errors 

in their datasets. We then use simulations to show the effectiveness of SIMEX and MC-SIMEX methods. 

4.1. Review of Bias Correction Methods 

There have been at least five popular bias correction methods discussed in the research literature, 

including (1) instrumental variables, (2) method-of-moments, (3) likelihood-based methods, (4) 

regression calibration, and (5) simulation-extrapolation (SIMEX). 

The instrumental variable approach can be used to address all kinds of endogeneity issues in 

regression including measurement error. In a linear regression 𝑌 = 𝑋𝛽 + 𝒁𝜸 + 𝜀 , where 𝑋  contains 

additive measurement error, i.e., �̂� = 𝑋 + 𝑒, the regression model can be rewritten as 𝑌 = �̂�𝛽 + 𝒁𝜸 +

(𝜀 − 𝑒𝛽). Thus, the variable with error �̂� is correlated with the error term, causing endogeneity. If the 

researcher can find an appropriate instrument, 𝑊, that is correlated with �̂� but not with the error term, 

then a two-stage least squares (2SLS) estimator can be used to obtain the unbiased estimate of the 

coefficient of 𝑋. 

Alternatively, if the researcher has accurate knowledge about the moments of measurement error 

and other variables in the econometric model, the unbiased coefficients may be recovered under some 



16 

specifications, either analytically or numerically. This approach is known as the method-of-moments 

approach, or functional approach (Carroll et al. 2006). In linear regressions with only one regressor, this 

approach is very straightforward. If the values of 𝜎𝑋
2 and 𝜎𝑒

2 are known or can be estimated, one can 

easily calculate the corrected coefficient as 𝛽1̂[(𝜎𝑋
2 + 𝜎𝑒

2)/𝜎𝑋
2]. In multivariate linear models or nonlinear 

models, one also needs knowledge of the covariance between the measurement error and other covariates. 

Another option is the likelihood-based method, which involves explicit modeling of the error, that 

is, modeling the probability of observing the values of the dependent variable, given the values of the 

independent variables. Typically, in order to model this likelihood, researchers need to make 

distributional assumptions, such as the conditional distribution of a variable with error given its true 

values, and the distribution of the true values (Carroll et al. 2006). If such information is available, then 

the likelihood-based method can help recover unbiased estimates via maximum likelihood estimation. 

There are also data-driven approaches such as regression calibration, which is a general-purpose 

bias correction method (Gleser 1990). Imagine that, for a subset of data, researchers can observe both the 

variable measured with error (�̂�) and its true value (𝑋). Using this subset, it is then possible to fit a 

regression model of 𝑋 on �̂� and the other observed covariates (𝒁), denoted as 𝑓(�̂�, 𝒁). For remaining data 

where 𝑋 is not observable, it can be estimated via the model 𝑓(�̂�, 𝒁). Then, using the estimated values of 

𝑋 and other precisely measured covariates, the researcher can carry out the desired econometric analyses 

under an assumption that no measurement error remains. This method essentially views measurement 

error as a missing data problem. The true values for the variable with error are considered missing, and 

are imputed from a predictive model built on the subsample of data where true values are observed.  

Finally, another general-purpose, data-driven approach to bias correction is simulation-

extrapolation or SIMEX (Cook and Stefanski 1994). As a simulation-based method, the SIMEX method 

has several advantages over the other methods, in dealing with measurement error and misclassification 

caused by data mining models. Compared to the first three methods outlined above, SIMEX requires 

relatively little information and fewer assumptions. For example, the instrumental variable approach 
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requires the identification of an appropriate instrument. The method-of-moments approach requires 

knowledge of the moments of measurement error as well as the covariance between the error and other 

covariates. The likelihood-based method requires researchers to make distributional assumptions. In 

contrast, SIMEX requires only information on the variance of measurement error or a misclassification 

matrix, which is readily available from the performance evaluation measures of data mining models. Both 

the error variance and misclassification matrix can be calculated by comparing model predictions with 

true values using the test dataset. Because the test set is typically a random subsample of the labeled data, 

the calculated error variance or misclassification matrix can be generalized to the broader, unlabeled data.  

SIMEX demonstrated better performance than regression calibration under a number of scenarios, 

in particular under nonlinear econometric specifications. We experimented with both regression 

calibration and SIMEX for Logit, Probit, and Poisson regressions, where one independent variable was 

normally distributed (𝜎𝑒 = 0.3) and contained classical measurement error (described in Section 3.3.1). 

The error biased the coefficient estimate from 2 down to 1.748, 1.567, and 1.760 respectively. SIMEX 

was able to correct the coefficient back to 1.999, 1.878, and 1.977, whereas regression calibration only 

corrected the coefficient back to 1.973, 1.815, and 1.927. Moreover, SIMEX requires less time and effort 

to execute because the procedure has been implemented in software packages that are commonly 

available for statistical analyses. For example, SIMEX is available in R, an open source statistical 

programming language, via the simex package, and also available in STATA, via the simex function 

(Hardin et al. 2003). Due to the above reasons, we focus on SIMEX as the primary correction method in 

this paper. Meanwhile, we encourage researchers to consider and evaluate multiple error correction 

procedures including SIMEX to identify the best fit for their research setting, data, and data mining 

models, via the diagnostic procedure we outline below in Table 4 (Section 4.3). 

4.2. Introduction to SIMEX and MC-SIMEX 

The Simulation-Extrapolation (SIMEX) method was proposed by Cook and Stefanski (1994) to address 

additive measurement error in a continuous variable (i.e., �̂� = 𝑋 + 𝑒) in models where the error variance 

𝜎𝑒
2 is known or can be accurately estimated. The SIMEX method consists of two steps: a simulation step 
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and an extrapolation step. In the simulation step, a fixed set of non-negative values {𝜆1, 𝜆2, … , 𝜆𝑚} is 

selected (e.g., {1,2, … , 𝑚}). Then, multiple versions of �̂�  are generated as {�̂�(𝜆1), �̂�(𝜆2), . . . , �̂�(𝜆𝑚)}, 

where �̂�(𝜆𝑘) = 𝑋 + 𝑒(𝜆𝑘)), each with increasing error variance (specifically, 𝑒(𝜆𝑘) has variance (1 +

𝜆𝑘)𝜎𝑒
2). In other words, the method simulates variables with increasingly larger measurement errors. Each 

�̂�(𝜆𝑘) is associated with a set of coefficient estimates 𝜃(𝜆𝑘). In the extrapolation step, a parametric 

model 𝜃(𝜆) is estimated, which describes the relationship between the magnitude of the error and the 

coefficients. Then, extrapolating 𝜃(𝜆) to 𝜃(−1), one can approximate the coefficient estimates under zero 

measurement error (see Cook and Stefanski (1994) for more details). Figure 2 provides a graphical 

illustration of the SIMEX correction process. The parametric model 𝜃(𝜆) may take several functional 

forms, including linear, quadratic, and nonlinear. Asymptotic methods have been proposed to estimate the 

standard errors for corrected coefficients following the application of the SIMEX method, including the 

delta (Carroll et al. 1996), jackknife (Stefanski and Cook 1995), and bootstrapping methods.  

Figure 2. Graphical Illustration of the SIMEX Correction Process 

 

Note. In the simulation step, four versions of 𝑋 with increasing error are generated. Each corresponds to a set of 

parameter estimates, marked by points A, B, C, and D. In the extrapolation step, a parametric model (as shown by 

the dotted curve) is fitted, and extrapolated to the case where no error is present, marked by point E. The subplots on 

the right show the changes in regression line (obtained during the second-stage econometric estimation) during the 

error correction process. 

 

The MC-SIMEX method, an extension of the SIMEX method, was introduced by Küchenhoff et 

al. (2006) to accommodate misclassification in discrete variables when the misclassification matrix is 

known or can be estimated. It involves the same two basic steps as SIMEX. In the simulation step, �̂�(𝜆𝑘) 
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is generated by adjusting the values of �̂� based on the 𝜆𝑘
th power of the misclassification matrix (see 

Section 3.3.3 for the procedure of adjusting values of �̂� based on a given misclassification matrix). In the 

extrapolation step, a parametric function 𝜃(𝜆) is estimated and extrapolated to 𝜃(−1), to approximate 

coefficient estimates under conditions of zero misclassification. Küchenhoff et al. (2007) proposed an 

asymptotic standard error estimation method for MC-SIMEX. Appendix A3 provides the pseudocode for 

implementing both SIMEX and MC-SIMEX methods. 

For both classical measurement error and misclassification, SIMEX and MC-SIMEX can be 

directly applied, regardless of the second-stage model specifications. However, for non-classical measure 

error that contains systematic error, SIMEX correction is unlikely to be effective. Take the error structure 

�̂� = 𝑎 + 𝑏𝑋 + 𝑒 and 𝑏 ≠ 1 as an example. Although SIMEX can eliminate estimation bias caused by the 

random component 𝑒, it cannot fix the bias from the systematic component. To overcome this challenge, 

we propose a data pre-processing step in addition to the original SIMEX procedure. Because we can 

observe both 𝑋 and �̂� in the labeled training data used to build first-stage data mining model, we can fit a 

linear regression of �̂� on 𝑋 to obtain estimations �̂� and �̂�. We can then generate a new variable: 𝑋′̂ =

(�̂� − �̂�)/�̂� , to reduce the non-classical error structure to the classical form 𝑋′̂ = 𝑋 + 𝑒′ . From this 

relationship, we can calculate the modified error 𝑒′ as the difference between 𝑋′̂ and 𝑋 and its standard 

deviation as σe
′ . Then, we can apply the standard SIMEX correction procedure, using 𝑋′̂ as the (modified) 

variable with measurement error and σe
′  as (modified) error standard deviation.  

4.3. Diagnosing error and evaluating correction efficacy 

Before error correction, researchers should first assess three things. First, it is important to understand the 

error’s functional form. If the measurement error contains a systematic component, it may require special 

error correction procedures such as the SIMEX procedure with data pre-processing we described in the 

previous section. Second, it is important to assess the severity of the bias in the second stage. While 

measurement error and misclassification may invalidate coefficient estimates and statistical inference, it is 

also possible to have trivial to minimal bias, which is of little concern. Third, it is important to evaluate 
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the efficacy of the chosen error correction methods. For example, both regression calibration and SIMEX 

are general-purpose methods applicable to many circumstances. Researchers should carefully compare the 

relative efficacy of each correction procedure and choose the one that best fits their purposes.  

In Table 4, we outline a basic procedure for diagnosing errors and choosing error correction 

methods. Following the procedure, researchers can use the labeled dataset from the first-stage data mining 

model to diagnose the functional form of the error, the severity level of bias, and the effectiveness of 

correction methods, because both the true values and model-predicted values of the variables are observed. 

Equipped with knowledge from the diagnostic procedure, researchers can proceed to actual analyses using 

the unlabeled dataset and apply the chosen error-correction method. The increase in sample size using 

unlabeled data may help identify desired effects with greater power and more precision. 

Table 4: Procedure for Diagnosing Error and Evaluating Correction Efficacy 

Error Diagnostics (Steps 1-4): 

Step 1: Conduct planned second-stage econometric analysis on the labeled dataset, using true labels. 

Step 2: Conduct planned second-stage econometric analysis on the labeled dataset, using model-predicted 

labels. 

Step 3: If error is continuous, use true labels and model-predicted labels to estimate error functional form.  

Step 4: Compare estimates from Steps 1 and 2 to understand the impact of measurement error, including but not 

limited to (1) the degree of bias, (2) the direction of bias, (3) changes in statistical significance, and (4) changes 

in model fit. Use the estimate from Step 3 to understand the characteristics of the continuous error. 

Correction Diagnostics (Steps 5-6): 

Step 5: Apply candidate error-correction methods (e.g., SIMEX) on the second-stage econometric model. Use the 

estimate from Step 3, if warranted, to modify the error correction procedure(s) accordingly. 

Step 6: Compare estimates from Steps 1, 2, and 4 to understand the efficacy of candidate error-correction 

methods, choose the most effective error-correction method for actual analysis. 

 

4.4. Using SIMEX and MC-SIMEX for error correction 

To demonstrate the effectiveness of SIMEX and MC-SIMEX, we applied them to the simulated data from 

Section 3. For each model specification, we ran either SIMEX (for continuous measurement error in 𝑋1) 

or MC-SIMEX (for discrete misclassification in 𝑋2 ) and reported the corrected coefficient estimates 

associated with the variables containing measurement error or misclassification. The efficacy of both 
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methods depends on an accurate estimation of the extrapolation function 𝜃(𝜆). Through experiments with 

simulated and actual data, researchers have identified the quadratic and nonlinear extrapolation functions 

to be effective for a large number of model specifications (Cook and Stefanski 1994; Küchenhoff et al. 

2006). We used the quadratic extrapolation function for all of our simulations. Researchers should 

experiment with alternative extrapolation functions to determine the one best suited to their situation. 

Table 5a shows the correction results for classical measurement error models corresponding to 

our simulations in Section 3.3.1. Table 5b shows the results for non-classical measurement error models, 

corresponding to the simulations in Section 3.3.2. For the systematic measurement error simulated in 

Scenario (3), we applied the SIMEX procedure with pre-processing. Table 5c shows results for our 

discrete misclassification models, corresponding to simulations in Section 3.3.3. In all the tables, the first 

two columns respectively contain coefficients without error and with error, denoted as 𝑏 and 𝑏′, and the 

third column contains the corrected estimation, denoted as 𝑏𝑠𝑖𝑚𝑒𝑥 in Table 5a and 𝑏𝑚𝑐𝑠𝑖𝑚𝑒𝑥 in Table 5c. 

In Table 5b, we report corrected estimates, obtained from standard SIMEX procedure both without and 

with data pre-processing, denoted as 𝑏𝑠𝑖𝑚𝑒𝑥 and 𝑏𝑠𝑖𝑚𝑒𝑥_𝑝𝑟𝑒. All coefficients were statistically significant 

except those in parentheses.  

Table 5a. SIMEX Correction for 𝑋1with Classical Measurement Error 

 OLS Logit Probit Poisson Fixed-Effect 

 𝑏 𝑏′ 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ 𝑏𝑠𝑖𝑚𝑒𝑥  

𝜎𝑒 = 0.1 

𝑋1 1.995 1.970 1.992 1.996 1.954 1.988 1.979 1.903 1.960 2.000 1.911 1.933 1.994 1.977 1.996 

𝜎𝑒 = 0.3 

𝑋1 1.995 1.833 1.998 1.996 1.748 1.999 1.979 1.567 1.878 2.000 1.760 1.977 1.944 1.824 1.985 

𝜎𝑒 = 0.5 

𝑋1 1.995 1.595 1.946 1.996 1.453 1.910 1.979 1.155 1.591 2.000 1.337 1.646 1.944 1.589 1.944 

 

Table 5b. SIMEX Correction for 𝑋1with Non-Classical Measurement Error 

 Scenario (1) Scenario (2) Scenario (3) 

 𝑏 𝑏′ 𝑏𝑠𝑖𝑚𝑒𝑥 𝑏 𝑏′ 𝑏𝑠𝑖𝑚𝑒𝑥 𝑏 𝑏′ 𝑏𝑠𝑖𝑚𝑒𝑥 𝑏𝑠𝑖𝑚𝑒𝑥_𝑝𝑟𝑒 

𝜎𝑒 = 0.1 

𝑋1 1.995 1.884 1.901 1.995 1.979 1.999 1.995 3.830 3.985 1.997 

𝜎𝑒 = 0.3 

𝑋1 1.995 1.641 1.757 1.995 1.863 2.036 1.995 2.903 3.739 1.866 

𝜎𝑒 = 0.5 

𝑋1 1.995 1.412 1.634 1.995 1.667 2.057 1.995 1.941 2.922 1.456 
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Table 5c. MC-SIMEX Correction for 𝑋2with Misclassification 

 OLS Logit Probit Poisson Fixed-Effect 

 𝑏 𝑏′ 𝑏𝑚𝑐𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ 𝑏𝑚𝑐𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ 𝑏𝑚𝑐𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ 𝑏𝑚𝑐𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ 𝑏𝑚𝑐𝑠𝑖𝑚𝑒𝑥  

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8 

𝑋2 2.988 1.596 2.557 2.890 1.106 1.860 2.897 0.979 1.648 3.000 1.722 2.669 2.986 1.583 2.543 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5 

𝑋2 2.988 0.282 0.756 2.890 0.304 0.800 2.897 0.148 0.391 3.000 0.205 (0.565) 2.986 0.271 0.733 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5 

𝑋2 2.997 0.332 0.904 2.923 0.266 0.774 2.910 0.243 0.632 3.000 0.032 (0.065) 2.986 0.272 0.723 

 

Based on Tables 5a and 5c, we can see that standard SIMEX and MC-SIMEX effectively reduced 

the bias in all regressions. In a number of cases, the correction procedure almost fully recovered the 

unbiased estimate. Even when misclassification was severe, such as in Scenarios (2) and (3) in Table 5c, 

MC-SIMEX enabled us to correct the coefficient of 𝑋2  in the right direction, although the corrected 

coefficient was not statistically significant in the Poisson regressions. Our results from Table 5c also 

suggest that error correction methods have limited effectiveness when the performance of data mining 

model is poor. In these cases, researchers should focus on improving predictions first, and only deploy the 

correction methods as a secondary, remedial action.  

Results in Table 5b show that SIMEX was also effective for non-classical measurement error. 

When measurement error was correlated with the true value of 𝑋1, as in Scenario (1), SIMEX corrected 

the coefficient of 𝑋1, although the correction was not as good as in the case of independent error. When 

measurement error was correlated with 𝑋3, as in Scenario (2), SIMEX corrected the coefficients of both 

𝑋1 and 𝑋3. When there was systematic error as in Scenario (3), SIMEX correction without pre-processing 

failed and actually exacerbated the bias in the coefficient of 𝑋1, moving it further away from its true value. 

However, applying SIMEX after our proposed pre-processing successfully corrected the coefficient on 

𝑋1, for 𝜎𝑒 = 0.1 and 𝜎𝑒 = 0.3. For 𝜎𝑒 = 0.5, SIMEX with pre-processing also performed better than 

SIMEX without pre-processing, though it is worth noting that the corrected coefficient (1.456) was still 

further from the true value (1.995) than the original “biased” estimate (1.941). This marks an important 

situation under which the SIMEX method may be not only ineffective, but detrimental. When continuous 

measurement error contains both a systematic component and a random component with large variance, 
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the two combined can result in a smaller “net” bias than each component alone. Under this special 

scenario, error correction is incapable of resolving the bias. Again, if the researcher first employs the 

diagnostic procedure outlined in Table 4, it would be possible to observe whether the chosen correction 

procedure is improving estimates, or in fact making matters worse. 

Another important observation from Tables 5a-5c is that the effectiveness of SIMEX and MC-

SIMEX corrections vary with (1) the amount of error and (2) the model specification. As the amount of 

measurement error or misclassification increases, the correction generally becomes less effective, i.e., the 

corrected coefficients shift further away from the true coefficients. Additionally, corrections for Linear 

and Logit models appear generally more effective than corrections for Probit and Poisson models. 

To understand the effectiveness of SIMEX and MC-SIMEX corrections under a wider array of 

circumstances, we conducted additional, more comprehensive simulation studies. We extended the 

simulation studies described above by systematically varying the distributions and variances of the 

precisely measured covariates (i.e., 𝑋2 and 𝑋3 for simulations of measurement error in 𝑋1; 𝑋1 and 𝑋3 for 

simulations of misclassification in 𝑋2 ). The results of these additional simulations can be found in 

Appendix A8. Based on these additional simulations, we were able to further validate our aforementioned 

observations. First, SIMEX and MC-SIMEX are able to mitigate the biases in almost all cases. 

Importantly, as the amount of error increases, the magnitude of bias generally becomes larger, and the 

correction tends to become less effective. Second, corrections for Linear and Logit models appear to be 

more effective than corrections for Probit and Poisson models. Third, the effectiveness of corrections also 

depends on the distributions and variances of the error-free covariates. However, it is difficult to provide 

theoretical, a priori predictions about the correction’s effectiveness for situations that we have not 

considered here. Accordingly, we would caution researchers to adopt the diagnostic procedure described 

in Table 4 in order to understand the nature of the error in their particular dataset, for their particular data 

mining model and regression specifications, and thereby assess the efficacy of any correction procedures 

in their unique empirical contexts. 
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5. Application to Field Data: Three Real-World Datasets 

In this section, we apply SIMEX and MC-SIMEX methods to three real-world datasets. The three 

examples cover a variety of data types, model specifications, and research questions that are commonly 

seen in IS research. We use the first two examples to demonstrate the effectiveness of SIMEX and MC-

SIMEX. We use the third example to illustrate a scenario under which the SIMEX correction is not 

effective, because of extremely poor performance of the predictive data mining model. In all three 

examples, we follow the diagnostic procedure outlined in Table 4, which helps to ascertain whether error 

correction is effective.  

5.1. Review helpfulness on TripAdvisor.com 

In the first example, we apply the MC-SIMEX method to a real-world dataset of online reviews from 

TripAdvisor.com. We examine the relationship between textual sentiment and perceived helpfulness, 

employing the two-stage approach of combining data mining and econometric modeling. We first built a 

textual classification model to predict the sentiment of written reviews as either positive or negative, and 

then estimated two econometric models controlling for several other factors. We drew on the star rating of 

a review as the ground truth for its sentiment.  

5.1.1. Research setting 

There is an extensive body of literature on online reviews in the IS discipline. Researchers have 

investigated the effects of various review characteristics such as volume, valence, and reviewer identity 

on consumer behaviors (Mudambi and Schuff 2010; Forman et al. 2008; Dellarocas 2003). Some studies 

in this domain have also combined data mining with econometric analysis. Archak et al. (2011), for 

example, built a text classification model to identify product features from consumer product reviews, and 

then estimated the impact of specific product features on product sales. 

TripAdvisor.com is a travel-related website that hosts consumer reviews of service providers. 

Users can post reviews about hotels, restaurants, or resorts. Reviewers provide an overall rating on a five-

star scale and, optionally, ratings on separate dimensions of the consumption experience. For example, 

reviewers can rate a hotel based on its price, service, or overall quality. Readers of a review can indicate 
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its “helpfulness” by casting a vote. As a prominent site for consumer reviews, TripAdvisor.com has been 

examined in several studies (e.g., Huang et al. 2016a; Huang et al. 2016b; Mayzlin et al. 2014). 

We collected 11,953 English-language reviews for 234 randomly selected U.S. restaurants. For 

each review, we gathered data on its textual content, star rating, the number of helpful votes it received, 

whether the review contained a photo, and the number of reviews posted prior to the focal review, which 

indicated the review’s position in the sequence of all reviews for a restaurant. Using this dataset, we 

examined the impact of review sentiment on perceived helpfulness. Figure 3 shows the two-stage process. 

Figure 3. Overview of the Two-Stage Process in Studying Review Helpfulness 

 

5.1.2. First stage: text classification of sentiment 

To identify the sentiment of a review, we analyzed its textual content using natural language processing 

and textual classification techniques. In general, it is unnecessary to perform sentiment analysis when the 

star rating associated with a review is available, because a high rating often corresponds to positive 

sentiment and low rating corresponds to negative sentiment. However, many online venues host consumer 

opinions and word of mouth as text, without the benefit of numerical ratings (e.g., Godes and Mayzlin 

2004). In such a setting, researchers typically hire a team of human coders to manually label the sentiment 

of a small, random sample of text from a large dataset. Using this labeled sample, one can then train a 

classifier and deploy it to classify the sentiment of the remaining unlabeled text. In this example, we 

treated the star rating of each review as the ground truth of its sentiment, for the purpose of training and 

evaluating a sentiment classifier that is based only on the textual content of reviews. Doing so allows us to 
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quantify the misclassification and to illustrate the bias introduced in the second-stage econometric model 

due to error. If the reviewer gave a restaurant 3 or fewer stars, we coded the review as negative. If the 

reviewer gave 4 or 5 stars, we coded the review as positive. Using these criteria, 79% of the reviews in 

our sample were coded as positive and 21% were coded as negative, indicating a skewed distribution. 

We followed standard practices in training the text classifier. First, we randomly selected 20% of 

the original sample (i.e., 2,391 reviews) as the labeled dataset for training and evaluating the performance 

of the model. Second, we followed standard natural language processing procedures (e.g., Jurafsky and 

Martin 2008) to convert each review into a word vector, in several steps. We transformed all text to 

lower-case, tokenized the text of each review into words, removed stop words, conducted stemming, and 

extracted bi-grams and tri-grams. We then applied the TF-IDF (term frequency-inverse document 

frequency) weighting scheme to rescale the word vector frequencies of occurrence (ibid). Third, we built 

a classifier using the linear Support Vector Machine (SVM) technique (Vapnik 1995), and evaluated the 

classifier using five-fold cross validation. Our classifier achieved 93.03% precision and 92.93% recall for 

the positive class, and 73.97% precision and 74.28% recall for the negative class. This performance 

corresponds to the following misclassification matrix: (𝑀00, 𝑀10, 𝑀01, 𝑀11) = (0.74,0.07,0.26,0.93) . 

Finally, we deployed the trained classifier on the remaining, unlabeled sample, i.e., on 9,562 reviews. In 

the end, every review in the unlabeled dataset had a predicted sentiment. 

5.1.3. Second stage: econometric analysis of the impact of sentiment on perceived helpfulness 

The dependent variable, helpfulness, was coded as a dummy variable indicating whether a review 

received any helpful votes. The independent variable, sentiment, was set to 1 if the review was positive 

and 0 if it was negative. We also included several control variables including: (1) photo, a dummy 

variable indicating whether the review had a photo or not; (2) words, the number of words in the review; 

and (3) sequence, the number of reviews posted about a restaurant before the focal review. We estimated 

two models, as illustrated in the equations below: a linear probability model (LPM) and a Logit model.  

LPM: ℎ𝑒𝑙𝑝𝑓𝑢𝑙𝑛𝑒𝑠𝑠 = 𝛽0 + 𝛽1𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 + 𝛽2𝑝ℎ𝑜𝑡𝑜 + 𝛽3𝑙𝑜𝑔(𝑤𝑜𝑟𝑑𝑠) + 𝛽4𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 + 𝜀 

Logit: 𝐿𝑜𝑔𝑖𝑡(ℎ𝑒𝑙𝑝𝑓𝑢𝑙𝑛𝑒𝑠𝑠) = 𝛽0 + 𝛽1𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 + 𝛽2𝑝ℎ𝑜𝑡𝑜 + 𝛽3𝑙𝑜𝑔(𝑤𝑜𝑟𝑑𝑠) + 𝛽4𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 + 𝜀 
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Before carrying out the actual regression analysis and the MC-SIMEX correction, we followed 

the diagnostic procedure outlined in Table 4 by running the two regressions on our 20% labeled data (N = 

2,391). We used five-fold cross validation to evaluate our first-stage SVM model. For each fold, we 

obtained the predicted sentiment label from the SVM model built off the other four folds. Our diagnostic 

analyses showed that misclassification in sentiment attenuated its effect on helpfulness, and that MC-

SIMEX was effective in correcting the bias. We include these diagnostic results in Appendix A4. Table 6 

shows our actual estimations, performed on the sample of 9,562 reviews.9 For each model, we report three 

sets of results. The first column, labeled as “True”, reports estimates obtained using the “true” values of 

the sentiment based on star ratings. The second column, labeled as “Predicted”, reports estimates obtained 

using predicted sentiment from our text classifier. The third column, labeled as “Corrected”, reports 

corrected estimates, by applying the MC-SIMEX method. We have provided the R code that was used to 

conduct the MC-SIMEX correction, in Appendix A5. 

Table 6. Regression Results and Corrections of the TripAdvisor.com Dataset (N = 9,562) 

 LP Model Logit Model 

 True Predicted Corrected True Predicted Corrected 

Intercept 0.1707*** 

(0.0105) 

0.1538*** 

(0.0111) 

0.1763*** 

(0.0166) 

-1.5750*** 

(0.0665) 

-1.6703*** 

(0.0715) 

-1.5644*** 

(0.0965) 

Sentiment -0.0693*** 

(0.0097) 

-0.0463*** 

(0.0099) 

-0.0684*** 

(0.0161) 

-0.4240*** 

(0.0611) 

-0.2843*** 

(0.0629) 

-0.3854*** 

(0.0934) 

Photo -0.0167* 

(0.0077) 

-0.0174* 

(0.0077) 

-0.0158* 

(0.0070) 

-0.1149* 

(0.0578) 

-0.1203* 

(0.0580) 

-0.1100 

(0.0568) 

Words 0.7986*** 

(0.0494) 

0.7893*** 

(0.0510) 

0.7282*** 

(0.0664) 

4.3924*** 

(0.3011) 

4.3185*** 

(0.3114) 

3.9686*** 

(0.3715) 

Sequence -0.0010 

(0.0166) 

-0.0049 

(0.0166) 

-0.0040 

(0.0174) 

0.0095 

(0.1114) 

-0.0159 

(0.1114) 

-0.0132 

(0.1161) 

Log Likelihood -4408.24 -4422.64  -4470.65 -4483.95  

AIC 8828.5 8857.3  8951.3 8977.90  

Note. The MC-SIMEX method does not provide log likelihood or AIC statistics. 

 

As shown in Table 6, sentiment was negatively associated with review helpfulness. Compared to 

positive reviews, negative reviews were more likely to receive helpful votes. In addition, reviews that 

contained photos were less likely to be perceived as helpful and longer reviews were more likely to be 

                                                
9 Incorporating the labeled (i.e., ground truth) sample that was used to build the classification model may bias the 

misclassification matrix. However, in most research, because the labeled sample is usually a very small portion of 

the entire dataset, this bias in misclassification matrix generally will not invalidate the error-correction process. 
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perceived as helpful. Sequence did not have a significant relationship with helpfulness. These findings 

were generally consistent with those of prior work (e.g., Mudambi and Schuff 2010; Yin et al. 2014), 

which indicates that our second-stage model specification was appropriate and valid. 

Comparing the “Predicted” regressions with the “True” regressions show that the 

misclassification in the predicted sentiment considerably biased the estimation, as expected. The 

coefficient associated with sentiment in the “Predicted” estimation was only two-thirds the magnitude of 

the coefficient in the “True” estimation (i.e., the estimation based on dichotomized star ratings). Had we 

relied directly on the sentiment variable generated by the data mining model and ignored the 

misclassification, we would have greatly underestimated the magnitude of the effect of review sentiment 

on perceived helpfulness. The presence of misclassification in the sentiment variable also biased the other 

coefficient estimates, to various degrees. We also observed that the “Predicted” regressions exhibited 

worse model fit than the “True” regressions, assessed based on the log likelihood and AIC. Overall, the 

analysis proved the effectiveness of MC-SIMEX in correcting estimation bias from misclassification. 

This is particularly true in the LP Model, where MC-SIMEX almost perfectly recovered the true, 

unbiased coefficient estimate for sentiment.  

To assess the impact of sample size on correction effectiveness, we repeated the above analyses 

for three random samples of 500, 2,000, and 5,000 observations. We observed three notable patterns. First, 

for each sample size, MC-SIMEX was able to mitigate the bias on sentiment. Second, as sample size 

increased from 500 to 5,000, the relative magnitude of bias decreased and the effectiveness of correction 

increased. This indicates that a sufficiently large sample is necessary to obtain both precise estimations 

and good correction outcomes. Third, further increasing sample size from 5,000 to 9,562 (i.e., the full 

sample) did not reduce the relative magnitude of bias, but did produce better corrected coefficients for 

sentiment. This suggests that having an increasingly larger sample does not eliminate bias, but generally 

does benefit error correction. The results of these additional analyses are included in Appendix A6. 

5.2. User engagement on Facebook business pages 

In the second example, we applied MC-SIMEX to another real-world dataset on user-generated posts on 
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Facebook business pages. We examined the relationship between post sentiment and user engagement 

with a post, measured as the number of comments the post had received. Again, we first built a textual 

classification model to predict the sentiment of posts as either positive or negative, and then estimated 

two econometric specifications controlling for several other factors. 

Facebook business pages is a feature that Facebook launched in 2007, which enable companies to 

interact with their customers on Facebook. Organizations use Facebook business pages primarily for 

marketing purposes by posting information about their products and services, offering coupons, as well as 

encouraging consumers to share positive word-of-mouth (Goh et al. 2013). Visitors of the business page 

can engage with both marketer-generated and user-generated posts through liking, commenting, or 

sharing (Goh et al. 2013). In this example, we examine how the sentiment of a user-generated post affects 

the number of comments it receives. We gathered 8,059 user-generated posts, all of which created in 2012, 

from the Facebook business pages of 39 consumer-oriented Fortune-500 companies such as airlines, 

banks, and retailers. For each post, we collected its textual content, poster ID, and the number of 

comments the post attracted. We hired Amazon Mechanical Turk workers to label the sentiment of the 

posts. We had five independent workers code each post, and used the majority (modal) rule to determine 

the sentiment. In total, 2,751 posts were labeled as positive, and 5,308 were labeled as negative. These 

manually labeled sentiments served as the ground truth for building the sentiment classifier, and for 

validating the performance of the MC-SIMEX correction procedure in our second stage estimation.  

We built our sentiment classifier using a random sample of 10% of the labeled data (806 posts). 

We followed standard procedures in building the text classifier, as described previously in Section 5.1.2. 

The classifier was built using the linear SVM technique, and evaluated using five-fold cross validation. 

Our classifier achieved 84.21% precision and 81.45% recall for the positive class (denoted as class 1), and 

90.56% precision and 92.10% recall for the negative class (denoted as class 0). This performance 

corresponds to the following misclassification matrix: (𝑀00, 𝑀10, 𝑀01, 𝑀11) = (0.92,0.19,0.08,0.81). We 

then deployed the trained classifier on the remaining 90% of our labeled sample (7,253 posts), and 

included the predicted sentiment in the second-stage econometric analysis. 
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In our econometric analysis, we examined the relationship between post sentiment and user 

engagement. The dependent variable, comments, was the number of comments each post received. The 

independent variable, sentiment, was coded as 1 if the post was positive and 0 if the post was negative. 

We controlled for several factors that may affect the level of engagement with a post including (1) 

Log(Words), the log-transformed word count of each post; (2) User Activeness, the posting user’s level of 

activeness, measured as the total number of posts that the user had created on the business page where the 

focal post appeared in 2012; (3) Log(Popularity): the popularity level of the page on which the focal post 

was published, measured as the total number of user posts on the page in 2012; and (4) Type: the media 

type of the focal post assigned by Facebook such as link, photo, video, or status. Because our dependent 

variable is a count measure, we ran both linear regression and Poisson regression.  

Next, we followed the procedure in Table 4 to conduct a diagnostic analysis before the second-

stage estimation. We ran the proposed regressions with 10% of our labeled data (N = 806). The diagnostic 

analysis showed that misclassification in sentiment attenuated its effect on comments, and MC-SIMEX 

was able to correct the bias (detailed results in Appendix A7). We then conducted the regression analysis 

with the remaining 7,253 posts. Table 7 shows the regression results and corrected coefficients.  

Table 7. Regression Results (N = 7,253) 

 OLS Model Poisson Model 

 True Predicted Corrected True Predicted Corrected 

Intercept -2.9475*** 

(0.4804) 

-3.2001*** 

(0.4810) 

-2.9373*** 

(0.4878) 

-2.2148*** 

(0.1053) 

-2.3401*** 

(0.1053) 

-2.1591*** 

(0.2750) 

Log(Words) 0.5840*** 

(0.0408) 

0.6177*** 

(0.0420) 

0.5470*** 

(0.0469) 

0.3412*** 

(0.0087) 

0.3551*** 

(0.0089) 

0.3049*** 

(0.0319) 

Activeness 0.0303*** 

(0.0045) 

0.0302*** 

(0.0045) 

0.0305*** 

(0.0045) 

0.0108*** 

(0.0005) 

0.0109*** 

(0.0005) 

0.0110*** 

(0.0016) 

Log(Popularity) 0.3107*** 

(0.0470) 

0.3151*** 

(0.0471) 

0.3195*** 

(0.0471) 

0.1753*** 

(0.0102) 

0.1782*** 

(0.0102) 

0.1824*** 

(0.0258) 

Type = Link -0.7544* 

(0.3335) 

-0.7428* 

(0.3343) 

-0.7504* 

(0.3341) 

-0.5955*** 

(0.0994) 

-0.6051*** 

(0.0994) 

-0.6081* 

(0.2383) 

Type = Photo 0.0265 

(0.2679) 

-0.1490 

(0.2669) 

-0.0451 

(0.2684) 

-0.0065 

(0.0699) 

-0.1307 

(0.0693) 

-0.0462 

(0.1342) 

Type = Video -1.0167 

(0.9282) 

-1.0116 

(0.9304) 

-0.9993 

(0.9302) 

-0.7607* 

(0.3017) 

-0.8191** 

(0.3017) 

-0.8086 

(0.5908) 

Sentiment -0.7356*** 

(0.0987) 

-0.4789*** 

(0.1041) 

-0.7132*** 

(0.1333) 

-0.5724*** 

(0.0251) 

-0.4047*** 

(0.0262) 

-0.6307*** 

(0.1002) 

Log Likelihood -19559 -19576  -12701 -12859.5  

AIC 39133 39167  35653 35970  

Note. The MC-SIMEX method does not provide log likelihood or AIC statistics. 
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According to Table 7, positive posts received fewer comments than negative posts. Due to 

misclassification in Sentiment, all coefficient estimates were biased to various degrees and in different 

directions. The most important thing to note is that MC-SIMEX effectively mitigate the estimation biases 

in both OLS and Poisson models. For linear regression, MC-SIMEX almost fully recovered the unbiased 

coefficient of Sentiment. For Poisson regression, there was a slight overcorrection, i.e., the absolute value 

of the corrected coefficient of Sentiment was greater than its unbiased value, but the corrected estimate 

was still closer to the true value than the biased coefficient. 

5.3. Campaign organizer age and crowdfunding outcomes 

Our third and final example demonstrates the application of SIMEX correction to a real-world dataset of 

crowdfunding campaign outcomes from a leading reward-based crowdfunding website (Agrawal et al.  

2014). We examined the relationship between the age of a fundraising campaign organizer and the 

amount of money he or she was able to raise. We collected campaign organizers’ profile pictures and used 

a third-party face recognition service to infer the age of the persons in those pictures. The predicted age 

was not all accurate and contained measurement error. We used user’s self-reported age, which we 

obtained from the platform operator, as the ground truth. We estimated a linear regression model 

controlling for several other factors. While we chose the first two examples to demonstrate the 

effectiveness of our proposed error correction methods, we chose this third example to show the 

limitation and boundary conditions of the methods, i.e., their effectiveness depends on a reasonable level 

of performance of the data mining models. 

 In recent years, crowdfunding has garnered a great deal of attention within the IS community 

(Burtch et al. 2013; 2015). On reward-based crowdfunding platforms like Kickstarter and Indiegogo, 

individuals can launch fundraising campaigns to raise money from the crowd to finance a project, a cause, 

or a venture. The money may be used to fund a new product or service or to support public goods and 

charitable endeavors. For each campaign, the organizer sets a fixed amount of money to be raised, and a 

fixed duration for the fundraising. A campaign is deemed a success if the fundraising goal is reached or 

surpassed within the specified duration. In this example, we examine the following research question: 
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how does the age of a campaign organizer affect a campaign’s fundraising success? Although age 

information is not directly available on the website, it can be inferred from organizers’ profile pictures. 

We gathered information on 1,368 crowdfunding campaigns, each with a unique organizer who had 

uploaded a high-quality profile picture. For each campaign, we collected data on its beginning and end 

dates, the fundraising goal, the amount of money it collected by the end of the campaign, and whether it 

had been featured on the homepage of the crowdfunding website. We also had access to self-reported 

demographic information for each campaign organizer, including his or her gender and year of birth. We 

used the year of birth to calculate an organizer’s actual age at the time of our data collection, which was 

used as the ground truth for the age variable. Next, we replicated the two-stage approach of combining 

data mining with econometric analysis. 

In the first stage, we downloaded the profile pictures of the 1,368 campaign organizers. We used 

the Microsoft Face API,10 a third-party face recognition service, to automatically infer the age of each 

organizer based on his or her profile picture. There were 63 profile pictures that contained more than one 

person. In those cases, we took the average of the predicted ages of all individuals appearing in the photo. 

Having both true and predicted ages for each organizer, we estimated the measurement error structure in 

the form of �̂� = 𝑎 + 𝑏𝑋 + 𝑒, where �̂� was the predicted age and 𝑋 was the true age. We estimated the 

error structure on 30% of our sample, i.e., 410 randomly selected campaign organizers. This was done to 

mimic the reality that a researcher typically only has a small subsample of labeled data in practice. This 

analyses indicated that �̂� = 18.78, �̂� = 0.36, 𝑆𝐷(𝑒) = 9.96 , which signaled very high levels of both 

systematic error and random error. Using error measures in data mining, such error corresponded to a 

MAE value of 10.58 and a RMSE value of 14.14 (in years). In the context of age recognition, aside from 

the inherent difficulty of estimating one’s age based on a photo, there were other sources of measurement 

error such as cosmetic or photo-retouching effects, the use of someone else’s photos, or the use of photos 

from a younger age.  

In the second stage, we fit a linear regression to examine the relationship between organizer age 

                                                
10 https://www.microsoft.com/cognitive-services/en-us/face-api 
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and campaign outcomes. The dependent variable, percent, is the percentage of fundraising goal achieved 

by the end of a campaign. This variable can be greater than 1 if a campaign raised more than its 

fundraising goal. The independent variable, age, is either the true value or predicted value of the 

organizer’s age. We included three control variables: (1) gender, representing the organizer’s self-

reported gender; (2) featured, a dummy variable indicating whether the campaign had been featured on 

the platform homepage at any point during the course of fundraising; and (3) duration, representing the 

number of days from the beginning to the end of the campaign. Given the existence of both systematic 

and random error components in measurement error, we used the SIMEX procedure with data pre-

processing that we proposed in Section 4.  

Before the second-stage regression analysis and the SIMEX correction, we followed the 

diagnostic procedure outlined in Table 4, by running the regression on the random subsample of 30% of 

our data, which was used to understand error functional form. The first four columns of Table 8 show 

results of our diagnostic analysis, respectively the true coefficients, the predicted coefficients and two 

corrected estimations, from SIMEX procedures without and with pre-processing. Although we used 

SIMEX with pre-processing for error correction, we also included the corrected coefficients from SIMEX 

without pre-processing for comparison purposes. We observed that, while the true relationship between 

age and fundraising outcomes was negative, measurement error caused the sign to flip to positive. 

Furthermore, our results suggest that, without data pre-processing, SIMEX correction failed to mitigate 

the bias. Interestingly, even with pre-processing, SIMEX procedure was incapable of recovering the 

correct sign of the age variable. Diagnostic analysis suggests that the level of measurement error from the 

image classifier was too high to be corrected by SIMEX. We next carried out the second-stage analysis on 

the remainder of our data, and the results are shown in the last four columns of Table 8. 

We observed similar results from second-stage analysis. After controlling for other factors, age 

was negatively associated with the percentage of funding goal achieved. More specifically, an increase of 

10 years in organizers’ age can reduce fundraising by approximately 3.5%. Compared to younger people, 

older people were less likely to achieve their fundraising goals. Due to severe measurement error in age, 
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the coefficient estimate of age became positive and insignificant when predicted age was included as the 

regressor. As such, measurement error introduced by the image classifier would, in this case, cause 

researchers to completely miss the effect of age. SIMEX correction without pre-processing further 

increased the bias, because it did not account for the systematic error component. Despite our best effort, 

even with pre-processing, SIMEX correction failed to recover the correct sign and significance of the 

coefficient on age, although it produced a coefficient that was closer to the unbiased value. 

Table 8. Regression Results for diagnostic (N = 410) and actual analysis (N = 1,368) 

 Diagnostic Analysis Actual Analysis 

 True Predicted 
Corrected 

(no pre-

process) 

Corrected 

(pre-

process) 
True Predicted 

Corrected 

(no pre-

process) 

Corrected 

(pre-

process) 

Intercept 
0.4006*** 

(0.0805) 

0.2826*** 

(0.0683) 

0.2392* 

(0.1076) 

0.2972*** 

(0.0486) 

0.4017*** 

(0.0415) 

0.2542*** 

(0.0338) 

0.2442*** 

(0.0488) 

0.2573*** 

(0.0243) 

age 
-0.0020 

(0.0018) 

0.0013 

(0.0019) 

0.0027 

(0.0034) 

0.0007 

(0.0010) 

-0.0035*** 

(0.0009) 

0.0003 

(0.0009) 

0.0006 

(0.0015) 

0.0002 

(0.0005) 

gender = male 
-0.1190** 

(0.0405) 

-0.1190** 

(0.0406) 

-0.1219** 

(0.0400) 

-0.1207** 

(0.0399) 

-0.0598** 

(0.0205) 

-0.0557** 

(0.0208) 

-0.0567** 

(0.0211) 

-0.0565** 

(0.0211) 

featured = yes 
1.0676*** 

(0.1155) 

1.0634*** 

(0.1159) 

1.0571** 

(0.3532) 

1.0608** 

(0.3536) 

0.8320*** 

(0.0535) 

0.8291*** 

(0.0538) 

0.8288*** 

(0.0538) 

0.8288*** 

(0.0538) 

duration 
-0.0005* 

(0.0002) 

-0.0006** 

(0.0002) 

-0.0006*** 

(0.0001) 

-0.0006*** 

(0.0001) 

-0.0004*** 

(0.0001) 

-0.0004*** 

(0.0001) 

-0.0004*** 

(0.0001) 

-0.0004*** 

(0.0001) 

R-squared 19.55% 19.4%   17.24% 16.44%   

Note. The SIMEX method does not provide R-squared statistics. 

 

Our third example demonstrates an important lesson and insight about both SIMEX method and 

error correction procedures in general. When data mining models perform poorly and generate predictions 

with severe error, it is very challenging to fully recover the sign and statistical significance of the true 

coefficient using any error correction method. In this example, our post hoc assessment suggests that the 

true age is only weakly correlated with machine-detected age (𝜌 = 0.33). In other words, we would like 

to note that error correction methods do not have unlimited capability of uncovering the correct signal 

from any amount of error. Knowing this, researchers should prioritize reducing error and improving 

performance in their first-stage data mining models, rather than rely primarily on error corrections.  

6. Discussion and Conclusions 

An increasing use of data mining and econometrics as a two-stage analysis process provides many new 

opportunities for IS research. In the first stage, a wide variety of data mining techniques equip researchers 
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with the tools to classify unstructured data, such as text or images, and to gather information that is not 

directly observable, such as sentiment. The output of these models can be subsequently incorporated into 

the second-stage econometric estimations to test hypotheses and make inferences. This combined 

approach, however, has potential pitfalls. In particular, this practice introduces challenges to statistical 

inference because of the well-known issues of measurement error or misclassification, which may 

compromise researchers’ ability to draw robust conclusions. As we have demonstrated both analytically 

and empirically, ignoring measurement error or misclassification is likely to severely bias econometric 

estimations. We have also shown that (1) even a relatively low level of measurement error or 

misclassification from data mining models can result in substantial biases in subsequent econometric 

estimations, and (2) the biases are harder to anticipate when the error structures or econometric models 

grow more complex. This issue is particularly concerning, given the increasing focus on the magnitude of 

coefficients (i.e., the economic significance) in empirical studies, over and above mere statistical 

significance (Lin et al. 2013). 

Fortunately, standard practices in data mining involve the evaluation of model performance using 

test datasets and provide established ways to quantify measurement error or misclassification. With this 

information, we can take actions to mitigate biases in the second-stage estimation. In this commentary, we 

reviewed several error-correction methods and focused on two simulation-based methods, SIMEX and 

MC-SIMEX, as promising remedies to correct for biases from measurement error and misclassification. 

We illustrated their effectiveness using both comprehensive simulations and three real-world datasets. In 

most cases, biases were reduced and the corrected coefficients were closer to the true values. In some 

cases, the corrected coefficients almost perfectly recovered their true values. We also identified two 

situations under which the effectiveness of error correction methods may be either limited or unnecessary. 

First, when the level of measurement error or misclassification is very high, SIMEX or MC-SIMEX are 

not powerful enough to correct the bias. Solely relying on these methods could lead researchers to draw 

incorrect conclusions. Second, when continuous measurement error contains both a systematic component 

and a random component with relatively large variability, it can sometimes result in little bias in 
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coefficient estimation. Using SIMEX in this situation could therefore be unnecessary or even detrimental. 

Finally, note that error correction methods cannot account for biases caused by misspecification in the 

second-stage econometric model. For example, we simulated scenarios where the regression model had 

omitted variable bias, besides measurement error. The SIMEX method was able to correct for the bias due 

to the measurement error, but it had no way of identifying the existence of omitted variable bias. 

In addition to causing biases in regression coefficient estimates, measurement error and 

misclassification in independent variables can affect several other important aspects of econometric 

analysis, including confidence interval estimation, goodness-of-fit calculation, and hypothesis testing. For 

a linear regression where one of the independent variables contains classical measurement error, several 

asymptotic results are known in literature. First, estimation of the error variance 𝜎𝜀
2 will be inconsistent 

(Wansbeek and Meijer 2000). More specifically, the sample estimate 𝑠𝜀
2 will exceed the true value 𝜎𝜀

2 in 

the limit. As a result, standard error for each regressor will also be overestimated in the limit. 

Consequently, the corresponding confidence interval will be wider than it should be, and the 

corresponding p-value will be larger than it should be. In general, classical measurement error in linear 

regressions makes OLS estimators more conservative. Second, as a direct ramification of the 

overestimation of error variance, 𝑅2  is biased toward zero, indicating worse model fit. Third, the 

reliability of hypothesis testing may become questionable. For example, the commonly used F-statistic is 

biased toward zero, which means the null hypothesis that every coefficient is zero is not rejected often 

enough. In the case of misclassification, although limited theoretical results are available in the literature, 

our simulations showed that the presence of misclassification can inflate estimation of model error 

variance and can result in decreased model fit. Although we primarily focus on demonstrating and 

correcting biases in coefficient estimates in this commentary, we believe that readers should be aware of 

the aforementioned other consequences of error. 

This commentary highlights both the opportunities and potential pitfalls of combining data 

mining and econometric modeling. Given the growing prevalence of the integrated approach, we hope to 

raise awareness of the fact that failing to account for measurement error or misclassification, which arises 
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from the data mining process, could result in misleading findings. We chose SIMEX and MC-SIMEX as 

exemplary error-correction methods because they are easy to parameterize by using performance metrics 

from the data mining process and because they can be applied to a variety of econometric models. 

However, we do not claim that these two methods are superior to other error-correction methods in all 

situations. Instead, we acknowledge there are situations where other methods may be more appropriate. 

For example, the regression calibration method has been shown to produce consistent estimates for linear 

models (Carroll et al. 2006), and the instrumental variable approach can be used when valid instruments 

are available. We encourage researchers to evaluate and adopt error correction methods on a case-by-case 

basis, depending on the nature of their data and research setting. We provide a diagnostic procedure to 

help researchers assess and deal with measurement error in their research practice. We propose that 

researchers use labeled dataset from first-stage data mining to diagnose the structure of the error, the 

severity of resulting bias, and the effectiveness of available correction methods. Conducting these 

diagnostic analyses before applying the error correction procedure can help the researcher fully 

understand and address the issue.  

Our commentary provides a first step toward addressing the challenges with measurement error 

from combining data mining techniques with econometric analysis. There are several promising avenues 

for future work. The first future direction is to continue improving existing error-correction methods. 

When applying the SIMEX and MC-SIMEX methods, we occasionally observed cases in which the 

coefficients of precisely measured (error-free) covariates were slightly over-corrected or shifted in the 

opposite direction. Although the mathematical underpinnings of the correction methods in no way would 

suggest that this result is a systematic or asymptotic property (but rather is a finite sample property), 

researchers should be aware of this potential issue. Future research should continue to improve the 

stability and robustness of the SIMEX and MC-SIMEX methods. Second, there are challenging scenarios 

when several variables, potentially of different types, are simultaneously measured with error, or when 

the measurement error takes complicated forms. Current error correction methods may not be capable of 

mitigating biases in these challenging cases, which calls for more novel and powerful new methods. Third, 
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researchers can seek to develop novel approaches to combine predictive data mining with econometric 

analysis that avoid the peril of measurement error. Through this commentary, we hope to raise awareness 

of these methodological challenges and opportunities and help IS scholars to better sharpen our collective 

toolkit and harness the power of data mining methods in empirical research. 
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ONLINE SUPPLEMENT 

Appendix A1: Proof for estimation bias in linear regression with a single misclassified regressor 

(for reference, see Gustafson 2003). 

Suppose the regression equation is 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀. Instead of true value 𝑋 we observe �̂�, which has 

misclassification. According to law of iterative expectation, 𝐸(𝑌|�̂�) = 𝐸(𝐸(𝑌|𝑋, �̂�)|�̂�). Additionally, 

the nondifferential misclassification assumption implies that 𝐸(𝑌|𝑋, �̂�) = 𝐸(𝑌|𝑋) . Combining them 

together, we have the following relationship: 

𝐸(𝑌|�̂�) = 𝐸(𝐸(𝑌|𝑋)|�̂�) = 𝐸(𝛽0 + 𝛽1𝑋|�̂�) = 𝛽0 + 𝛽1𝐸(𝑋|�̂�) 

Therefore, 𝐸(𝛽1̂|�̂�) = 𝐸(𝑌|�̂� = 1) − 𝐸(𝑌|�̂� = 0) = 𝛽1[𝐸(𝑋|�̂� = 1) − 𝐸(𝑋|�̂� = 0)] 

Further, 𝐸(𝑋|�̂� = 1) = 1 × Pr(𝑋 = 1|�̂� = 1) + 0 × Pr(𝑋 = 0|�̂� = 1) = Pr(𝑋 = 1|�̂� = 1). Similarly, 

𝐸(𝑋|�̂� = 0) = Pr(𝑋 = 1|�̂� = 0). As a result, we have: 

𝐸(𝛽1̂|�̂�) = 𝛽1[Pr(𝑋 = 1|�̂� = 1) − Pr(𝑋 = 1|�̂� = 0)] 

 

Appendix A2: A Graphical Illustration of Estimation Bias due to Misclassification 

 

Note. Consider a linear regression of Y on a dummy variable X. This graph shows the fitted regression line with 10 

data points. In the subgraph on the left, all data is correctly measured. In the subgraph on the right, one data point in 

each class is misclassified as having the opposite class label (corresponding to 80% precision for both class 0 and 

class 1). Change in the slope of the regression line demonstrates the bias due to misclassification in independent 

variable. In this case, misclassification in X would result in a coefficient that is only 60% of its true value in 

expectation. 
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Appendix A3: Pseudocode for implementing SIMEX and MC-SIMEX methods (for reference, see 

Cook and Stefanski 1994 and Küchenhoff et al. 2006). 

Given a data set (𝒀, 𝑿, 𝒁) and the regression model 𝒀 = 𝜷[𝑿 𝒁] + 𝜺, we consider 𝑿 to be the variable that 

has measurement error or misclassification, and 𝒁 to be other precisely measured variables. Here is the 

pseudocode for estimating error-corrected 𝜷𝒔𝒊𝒎𝒆𝒙 and 𝜷𝒎𝒄𝒔𝒊𝒎𝒆𝒙, respectively. 

Algorithm A3(a). Pseudocode for Implementing SIMEX 

𝑿 has measurement error with standard deviation 𝜎𝑒, i.e., 𝑋 = 𝑋𝑡𝑟𝑢𝑒 + 𝑒 and 𝑉𝑎𝑟(𝑒) = 𝜎𝑒
2 

// Simulation Step: 

For 𝜆 from {𝜆1, 𝜆2, … 𝜆𝑚}:        // Construct simulated data, {𝜆1, 𝜆2, … 𝜆𝑚} can be {1,2, … , 𝑚} 

        For iteration i from 1 to B: 

                Generate 𝑿(𝜆)𝑖 as 𝑿(𝜆)𝑖 = 𝑿 + √𝜆𝑖𝜎𝑒𝒛, 𝒛~𝑵(𝟎, 𝑰) 

                Assemble a new data set (𝒀, 𝑿(𝜆)𝑖, 𝒁) 

                Estimate 𝜷(𝜆)𝑖 from regression model 

        Calculate 𝜷(𝜆) = 𝐵−1 ∑ 𝜷(𝜆)𝑖
𝐵
𝑖=1  

 

// Extrapolation Step: 

Fit a parametric model over { 𝜷(𝜆1), 𝜷(𝜆2), … , 𝜷(𝜆𝑚)} 

Extrapolate to 𝜷(−1) 

Obtain 𝜷𝒔𝒊𝒎𝒆𝒙 = 𝜷(−1) 

 

 

Algorithm A3(b). Pseudocode for Implementing MC-SIMEX 

𝑿 has misclassification, described by the misclassification matrix 𝚷. 

// Simulation Step: 

For 𝜆 from {𝜆1, 𝜆2, … 𝜆𝑚}:        // Construct simulated data, {𝜆1, 𝜆2, … 𝜆𝑚} can be {1,2, … , 𝑚} 

        For iteration i from 1 to B: 

                Generate 𝑿(𝜆)𝑖 with misclassification of magnitude 𝚷(1+λ) 

                Assemble a new data set (𝒀, 𝑿(𝜆)𝑖, 𝒁) 

                Estimate 𝜷(𝜆)𝑖 from regression model 

        Calculate 𝜷(𝜆) = 𝐵−1 ∑ 𝜷(𝜆)𝑖
𝐵
𝑖=1  

 

// Extrapolation Step: 

Fit a parametric model over { 𝜷(𝜆1), 𝜷(𝜆2), … , 𝜷(𝜆𝑚)} 

Extrapolate to 𝜷(−1) 

Obtain 𝜷𝒎𝒄𝒔𝒊𝒎𝒆𝒙 = 𝜷(−1) 
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Appendix A4: Diagnostic regression analysis for real-world example in Section 5.1.3 (N = 2,391). 

 LP Model Logit Model 

 True Predicted Corrected True Predicted Corrected 

Intercept  0.1630*** 

(0.0206) 

 0.1477*** 

(0.0216) 

 0.1746*** 

(0.0294) 

-1.6315*** 

(0.1324) 

-1.7172*** 

(0.1407) 

-1.5737*** 

(0.1811) 

Sentiment -0.0855*** 

(0.0192) 

-0.0628** 

(0.0193) 

-0.0890** 

(0.0288) 

-0.5300*** 

(0.1227) 

-0.3912** 

(0.1237) 

-0.5304** 

(0.1774) 

Photo -0.02545 

(0.0138) 

-0.0251 

(0.0139) 

-0.0243 

(0.0139) 

-0.1927 

(0.1209) 

-0.1909 

(0.1223) 

-0.1832 

(0.1211) 

Words  0.9275*** 

(0.0958) 

 0.8890*** 

(0.0989) 

 0.8185*** 

(0.1044) 

 5.1059*** 

(0.6005) 

 4.8561*** 

(0.6199) 

 4.4318*** 

(0.6525) 

Sequence  0.0441 

(0.0329) 

 0.0414 

(0.0329) 

 0.0380 

(0.0330) 

 0.2945 

(0.2143) 

 0.2783 

(0.2147) 

 0.2491 

(0.2158) 

Log Likelihood -1069.4 -1073.9  -1091.6 -1095.7  

AIC 2148.7 2157.8  2193.2 2201.4  
 

Note. This table contains regression results using the labeled dataset, i.e., 20% (or 2,391) of all reviews. 
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Appendix A5: R code used for MC-SIMEX correction in Section 5.1.3 

library(simex)    # Attach the “simex” library. 
 
data = read.csv()    # Read in the dataset that contains all variables and sentiment prediction for each review. 
 
mc = matrix(c(0.74,0.26,0.07,0.93), nrow = 2)    # Specify the misclassification matrix. 
dimnames(mc) = list(c("0", "1"), c("0", "1"))    # Assign the class label as dimension names of the misclassification 

matrix. 
 
# Running linear regressions. Specify the “family” parameter in glm() to run other types of regressions. 
# First, run a linear regression with true values of sentiment and control variables. 
# Please note that this step typically does not exist in actual studies, because true values are not observed. 
model.t = glm(helpfulness ~ true_sentiment + control_variables, data = data) 
summary(model.t) 
 
# Second, run a linear regression with predicted values of sentiment and control variables. 
model.mc = glm(helpfulness ~ predicted_sentiment + control_variables, data = data) 
summary(model.mc) 
 
# Third, specify the regression that contains misclassification. Specify parameters “x = T, y = T” to inform glm() to 
# return the response vector and model matrix used in model fitting. 
naive = glm(helpfulness ~ predicted_sentiment + control_variables, data = data, x = T, y = T) 
 
# Finally, perform MC-SIMEX correction by calling the mcsimex() function. The first input is the regression with     
# misclassification. The second parameter “SIMEXvariable” specifies the name of the variable with error. The third 
# parameter “mc.matrix” specifies the misclassification matrix. For other parameters, please see the manual for    
# mcsimex() function. 
model.simex = mcsimex(naive, SIMEXvariable = " predicted_sentiment ", mc.matrix = mc) 
summary(model.simex) 
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Appendix A6: Additional analyses for real-world example in Section 5.1.3 with different sample 

sizes. 

 

Table A6(a). Regression Results and Corrections of the TripAdvisor.com Dataset (N = 500) 

 LP Model Logit Model 

 True Predicted Corrected True Predicted Corrected 

Intercept 0.1482*** 

(0.0430) 

0.1074* 

(0.0482) 

0.1158 

(0.0702) 

-1.7203*** 

(0.2862) 

-1.9786*** 

(0.3364) 

-1.8926*** 

(0.4592) 

Sentiment -0.0692 

(0.0408) 

-0.0162 

(0.0431) 

-0.0244 

(0.0702) 

-0.4655 

(0.2731) 

-0.1079 

(0.2964) 

-0.1978 

(0.4594) 

Photo 0.0441 

(0.0319) 

0.0413 

(0.0319) 

0.0412 

(0.0395) 

0.2555 

(0.1852) 

0.2344 

(0.1845) 

0.2360 

(0.1786) 

Words 0.9571*** 

(0.2257) 

0.9742*** 

(0.2342) 

0.9510** 

(0.2900) 

5.5621*** 

(1.4218) 

5.6385*** 

(1.4910) 

5.4612*** 

(1.6467) 

Sequence -0.0394 

(0.0761) 

-0.0503 

(0.0760) 

-0.0493 

(0.0838) 

-0.3060 

(0.5785) 

-0.3873 

(0.5769) 

-0.3756 

(0.6726) 

Log Likelihood -212.49 -213.86  -220.73 -222.06  

AIC 436.97 439.72  451.45 454.12  

Note. The MC-SIMEX method does not provide log likelihood or AIC statistics.  

*** p < 0.001, ** p < 0.01, * p < 0.05, + p < 0.1 

 

 

 

 

Table A6(b). Regression Results and Corrections of the TripAdvisor.com Dataset (N = 2,000) 

 LP Model Logit Model 

 True Predicted Corrected True Predicted Corrected 

Intercept 0.1763*** 

(0.0232) 

0.1452*** 

(0.0245) 

0.1660*** 

(0.0353) 

-1.5464*** 

(0.1447) 

-1.7215*** 

(0.1576) 

-1.6175*** 

(0.2109) 

Sentiment -0.0803*** 

(0.0215) 

-0.0411+ 

(0.0219) 

-0.0618+ 

(0.0349) 

-0.4819*** 

(0.1330) 

-0.2475+ 

(0.1383) 

-0.3452+ 

(0.2065) 

Photo 0.0106 

(0.0195) 

0.0074 

(0.0195) 

0.0088 

(0.0237) 

0.0586 

(0.1181) 

0.0382 

(0.1177) 

0.0475 

(0.1332) 

Words 0.7572*** 

(0.1046) 

0.7628*** 

(0.1081) 

0.7112*** 

(0.1439) 

4.1086*** 

(0.6328) 

4.1178*** 

(0.6550) 

3.7970*** 

(0.8094) 

Sequence 0.0360 

(0.0369) 

0.0329 

(0.0370) 

0.0334 

(0.0391) 

0.2475 

(0.2379) 

0.2283 

(0.2379) 

0.2299 

(0.2420) 

Log Likelihood -933.05 -938.22  -942.67 -947.42  

AIC 1878.10 1888.40  1895.30 1904.80  

Note. The MC-SIMEX method does not provide log likelihood or AIC statistics. 

*** p < 0.001, ** p < 0.01, * p < 0.05, + p < 0.1 
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Table A6(c). Regression Results and Corrections of the TripAdvisor.com Dataset (N = 5,000) 

 LP Model Logit Model 

 True Predicted Corrected True Predicted Corrected 

Intercept 0.1648*** 

(0.0146) 

0.1507*** 

(0.0154) 

0.1739*** 

(0.0229) 

-1.6065*** 

(0.0931) 

-1.6878*** 

(0.0998) 

-1.5641*** 

(0.1346) 

Sentiment -0.0611*** 

(0.0135) 

-0.0416** 

(0.0137) 

-0.0651** 

(0.0222) 

-0.3740*** 

(0.0848) 

-0.2544** 

(0.0869) 

-0.3770** 

(0.1293) 

Photo -0.0255* 

(0.0107) 

-0.0258* 

(0.0107) 

-0.0250** 

(0.0095) 

-0.1986* 

(0.0902) 

-0.2008* 

(0.0902) 

-0.1928* 

(0.0924) 

Words 0.8948*** 

(0.0703) 

0.8834*** 

(0.0725) 

0.8267*** 

(0.0938) 

4.9458*** 

(0.4312) 

4.8607*** 

(0.4457) 

4.5130*** 

(0.5312) 

Sequence -0.0353 

(0.0228) 

-0.0385+ 

(0.0228) 

-0.0379 

(0.0235) 

-0.2197 

(0.1581) 

-0.2402 

(0.1582) 

-0.2405 

(0.1682) 

Log Likelihood -2315.62 -2321.24  -2343.63 -2348.86  

AIC 4643.20 4654.50  4697.30 4707.70  

Note. The MC-SIMEX method does not provide log likelihood or AIC statistics. 

*** p < 0.001, ** p < 0.01, * p < 0.05, + p < 0.1 
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Appendix A7: Diagnostic regression analysis for real-world example in Section 5.2 (N = 806). 

 OLS Model Poisson Model 

 True Predicted Corrected True Predicted Corrected 

Intercept -0.6257 

(1.0350) 

-1.0333 

(1.0275) 

-0.8095 

(1.0407) 

-1.6350*** 

(0.3082) 

-1.7096*** 

(0.3092) 

-1.6102*** 

(0.3393) 

Log(Words)  0.3575*** 

(0.0886) 

 0.3945*** 

(0.0909) 

 0.3308** 

(0.1018) 

 0.4494*** 

(0.0253) 

 0.4628*** 

(0.0266) 

 0.4310*** 

(0.0431) 

Activeness  0.0676*** 

(0.0122) 

 0.0662*** 

(0.0122) 

 0.0654*** 

(0.0122) 

 0.0150*** 

(0.0033) 

 0.0144*** 

(0.0033) 

 0.0150*** 

(0.0034) 

Log(Popularity)  0.1167 

(0.1003) 

 0.1369 

(0.1007) 

 0.1434 

(0.1008) 

 0.0668* 

(0.0307) 

 0.0647* 

(0.0308) 

 0.0711* 

(0.0313) 

Type = Link -0.9259 

(0.6966) 

-1.0160 

(0.6999) 

-1.0751 

(0.7000) 

-1.2153* 

(0.5009) 

-1.1987* 

(0.5009) 

-1.2049* 

(0.5019) 

Type = Photo  0.0768 

(0.5452) 

-0.1046 

(0.5435) 

 0.0371 

(0.5519) 

-0.6038* 

(0.2769) 

-0.7347** 

(0.2755) 

-0.6800* 

(0.2875) 

Sentiment -0.6690** 

(0.2114) 

-0.4113 

(0.2217) 

-0.6430* 

(0.2982) 

-0.3272*** 

(0.0713) 

-0.1578* 

(0.0803) 

-0.3514 

(0.2873) 

Log Likelihood -1905.6 -1908.9  -2290.4 -2299.5  

AIC 3825.2 3831.8  4594.7 4613.0  
 

Note. This table contains regression results using the labeled dataset, i.e., 30% (or 410) of all profile pictures. 

In our diagnostic analysis, the dummy variable Type = Video was not estimated, because no video-typed post 

was selected into the 30% random sample. 
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Appendix A8: Additional comprehensive simulation analyses of SIMEX and MC-SIMEX 

corrections 

1) 𝑋1 follows 𝑁(0,12) and has measurement error with 𝜎𝑒 = 0.1; 𝑋2 follows uniform distribution with values in 

[−0.5,0.5], [−1,1], or [−2,2]; 𝑋3 follows normal distribution with standard deviation 0.5, 1, or 2. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0, 0.52) 

C 1.0065 1.0045 -0.2% 1.0065 1.0832 1.0794 -0.3% 1.0861 0.9637 0.9423 -2.2% 0.9632 1.0062 0.9509 -5.5% 0.9254 

𝑋1 2.0000 1.9787 -1.1% 2.0005 2.0166 1.9825 -1.7% 2.0147 1.9941 1.9339 -3.0% 1.9965 1.9990 2.0204 1.1% 2.0448 

𝑋2 3.0160 3.0123 -0.1% 3.0111 3.1825 3.1640 -0.6% 3.1885 2.8510 2.7942 -2.0% 2.8522 2.9919 3.1150 4.1% 3.0957 

𝑋3 0.5273 0.5253 -0.4% 0.5271 0.5902 0.5719 -3.1% 0.5758 0.3645 0.3565 -2.2% 0.3674 0.5001 0.5375 7.5% 0.5403 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0, 12) 

C 0.9873 0.9862 -0.1% 0.9855 1.0374 1.0345 -0.3% 1.0391 1.0456 1.0146 -3.0% 1.0334 0.9921 1.0034 1.1% 0.9866 

𝑋1 2.0006 1.9802 -1.0% 2.0013 1.9601 1.9379 -1.1% 1.9684 2.0345 1.9576 -3.8% 2.0154 2.0035 1.9810 -1.1% 2.0028 

𝑋2 3.0168 3.0084 -0.3% 3.0071 2.6864 2.6836 -0.1% 2.7044 3.1959 3.0908 -3.3% 3.1469 3.0014 3.0126 0.4% 2.9711 

𝑋3 0.4954 0.4946 -0.2% 0.4965 0.4914 0.4898 -0.3% 0.4915 0.4696 0.4604 -2.0% 0.4688 0.4992 0.5210 4.4% 0.5208 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0,22) 

C 0.9975 0.9986 0.1% 1.0001 0.9911 0.9869 -0.4% 0.9958 0.9358 0.9102 -2.7% 0.9260 1.0047 1.0552 5.0% 1.0201 

𝑋1 1.9911 1.9706 -1.0% 1.9903 1.9506 1.9168 -1.7% 1.9541 1.9689 1.8935 -3.8% 1.9461 1.9994 1.9623 -1.9% 1.9878 

𝑋2 2.9638 2.9682 0.1% 2.9744 3.1581 3.1270 -1.0% 3.1513 3.0797 3.0064 -2.4% 3.0583 3.0041 3.0054 0.0% 3.0264 

𝑋3 0.4968 0.4957 -0.2% 0.4957 0.4997 0.4951 -0.9% 0.4989 0.5255 0.5087 -3.2% 0.5172 0.4996 0.4902 -1.9% 0.4959 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0, 0.52) 

C 1.0028 1.0012 -0.2% 1.0011 0.9172 0.9128 -0.5% 0.9190 1.0159 1.0059 -1.0% 1.0286 1.0013 1.0157 1.4% 1.0128 

𝑋1 1.9988 1.9801 -0.9% 2.0001 1.9423 1.9147 -1.4% 1.9469 2.1310 2.0928 -1.8% 2.1611 1.9994 1.9692 -1.5% 1.9882 

𝑋2 2.9930 2.9970 0.1% 2.9954 2.8003 2.7808 -0.7% 2.8001 3.1071 3.0776 -0.9% 3.1428 3.0038 3.0422 1.3% 3.0196 

𝑋3 0.4699 0.4677 -0.5% 0.4665 0.4628 0.4476 -3.3% 0.4486 0.5138 0.5154 0.3% 0.5228 0.4971 0.4848 -2.5% 0.4525 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0, 12) 

C 1.0051 1.0038 -0.1% 1.0045 1.0379 1.0282 -0.9% 1.0363 1.0044 0.9787 -2.6% 0.9980 0.9927 1.0724 8.0% 1.0458 

𝑋1 2.0113 1.9953 -0.8% 2.0132 2.0396 2.0134 -1.3% 2.0498 2.0249 1.9620 -3.1% 2.0202 2.0000 1.9116 -4.4% 1.9333 

𝑋2 3.0033 3.0054 0.1% 3.0070 2.9796 2.9613 -0.6% 2.9861 2.9419 2.8767 -2.2% 2.9393 3.0094 3.0756 2.2% 3.0886 

𝑋3 0.5064 0.4991 -1.5% 0.4987 0.4732 0.4687 -1.0% 0.4705 0.4975 0.4858 -2.3% 0.4937 0.5041 0.4816 -4.4% 0.4829 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0, 22) 

C 1.0016 1.0025 0.1% 1.0029 1.0670 1.0484 -1.7% 1.0565 0.9671 0.9433 -2.5% 0.9629 1.0086 1.0456 3.7% 1.0227 

𝑋1 2.0095 1.9899 -1.0% 2.0104 1.9724 1.9246 -2.4% 1.9589 1.8920 1.8259 -3.5% 1.8786 1.9972 1.9801 -0.9% 2.0018 

𝑋2 3.0077 3.0123 0.2% 3.0134 3.0369 2.9944 -1.4% 3.0152 2.8143 2.7539 -2.1% 2.8061 2.9942 2.9822 -0.4% 2.9801 

𝑋3 0.4981 0.5004 0.4% 0.5004 0.4919 0.4847 -1.5% 0.4878 0.4659 0.4570 -1.9% 0.4646 0.4999 0.4955 -0.9% 0.4939 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0, 0.52) 

C 1.0025 1.0022 -0.0% 1.0011 1.0375 1.0326 -0.5% 1.0371 1.0067 0.9927 -1.4% 1.0121 1.0044 0.9513 -5.3% 0.9589 

𝑋1 1.9857 1.9616 -1.2% 1.9812 1.9876 1.9528 -1.8% 1.9803 1.9189 1.8886 -1.6% 1.9435 1.9992 1.9922 -0.4% 2.0019 

𝑋2 3.0021 2.9983 -0.1% 2.9995 2.9292 2.9137 -0.5% 2.9285 2.9758 2.9521 -0.8% 3.0087 2.9985 3.0363 1.3% 3.0276 

𝑋3 0.5036 0.5024 -0.2% 0.5008 0.6771 0.6668 -1.5% 0.6701 0.5430 0.5391 -0.7% 0.5514 0.4984 0.4769 -4.3% 0.4486 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0, 12) 

C 0.9960 1.0000 0.4% 0.9985 1.0450 1.0331 -1.1% 1.0391 1.0413 1.0078 -3.2% 1.0265 1.0020 0.9815 -2.0% 0.8705 

𝑋1 2.0191 2.0016 -0.9% 2.0229 1.9578 1.9299 -1.4% 1.9635 2.0390 1.9640 -3.7% 2.0228 1.9995 2.0255 1.3% 2.0418 

𝑋2 2.9925 2.9913 -0.0% 2.9910 2.9351 2.9200 -0.5% 2.9381 2.9607 2.8774 -2.8% 2.9308 2.9990 2.9895 -0.3% 3.0494 

𝑋3 0.4909 0.4931 0.4% 0.4928 0.5290 0.5317 0.5% 0.5355 0.4750 0.4594 -3.3% 0.4664 0.5005 0.4883 -2.4% 0.4912 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0, 22) 

C 1.0108 1.0092 -0.2% 1.0097 0.8989 0.9018 0.3% 0.9082 0.9662 0.9488 -1.8% 0.9673 0.9985 0.8443 -15.4% 0.8822 

𝑋1 1.9972 1.9754 -1.1% 1.9957 2.0375 2.0129 -1.2% 2.0501 2.0459 1.9764 -3.4% 2.0360 1.9998 1.9692 -1.5% 1.9908 

𝑋2 3.0057 3.0056 -0.0% 3.0056 3.0528 3.0448 -0.3% 3.0689 3.0410 2.9661 -2.5% 3.0233 3.0015 3.0902 3.0% 3.0483 

𝑋3 0.4992 0.5015 0.5% 0.5015 0.5365 0.5327 -0.7% 0.5365 0.5245 0.5097 -2.8% 0.5186 0.4997 0.5221 4.5% 0.5193 
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2) 𝑋1 follows 𝑁(0,12) and has measurement error with 𝜎𝑒 = 0.3; 𝑋2 follows uniform distribution with values in 

[−0.5,0.5], [−1,1], or [−2,2]; 𝑋3 follows normal distribution with standard deviation 0.5, 1, or 2. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0, 0.52) 

C 0.9940 0.9923 -0.2% 0.9920 1.0605 0.9989 -5.8% 1.0529 0.9706 0.8570 -11.7% 0.9590 1.0026 1.1853 18.2% 1.1086 

𝑋1 1.9943 1.8405 -7.7% 2.0027 2.0061 1.7093 -14.8% 1.9446 1.9188 1.5365 -19.9% 1.8454 1.9964 1.8470 -7.5% 1.9675 

𝑋2 2.9865 2.9821 -0.1% 2.9818 3.0686 2.8958 -5.6% 3.0462 2.9410 2.5433 -13.5% 2.8142 3.0233 2.8856 -4.6% 2.8130 

𝑋3 0.5026 0.5049 0.4% 0.5100 0.6219 0.5815 -6.5% 0.6032 0.4376 0.3707 -15.3% 0.4184 0.4900 0.4892 -0.2% 0.5971 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0, 12) 

C 0.9905 0.9868 -0.4% 0.9926 1.0296 0.9642 -6.4% 1.0259 0.9938 0.8636 -13.1% 0.9799 0.9946 1.1455 15.2% 0.9520 

𝑋1 2.0071 1.8358 -8.5% 1.9959 2.1288 1.8301 -14.0% 2.1023 2.0367 1.6444 -19.3% 2.0122 2.0010 1.8636 -6.9% 2.0462 

𝑋2 2.9908 2.9692 -0.7% 2.9797 3.1944 3.0430 -4.7% 3.2415 3.1744 2.7253 -14.1% 3.0625 3.0073 2.8791 -4.3% 2.9639 

𝑋3 0.5008 0.4950 -1.2% 0.4936 0.5348 0.5040 -5.8% 0.5302 0.4986 0.4223 -15.3% 0.4790 0.5004 0.5142 2.8% 0.4999 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0,22) 

C 1.0005 1.0029 0.2% 1.0043 0.9831 0.9129 -7.1% 0.9592 1.0456 0.9119 -12.8% 1.0301 1.0057 1.3885 38.1% 1.2347 

𝑋1 1.9893 1.8385 -7.6% 1.9968 2.0681 1.7588 -15.0% 1.9930 2.0686 1.6345 -21.0% 1.9848 1.9995 1.7139 -14.3% 1.8671 

𝑋2 3.0005 3.0255 0.8% 3.0123 3.0007 2.8198 -6.0% 2.9726 3.2285 2.7866 -13.7% 3.1125 2.9952 2.8001 -6.5% 2.7360 

𝑋3 0.5001 0.4966 -0.7% 0.4975 0.5399 0.5027 -6.9% 0.5270 0.5375 0.4728 -12.0% 0.5281 0.4973 0.4658 -6.3% 0.4792 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0, 0.52) 

C 0.9881 0.9788 -0.9% 0.9787 0.9673 0.9074 -6.2% 0.9584 1.0042 0.8633 -14.0% 0.9682 0.9850 1.0552 7.1% 0.7100 

𝑋1 1.9982 1.8319 -8.3% 1.9896 2.0903 1.8095 -13.4% 2.0671 1.9876 1.5649 -21.3% 1.8876 2.0089 1.8756 -6.6% 2.1399 

𝑋2 2.9870 2.9713 -0.5% 2.9752 3.0840 2.8899 -6.3% 3.0434 2.9213 2.5272 -13.5% 2.8122 2.9963 3.0567 2.0% 3.1687 

𝑋3 0.4890 0.5052 3.3% 0.5158 0.5650 0.5644 -0.1% 0.5934 0.6070 0.5117 -15.7% 0.5734 0.5006 0.5669 13.2% 0.6125 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0, 12) 

C 0.9990 0.9865 -1.3% 0.9850 1.0161 0.9513 -6.4% 0.9951 0.9294 0.8006 -13.9% 0.8934 1.0057 1.2848 27.7% 1.0802 

𝑋1 1.9855 1.8269 -8.0% 1.9804 2.0482 1.7566 -14.2% 2.0044 1.9135 1.5363 -19.7% 1.8556 1.9968 1.7473 -12.5% 1.9305 

𝑋2 3.0081 3.0029 -0.2% 3.0065 2.9901 2.8128 -5.9% 2.9596 2.8597 2.4955 -12.7% 2.7929 3.0024 3.0009 -0.0% 3.0108 

𝑋3 0.4998 0.4805 -3.9% 0.4833 0.4659 0.4281 -8.1% 0.4499 0.4806 0.4118 -14.3% 0.4598 0.5010 0.4673 -6.7% 0.5026 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0, 22) 

C 1.0011 1.0020 0.1% 0.9970 0.9557 0.9163 -4.1% 0.9711 0.9934 0.8877 -10.6% 1.0066 0.9933 1.1814 18.9% 0.9229 

𝑋1 2.0019 1.8318 -8.5% 1.9807 1.9388 1.7314 -10.7% 1.9460 2.0543 1.6834 -18.1% 2.0502 1.9996 1.7675 -11.6% 1.9415 

𝑋2 2.9902 2.9919 0.1% 2.9840 2.9482 2.8373 -3.8% 2.9635 3.1522 2.8278 -10.3% 3.1976 3.0042 2.9591 -1.5% 2.9892 

𝑋3 0.4990 0.5016 0.5% 0.5043 0.5004 0.4761 -4.9% 0.4997 0.4923 0.4363 -11.4% 0.4932 0.5018 0.5501 9.6% 0.5815 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0, 0.52) 

C 1.0064 1.0134 0.7% 1.0102 1.1316 1.0763 -4.9% 1.1166 1.0071 0.8799 -12.6% 0.9941 1.0006 0.2396 -76.0% -0.1209 

𝑋1 1.9954 1.8231 -8.6% 1.9715 2.0540 1.8012 -12.3% 2.0367 2.1239 1.6866 -20.6% 2.0446 1.9999 1.9125 -4.4% 2.0792 

𝑋2 2.9947 2.9925 -0.1% 2.9899 3.0985 2.9573 -4.6% 3.0814 3.1193 2.7045 -13.3% 3.0572 2.9993 3.5035 16.8% 3.5972 

𝑋3 0.5087 0.5060 -0.5% 0.4995 0.4603 0.4340 -5.7% 0.4713 0.3441 0.2551 -25.9% 0.2787 0.5018 0.5895 17.5% 0.6339 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0, 12) 

C 0.9976 0.9987 0.1% 0.9977 1.0285 1.0081 -2.0% 1.0529 0.8567 0.7388 -13.8% 0.8304 1.0035 1.1600 15.6% 0.9501 

𝑋1 1.9955 1.8295 -8.3% 1.9914 1.9746 1.7600 -10.9% 1.9894 1.9315 1.6029 -17.0% 1.9494 2.0008 1.8049 -9.8% 2.0204 

𝑋2 2.9996 3.0095 0.3% 3.0120 2.9730 2.8552 -4.0% 2.9907 2.7894 2.4684 -11.5% 2.7876 2.9969 3.0168 0.7% 3.0043 

𝑋3 0.4944 0.5016 1.5% 0.5019 0.5237 0.4926 -5.9% 0.5177 0.4741 0.4227 -10.8% 0.4851 0.5004 0.5011 0.1% 0.5501 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0, 22) 

C 1.0082 0.9996 -0.9% 1.0019 0.9604 0.9050 -5.8% 0.9518 0.9914 0.8549 -13.8% 0.9660 0.9990 1.5323 53.4% 1.1906 

𝑋1 2.0002 1.8376 -8.1% 1.9934 1.9279 1.6892 -12.4% 1.9298 2.0341 1.5790 -22.4% 1.9152 2.0007 1.8840 -5.8% 2.0615 

𝑋2 2.9973 3.0107 0.4% 3.0109 2.8274 2.6831 -5.1% 2.8062 2.9988 2.5588 -14.7% 2.8867 2.9999 2.7385 -8.7% 2.8270 

𝑋3 0.5034 0.5103 1.4% 0.5094 0.4713 0.4515 -4.2% 0.4700 0.5034 0.4320 -14.2% 0.4877 0.4998 0.4657 -6.8% 0.4654 
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3) 𝑋1 follows 𝑁(0,12) and has measurement error with 𝜎𝑒 = 0.5; 𝑋2 follows uniform distribution with values in 

[−0.5,0.5], [−1,1], or [−2,2]; 𝑋3 follows normal distribution with standard deviation 0.5, 1, or 2. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0, 0.52) 

C 0.9988 0.9723 -2.6% 0.9734 1.0373 0.9163 -11.7% 1.0022 1.0214 0.7336 -28.2% 0.8495 0.9939 1.3684 37.7% 0.8414 

𝑋1 2.0058 1.5977 -20.3% 1.9287 1.9357 1.3828 -28.6% 1.8090 1.9786 1.1431 -42.2% 1.5498 2.0042 1.6108 -19.6% 2.0838 

𝑋2 3.0134 3.0054 -0.3% 2.9922 2.9940 2.6700 -10.8% 2.9210 3.0159 2.2345 -25.9% 2.5766 3.0086 3.1850 5.9% 3.2916 

𝑋3 0.4819 0.4512 -6.4% 0.4563 0.4866 0.4111 -15.5% 0.4448 0.4927 0.3049 -38.1% 0.3429 0.5081 0.3959 -22.1% 0.4806 

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0, 12) 

C 0.9968 0.9978 0.1% 0.9982 0.9722 0.8364 -14.0% 0.9131 1.0454 0.7728 -26.1% 0.8995 0.9932 0.9931 -0.0% 1.3919 

𝑋1 1.9971 1.5859 -20.6% 1.9221 2.0029 1.3898 -30.6% 1.8082 1.9948 1.1952 -40.1% 1.6425 2.0009 1.9062 -4.7% 1.8634 

𝑋2 2.9943 2.9584 -1.2% 2.9492 3.1800 2.6772 -15.8% 2.9072 2.9838 2.1681 -27.3% 2.5323 3.0041 2.5579 -14.9% 2.4561 

𝑋3 0.4945 0.5080 2.7% 0.5042 0.4819 0.4093 -15.1% 0.4444 0.4567 0.3538 -22.5% 0.4173 0.5008 0.2853 -43.0% 0.2692 

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0,22) 

C 0.9952 1.0089 1.4% 1.0142 0.9954 0.9126 -8.3% 1.0018 0.9866 0.7128 -27.8% 0.8366 0.9916 1.1484 15.8% 0.9138 

𝑋1 1.9941 1.5817 -20.7% 1.9200 1.9003 1.4071 -26.0% 1.8447 2.0387 1.1988 -41.2% 1.6659 2.0032 1.7473 -12.8% 2.0542 

𝑋2 3.0309 3.0755 1.5% 3.0566 3.1738 2.8644 -9.7% 3.1454 3.1686 2.3192 -26.8% 2.7026 3.0048 3.2798 9.2% 2.9771 

𝑋3 0.5045 0.5020 -0.5% 0.5037 0.4847 0.4338 -10.5% 0.4745 0.5248 0.3980 -24.1% 0.4647 0.4998 0.4764 -4.7% 0.4804 

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0, 0.52) 

C 1.0011 1.0023 0.1% 1.0020 1.0514 0.9096 -13.5% 0.9879 1.0486 0.7769 -25.9% 0.9200 0.9948 1.3520 35.9% 1.0756 

𝑋1 2.0017 1.6044 -19.8% 1.9429 2.1009 1.4814 -29.5% 1.9371 2.1337 1.2037 -43.6% 1.6568 2.0009 1.6121 -19.4% 1.9634 

𝑋2 2.9934 2.9770 -0.6% 2.9576 3.1632 2.7764 -12.2% 3.0607 3.2025 2.3318 -27.2% 2.7489 3.0039 3.0437 1.3% 2.8540 

𝑋3 0.4935 0.4781 -3.1% 0.4779 0.4478 0.4361 -2.6% 0.4820 0.4715 0.3442 -27.0% 0.3840 0.4972 1.0405 109.3% 0.9546 

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0, 12) 

C 0.9897 1.0003 1.1% 0.9913 1.0674 0.9410 -11.8% 1.0405 1.0136 0.7521 -25.8% 0.8885 0.9934 1.5747 58.5% 1.6209 

𝑋1 1.9989 1.6175 -19.1% 1.9687 2.0855 1.5030 -27.9% 1.9705 1.9624 1.1907 -39.3% 1.6392 2.0007 1.4660 -26.7% 1.6153 

𝑋2 3.0148 3.0372 0.7% 3.0434 3.0256 2.7237 -10.0% 3.0241 2.8965 2.1821 -24.7% 2.5551 3.0035 3.0134 0.3% 2.8730 

𝑋3 0.5078 0.5068 -0.2% 0.5032 0.4880 0.4223 -13.5% 0.4677 0.4497 0.3332 -25.9% 0.3914 0.5009 0.3979 -20.6% 0.3188 

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0, 22) 

C 0.9946 0.9970 0.2% 0.9964 1.0220 0.8879 -13.1% 0.9734 0.9600 0.7374 -23.2% 0.8739 0.9979 1.2586 26.1% 0.5015 

𝑋1 2.0050 1.5998 -20.2% 1.9454 2.0100 1.3848 -31.1% 1.7996 1.9923 1.1838 -40.6% 1.6234 2.0015 1.7065 -14.7% 2.1955 

𝑋2 2.9875 2.9428 -1.5% 2.9487 3.1477 2.7740 -11.9% 3.0380 3.0122 2.2767 -24.4% 2.6730 3.0040 2.8947 -3.6% 3.2256 

𝑋3 0.4993 0.5068 1.5% 0.5060 0.5532 0.4790 -13.4% 0.5213 0.4980 0.3826 -23.2% 0.4515 0.4997 0.5405 8.1% 0.5550 

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0, 0.52) 

C 0.9973 1.0003 0.3% 1.0104 1.0253 0.8960 -12.6% 0.9813 1.0674 0.8388 -21.4% 1.0273 1.0002 1.3161 31.6% 0.3884 

𝑋1 2.0069 1.6184 -19.4% 1.9691 2.0404 1.4259 -30.1% 1.8400 2.0102 1.2674 -37.0% 1.8034 2.0002 1.5199 -24.0% 2.0384 

𝑋2 3.0029 3.0067 0.1% 3.0026 3.0593 2.7112 -11.4% 2.9517 3.0667 2.3855 -22.2% 2.8977 2.9998 3.1271 4.2% 3.4145 

𝑋3 0.5243 0.5284 0.8% 0.5376 0.4500 0.3888 -13.6% 0.4167 0.6278 0.4816 -23.3% 0.6164 0.4999 0.3327 -33.4% 0.5148 

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0, 12) 

C 0.9919 1.0011 0.9% 0.9975 0.9276 0.8257 -11.0% 0.9047 1.0721 0.7553 -29.5% 0.8921 0.9983 1.0118 1.4% 0.7234 

𝑋1 1.9967 1.5989 -19.9% 1.9400 1.9283 1.3945 -27.7% 1.8005 2.0926 1.2153 -41.9% 1.6888 1.9995 1.5563 -22.2% 1.8190 

𝑋2 2.9985 2.9876 -0.4% 2.9784 2.9182 2.6206 -10.2% 2.8411 3.0813 2.2546 -26.8% 2.6694 3.0017 3.2718 9.0% 3.3679 

𝑋3 0.5103 0.5084 -0.4% 0.4974 0.4205 0.3801 -9.6% 0.4118 0.5041 0.3652 -27.6% 0.4208 0.5000 0.3359 -32.8% 0.2527 

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0, 22) 

C 0.9949 0.9932 -0.2% 0.9900 1.0428 0.9325 -10.6% 0.9992 1.0242 0.7419 -27.6% 0.8857 1.0061 -0.8169 -181.2% -0.1064 

𝑋1 1.9955 1.5963 -20.0% 1.9185 1.9817 1.4320 -27.7% 1.8304 2.0398 1.1479 -43.7% 1.5804 2.0002 2.1570 7.8% 2.3071 

𝑋2 2.9912 3.0010 0.3% 2.9962 2.9535 2.6503 -10.3% 2.8607 3.0465 2.1825 -28.4% 2.5653 2.9964 3.6585 22.1% 3.4083 

𝑋3 0.5011 0.4939 -1.4% 0.4929 0.5121 0.4659 -9.0% 0.5037 0.5249 0.3669 -30.1% 0.4302 0.4997 0.6811 36.3% 0.5383 
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4) 𝑋1 follows 𝑁(0,12) and has measurement error with 𝜎𝑒 = 0.1; 𝑋2 follows uniform distribution with values in 

[−0.5,0.5], [−1,1], or [−2,2]; 𝑋3 follows Bernoulli distribution with 𝑃𝑟(𝑋3 = 1) equals 0.7, 0.5, or 0.3. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 0.9890 0.9832 -0.6% 0.9862 0.9803 0.9555 -2.5% 0.9621 1.0270 1.0169 -1.0% 1.0407 1.0020 1.0836 8.1% 1.0661 

𝑋1 1.9948 1.9774 -0.9% 1.9969 2.0962 2.0654 -1.5% 2.1008 1.9982 1.9416 -2.8% 1.9961 2.0020 1.9647 -1.9% 1.9842 

𝑋2 2.9851 2.9870 0.1% 2.9865 3.1391 3.1419 0.1% 3.1662 2.9425 2.8848 -2.0% 2.9385 3.0012 3.0047 0.1% 2.9917 

𝑋3 0.5158 0.5161 0.1% 0.5146 0.6135 0.6296 2.6% 0.6335 0.4439 0.4305 -3.0% 0.4330 0.4951 0.4534 -8.4% 0.4533 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 1.0147 1.0196 0.5% 1.0185 1.0813 1.0769 -0.4% 1.0832 0.9485 0.9343 -1.5% 0.9496 1.0008 1.0399 3.9% 1.0051 

𝑋1 2.0033 1.9830 -1.0% 2.0010 1.9563 1.9289 -1.4% 1.9584 1.9203 1.8644 -2.9% 1.9141 2.0027 1.9918 -0.5% 2.0153 

𝑋2 3.0249 3.0306 0.2% 3.0334 2.9670 2.9435 -0.8% 2.9637 2.7937 2.7215 -2.6% 2.7652 2.9942 3.0674 2.4% 3.0826 

𝑋3 0.4727 0.4737 0.2% 0.4742 0.3659 0.3582 -2.1% 0.3596 0.5125 0.5024 -2.0% 0.5149 0.4950 0.4245 -14.3% 0.4386 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 0.9981 1.0012 0.3% 1.0020 1.0141 1.0190 0.5% 1.0235 1.0053 0.9872 -1.8% 1.0051 1.0006 1.0459 4.5% 1.0335 

𝑋1 2.0004 1.9839 -0.8% 2.0037 1.9689 1.9466 -1.1% 1.9780 1.9758 1.9200 -2.8% 1.9750 2.0014 1.9804 -1.0% 1.9913 

𝑋2 2.9635 2.9583 -0.2% 2.9606 2.9233 2.9118 -0.4% 2.9256 2.9554 2.9054 -1.7% 2.9551 2.9871 2.8752 -3.7% 2.8777 

𝑋3 0.4942 0.4910 -0.6% 0.4898 0.4947 0.4835 -2.3% 0.4927 0.5139 0.4915 -4.4% 0.5013 0.5024 0.4417 -12.1% 0.4546 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 1.0033 1.0046 0.1% 1.0059 0.9756 0.9599 -1.6% 0.9643 1.0014 0.9685 -3.3% 0.9860 0.9875 0.9805 -0.7% 0.9455 

𝑋1 2.0031 1.9830 -1.0% 2.0033 1.9765 1.9465 -1.5% 1.9779 2.0250 1.9315 -4.6% 1.9902 2.0015 2.0064 0.2% 2.0421 

𝑋2 2.9980 2.9996 0.1% 3.0001 2.8218 2.8083 -0.5% 2.8269 3.0505 2.9689 -2.7% 3.0279 3.0106 3.0451 1.1% 3.0533 

𝑋3 0.4890 0.4831 -1.2% 0.4816 0.4885 0.4962 1.6% 0.4993 0.4835 0.4794 -0.8% 0.4916 0.5022 0.4631 -7.8% 0.4589 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 1.0022 0.9976 -0.5% 0.9981 1.0134 0.9986 -1.5% 1.0031 0.9957 0.9803 -1.5% 1.0012 1.0109 1.0140 0.3% 1.0182 

𝑋1 2.0046 1.9856 -0.9% 2.0044 1.8855 1.8547 -1.6% 1.8824 1.9194 1.8618 -3.0% 1.9212 1.9984 1.9781 -1.0% 1.9833 

𝑋2 2.9999 2.9996 -0.0% 2.9999 3.0445 3.0313 -0.4% 3.0488 2.9871 2.9447 -1.4% 3.0075 2.9920 2.9948 0.1% 2.9974 

𝑋3 0.4955 0.5069 2.3% 0.5070 0.5454 0.5562 2.0% 0.5607 0.4508 0.4329 -4.0% 0.4427 0.4950 0.5323 7.5% 0.5281 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 1.0066 1.0067 0.0% 1.0058 1.0606 1.0545 -0.6% 1.0635 1.0387 1.0317 -0.7% 1.0518 0.9981 1.0385 4.0% 1.0201 

𝑋1 1.9959 1.9760 -1.0% 1.9951 2.0698 2.0342 -1.7% 2.0702 2.0574 2.0246 -1.6% 2.0826 2.0012 1.9608 -2.0% 1.9760 

𝑋2 2.9936 2.9901 -0.1% 2.9901 3.1364 3.1140 -0.7% 3.1402 3.0080 2.9752 -1.1% 3.0336 2.9995 2.9775 -0.7% 2.9724 

𝑋3 0.4980 0.4958 -0.4% 0.4992 0.4650 0.4557 -2.0% 0.4603 0.4711 0.4748 0.8% 0.4812 0.5010 0.5419 8.2% 0.5466 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 0.9915 0.9982 0.7% 0.9965 0.9675 0.9579 -1.0% 0.9600 0.8955 0.8828 -1.4% 0.9036 0.9975 1.0937 9.6% 1.1480 

𝑋1 1.9888 1.9643 -1.2% 1.9833 1.8312 1.7930 -2.1% 1.8201 1.9976 1.9411 -2.8% 2.0020 2.0004 1.9573 -2.2% 1.9704 

𝑋2 2.9883 2.9903 0.1% 2.9903 2.7965 2.7775 -0.7% 2.7922 2.9534 2.9088 -1.5% 2.9687 3.0014 2.9675 -1.1% 2.9389 

𝑋3 0.5000 0.4911 -1.8% 0.4918 0.3255 0.3272 0.5% 0.3327 0.6091 0.5980 -1.8% 0.6065 0.4997 0.5168 3.4% 0.4969 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 0.9936 0.9946 0.1% 0.9924 1.0916 1.0880 -0.3% 1.0932 1.0669 1.0507 -1.5% 1.0691 0.9976 0.9893 -0.8% 0.9714 

𝑋1 2.0081 1.9916 -0.8% 2.0110 2.1149 2.0888 -1.2% 2.1155 1.9844 1.9422 -2.1% 1.9906 1.9994 1.9803 -1.0% 1.9950 

𝑋2 3.0074 3.0036 -0.1% 3.0035 3.0986 3.0818 -0.5% 3.0960 3.0486 3.0154 -1.1% 3.0651 3.0022 3.0386 1.2% 3.0430 

𝑋3 0.5111 0.5112 0.0% 0.5127 0.3912 0.3822 -2.3% 0.3822 0.4371 0.4268 -2.4% 0.4250 0.4998 0.4372 -12.5% 0.4320 

𝜎𝑒 = 0.1, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 0.9983 1.0011 0.3% 1.0028 0.9279 0.9229 -0.5% 0.9291 0.9343 0.9043 -3.2% 0.9223 1.0021 1.0096 0.7% 0.9636 

𝑋1 1.9981 1.9833 -0.7% 2.0026 1.9720 1.9523 -1.0% 1.9825 2.0293 1.9712 -2.9% 2.0286 2.0002 1.9880 -0.6% 2.0128 

𝑋2 3.0070 3.0075 0.0% 3.0082 2.9955 2.9837 -0.4% 3.0008 3.0450 2.9893 -1.8% 3.0449 2.9984 2.9923 -0.2% 3.0050 

𝑋3 0.4977 0.4986 0.2% 0.4957 0.7150 0.7150 -0.0% 0.7150 0.5117 0.5024 -1.8% 0.5084 0.5012 0.5117 2.1% 0.4970 
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5) 𝑋1 follows 𝑁(0,12) and has measurement error with 𝜎𝑒 = 0.3; 𝑋2 follows uniform distribution with values in 

[−0.5,0.5], [−1,1], or [−2,2]; 𝑋3 follows Bernoulli distribution with 𝑃𝑟(𝑋3 = 1) equals 0.7, 0.5, or 0.3. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 1.0094 1.0215 1.2% 1.0233 1.0025 0.9714 -3.1% 1.0226 1.0107 0.8740 -13.5% 0.9696 1.0135 1.2538 23.7% 1.0415 

𝑋1 2.0055 1.8413 -8.2% 1.9963 1.9954 1.7838 -10.6% 2.0167 2.0811 1.6008 -23.1% 1.9274 1.9969 1.7976 -10.0% 2.0100 

𝑋2 2.9980 2.9749 -0.8% 2.9618 3.1505 3.0760 -2.4% 3.2239 3.1263 2.6413 -15.5% 2.9505 2.9821 3.0747 3.1% 3.0715 

𝑋3 0.4930 0.4745 -3.7% 0.4743 0.4779 0.4569 -4.4% 0.4838 0.5063 0.4169 -17.7% 0.4608 0.4950 0.4663 -5.8% 0.4454 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 1.0140 1.0033 -1.0% 1.0146 0.9835 0.9558 -2.8% 1.0127 0.9817 0.8688 -11.5% 0.9748 1.0062 1.0496 4.3% 0.8946 

𝑋1 1.9976 1.8310 -8.3% 1.9948 1.9657 1.7119 -12.9% 1.9496 2.0318 1.6540 -18.6% 2.0050 1.9979 1.9010 -4.9% 2.0516 

𝑋2 3.0238 3.0376 0.5% 3.0455 2.8599 2.7185 -4.9% 2.8451 2.9275 2.5545 -12.7% 2.8515 2.9973 3.1464 5.0% 3.2791 

𝑋3 0.4771 0.4889 2.5% 0.4788 0.4904 0.4544 -7.3% 0.4665 0.5425 0.4646 -14.4% 0.5274 0.4988 0.5212 4.5% 0.4998 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 0.9917 0.9779 -1.4% 0.9808 1.0439 0.9393 -10.0% 1.0014 0.9818 0.8741 -11.0% 0.9789 1.0002 0.9186 -8.2% 0.6898 

𝑋1 2.0112 1.8311 -9.0% 1.9912 2.2068 1.8909 -14.3% 2.1782 2.0097 1.6512 -17.8% 1.9945 2.0013 1.8887 -5.6% 2.0981 

𝑋2 3.0224 3.0145 -0.3% 3.0203 3.4398 3.2311 -6.1% 3.4546 3.1152 2.7135 -12.9% 3.0863 2.9898 3.3970 13.6% 3.3657 

𝑋3 0.5183 0.5362 3.5% 0.5387 0.4685 0.4733 1.0% 0.4937 0.4414 0.3540 -19.8% 0.3950 0.5019 0.7163 42.7% 0.6681 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 1.0058 0.9902 -1.5% 0.9944 0.9195 0.8758 -4.8% 0.9097 1.0277 0.8857 -13.8% 0.9778 0.9960 1.1875 19.2% 1.0032 

𝑋1 1.9970 1.8333 -8.2% 1.9942 2.0078 1.7336 -13.7% 1.9628 1.9817 1.5671 -20.9% 1.8821 2.0017 1.8022 -10.0% 1.9874 

𝑋2 2.9997 3.0079 0.3% 3.0101 3.0750 2.8873 -6.1% 3.0183 2.9041 2.5159 -13.4% 2.8065 2.9982 3.0122 0.5% 3.0298 

𝑋3 0.4897 0.5142 5.0% 0.5094 0.5548 0.5303 -4.4% 0.5584 0.4323 0.3775 -12.7% 0.4346 0.5006 0.5602 11.9% 0.5247 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 0.9859 0.9827 -0.3% 0.9863 0.9832 0.9120 -7.2% 0.9473 0.9943 0.8616 -13.3% 0.9541 0.9887 1.3564 37.2% 1.1239 

𝑋1 1.9879 1.8339 -7.7% 1.9881 1.9611 1.6957 -13.5% 1.9306 1.9491 1.5526 -20.3% 1.8472 2.0011 1.7852 -10.8% 1.9532 

𝑋2 3.0194 3.0109 -0.3% 3.0085 2.9077 2.7592 -5.1% 2.8975 2.9808 2.5752 -13.6% 2.8334 3.0087 2.7518 -8.5% 2.8406 

𝑋3 0.5042 0.4956 -1.7% 0.4890 0.4933 0.4921 -0.2% 0.5182 0.5358 0.4962 -7.4% 0.5485 0.5024 0.5101 1.5% 0.5290 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 0.9976 1.0156 1.8% 1.0182 0.9670 0.9091 -6.0% 0.9645 1.0266 0.8995 -12.4% 1.0202 1.0063 1.3079 30.0% 1.1480 

𝑋1 1.9976 1.8432 -7.7% 1.9999 1.9961 1.7566 -12.0% 2.0072 2.1116 1.6924 -19.9% 2.0708 1.9987 1.7518 -12.4% 1.9111 

𝑋2 2.9999 2.9965 -0.1% 3.0023 2.9524 2.8130 -4.7% 2.9729 3.1454 2.7098 -13.8% 3.0923 2.9971 2.9637 -1.1% 2.9470 

𝑋3 0.5083 0.5015 -1.3% 0.4999 0.3796 0.3668 -3.4% 0.3892 0.6029 0.4871 -19.2% 0.5600 0.4982 0.4535 -9.0% 0.4619 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 0.9896 0.9719 -1.8% 0.9684 0.9470 0.8854 -6.5% 0.9298 1.0512 0.9031 -14.1% 0.9943 0.9979 0.8952 -10.3% 0.6011 

𝑋1 1.9953 1.8401 -7.8% 1.9989 2.0455 1.7975 -12.1% 2.0505 1.8914 1.4956 -20.9% 1.7711 2.0005 1.9871 -0.7% 2.1876 

𝑋2 3.0095 3.0031 -0.2% 3.0054 3.0851 2.9416 -4.7% 3.0928 2.8520 2.4763 -13.2% 2.7184 2.9999 3.1113 3.7% 3.1635 

𝑋3 0.5081 0.5308 4.5% 0.5276 0.5687 0.5755 1.2% 0.6085 0.4552 0.4018 -11.7% 0.4322 0.5012 0.3235 -35.4% 0.3113 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 1.0063 1.0128 0.7% 1.0073 0.9109 0.8446 -7.3% 0.8757 1.0201 0.8917 -12.6% 0.9898 0.9978 1.5305 53.4% 1.2190 

𝑋1 1.9878 1.8181 -8.5% 1.9824 1.9937 1.6946 -15.0% 1.9004 2.0717 1.6710 -19.3% 2.0468 2.0002 1.7013 -14.9% 1.9017 

𝑋2 2.9969 2.9835 -0.4% 2.9853 3.0294 2.8510 -5.9% 2.9644 3.0774 2.6710 -13.2% 3.0323 3.0010 2.9323 -2.3% 3.0159 

𝑋3 0.5041 0.5139 1.9% 0.5218 0.4996 0.4699 -5.9% 0.4856 0.5512 0.4712 -14.5% 0.5517 0.5003 0.3589 -28.3% 0.3384 

𝜎𝑒 = 0.3, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 1.0131 1.0138 0.1% 1.0142 1.0894 1.0224 -6.1% 1.0780 0.9744 0.8403 -13.8% 0.9493 0.9978 1.2053 20.8% 0.9686 

𝑋1 2.0011 1.8410 -8.0% 1.9974 2.0463 1.7509 -14.4% 1.9753 2.0486 1.6022 -21.8% 1.9528 1.9999 1.8198 -9.0% 2.0240 

𝑋2 3.0106 3.0137 0.1% 3.0154 3.0750 2.8965 -5.8% 3.0273 3.1229 2.6810 -14.2% 3.0188 3.0011 2.9236 -2.6% 2.9581 

𝑋3 0.4873 0.4711 -3.3% 0.4746 0.5202 0.4768 -8.3% 0.4986 0.5697 0.5249 -7.9% 0.5710 0.4989 0.6862 37.5% 0.6917 
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6) 𝑋1 follows 𝑁(0,12) and has measurement error with 𝜎𝑒 = 0.5; 𝑋2 follows uniform distribution with values in 

[−0.5,0.5], [−1,1], or [−2,2]; 𝑋3 follows Bernoulli distribution with 𝑃𝑟(𝑋3 = 1) equals 0.7, 0.5, or 0.3. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 0.9986 1.0139 1.5% 1.0073 0.9924 0.8909 -10.2% 0.9888 1.0428 0.7797 -25.2% 0.9189 0.9998 1.5383 53.9% 1.2408 

𝑋1 1.9926 1.5897 -20.2% 1.9414 1.9813 1.3900 -29.8% 1.8322 1.9894 1.2303 -38.2% 1.7006 2.0051 1.5230 -24.0% 1.8935 

𝑋2 2.9560 2.9240 -1.1% 2.9434 3.1300 2.6969 -13.8% 2.9583 3.1303 2.3926 -23.6% 2.8327 2.9986 2.9688 -1.0% 3.0863 

𝑋3 0.5011 0.4931 -1.6% 0.4962 0.4839 0.4034 -16.6% 0.4316 0.4566 0.3716 -18.6% 0.4423 0.4937 0.3666 -25.7% 0.2651 

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 0.9999 0.9877 -1.2% 0.9931 0.8877 0.7989 -10.0% 0.8769 0.9432 0.7030 -25.5% 0.8311 1.0112 1.7148 69.6% 1.5850 

𝑋1 2.0022 1.5913 -20.5% 1.9301 1.9257 1.3498 -29.9% 1.7591 1.9637 1.1930 -39.2% 1.6539 1.9960 1.4729 -26.2% 1.7485 

𝑋2 2.9722 2.9639 -0.3% 2.9531 2.9477 2.6064 -11.6% 2.8385 2.7518 2.0018 -27.3% 2.3609 2.9964 2.7634 -7.8% 2.4771 

𝑋3 0.4866 0.5041 3.6% 0.4973 0.5906 0.4934 -16.5% 0.5337 0.4300 0.3310 -23.0% 0.3976 0.4955 0.4422 -10.7% 0.2578 

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 0.9957 1.0010 0.5% 0.9976 0.9936 0.8621 -13.2% 0.9481 0.9493 0.7011 -26.1% 0.8193 1.0015 0.9271 -7.4% 0.4324 

𝑋1 1.9987 1.5845 -20.7% 1.9221 1.9780 1.4095 -28.7% 1.8431 1.9898 1.1803 -40.7% 1.6127 1.9971 1.7949 -10.1% 2.1738 

𝑋2 3.0299 3.0008 -1.0% 2.9955 2.9264 2.5108 -14.2% 2.7589 3.0155 2.2235 -26.3% 2.6136 3.0046 3.4178 13.8% 3.4287 

𝑋3 0.4858 0.4706 -3.1% 0.4767 0.5018 0.4616 -8.0% 0.4836 0.6045 0.4335 -28.3% 0.5026 0.5086 0.8280 62.8% 0.9167 

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 0.9982 0.9819 -1.6% 0.9708 0.8912 0.7893 -11.4% 0.8838 1.0138 0.7891 -22.2% 0.9248 0.9968 1.5178 52.3% 1.7234 

𝑋1 2.0003 1.5838 -20.8% 1.9175 1.9544 1.3372 -31.6% 1.7301 1.9510 1.1613 -40.5% 1.5927 2.0026 1.4536 -27.4% 1.6076 

𝑋2 3.0014 2.9941 -0.2% 2.9998 2.9521 2.5467 -13.7% 2.7821 2.9642 2.2232 -25.0% 2.5829 3.0002 2.8480 -5.1% 2.6149 

𝑋3 0.5039 0.5042 0.1% 0.5143 0.6527 0.5665 -13.2% 0.5955 0.4588 0.2999 -34.6% 0.3419 0.4998 0.7062 41.3% 0.5433 

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 0.9976 0.9848 -1.3% 0.9892 1.0327 0.8821 -14.6% 0.9697 1.0229 0.7701 -24.7% 0.9285 0.9972 1.4438 44.8% 1.1364 

𝑋1 1.9907 1.5948 -19.9% 1.9435 2.0033 1.4128 -29.5% 1.8348 2.0326 1.2198 -40.0% 1.7075 2.0005 1.5184 -24.1% 1.7750 

𝑋2 2.9930 2.9657 -0.9% 2.9708 3.0194 2.6674 -11.7% 2.9102 3.0504 2.3000 -24.6% 2.7394 3.0040 2.8300 -5.8% 3.0203 

𝑋3 0.5165 0.5580 8.0% 0.5418 0.5411 0.4960 -8.3% 0.5420 0.4243 0.3151 -25.7% 0.3598 0.4986 0.6127 22.9% 0.5887 

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 0.9992 0.9820 -1.7% 0.9782 0.9919 0.8644 -12.9% 0.9375 1.0322 0.7520 -27.2% 0.8844 1.0010 1.8824 88.1% 1.9311 

𝑋1 2.0018 1.5861 -20.8% 1.9243 2.0646 1.4416 -30.2% 1.8788 2.0549 1.2266 -40.3% 1.6935 1.9996 1.3634 -31.8% 1.5026 

𝑋2 3.0082 3.0187 0.4% 3.0260 3.0483 2.6975 -11.5% 2.9544 3.0332 2.2514 -25.8% 2.6743 2.9989 2.9302 -2.3% 2.7933 

𝑋3 0.4958 0.4960 0.0% 0.5394 0.6213 0.5552 -10.6% 0.6488 0.4428 0.3344 -24.5% 0.3745 0.4990 0.3534 -29.2% 0.3076 

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 0.9803 0.9724 -0.8% 0.9812 0.9828 0.9039 -8.0% 0.9598 0.9292 0.6538 -29.6% 0.7730 1.0012 2.1004 109.8% 2.4481 

𝑋1 2.0076 1.6064 -20.0% 1.9381 1.9872 1.4640 -26.3% 1.9130 2.0436 1.1708 -42.7% 1.6019 1.9998 1.3544 -32.3% 1.5052 

𝑋2 2.9977 3.0033 0.2% 3.0066 2.9765 2.6913 -9.6% 2.9200 3.0458 2.1954 -27.9% 2.5881 2.9995 2.7620 -7.9% 2.5951 

𝑋3 0.5254 0.5417 3.1% 0.5441 0.4824 0.4319 -10.5% 0.4946 0.6321 0.4722 -25.3% 0.5434 0.4998 0.4941 -1.1% 0.2981 

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 0.9945 0.9821 -1.2% 0.9852 0.9187 0.8136 -11.4% 0.8663 0.9647 0.7381 -23.5% 0.8744 0.9959 1.2353 24.0% 0.4985 

𝑋1 1.9997 1.6205 -19.0% 1.9669 1.9385 1.3618 -29.7% 1.7316 2.0454 1.2668 -38.1% 1.7816 2.0006 1.7058 -14.7% 2.1640 

𝑋2 2.9968 2.9735 -0.8% 2.9833 2.9691 2.6426 -11.0% 2.8306 3.0947 2.3190 -25.1% 2.7773 3.0014 2.9969 -0.1% 3.1593 

𝑋3 0.4821 0.4862 0.8% 0.4772 0.5835 0.5395 -7.5% 0.5740 0.5587 0.4250 -23.9% 0.5169 0.5007 0.6588 31.6% 0.6189 

𝜎𝑒 = 0.5, 𝑋2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 1.0058 1.0081 0.2% 1.0068 0.9271 0.8304 -10.4% 0.9030 0.9682 0.7348 -24.1% 0.8877 0.9993 2.2014 120.3% 1.8485 

𝑋1 1.9998 1.6025 -19.9% 1.9389 1.9437 1.3929 -28.3% 1.7986 1.9325 1.2028 -37.8% 1.6760 1.9998 1.7477 -12.6% 2.1329 

𝑋2 3.0028 3.0055 0.1% 3.0084 2.8906 2.6027 -10.0% 2.8252 2.8895 2.2183 -23.2% 2.6359 3.0006 2.3929 -20.3% 2.3571 

𝑋3 0.4974 0.5032 1.2% 0.4790 0.5386 0.4639 -13.9% 0.5229 0.4464 0.3597 -19.4% 0.3900 0.4990 0.1417 -71.6% 0.0658 
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7) 𝑋1 follows 𝑁(0,12) and has measurement error with 𝜎𝑒 = 0.1; 𝑋2 follows Bernoulli distribution with 𝑃𝑟(𝑋2 = 1) 

equals 0.7, 0.5, or 0.3; 𝑋3 follows normal distribution with standard deviation 0.5, 1, or 2. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  

𝜎𝑒 = 0.1, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,0.52) 

C 1.0132 1.0128 -0.0% 1.0173 1.1562 1.1549 -0.1% 1.1607 0.9081 0.8913 -1.8% 0.9078 0.9899 0.9910 0.1% 0.9684 

𝑋1 2.0000 1.9787 -1.1% 2.0005 2.1216 2.0752 -2.2% 2.1116 1.9276 1.8616 -3.4% 1.9168 1.9997 1.9674 -1.6% 1.9871 

𝑋2 2.9904 2.9882 -0.1% 2.9846 2.9345 2.9082 -0.9% 2.9304 2.9102 2.8233 -3.0% 2.8759 3.0113 3.0513 1.3% 3.0506 

𝑋3 0.5273 0.5253 -0.4% 0.5270 0.4573 0.4334 -5.2% 0.4346 0.5612 0.5604 -0.1% 0.5767 0.4972 0.4961 -0.2% 0.5048 

𝜎𝑒 = 0.1, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,12) 

C 1.0037 1.0033 -0.0% 1.0024 0.9219 0.9249 0.3% 0.9309 1.0290 1.0077 -2.1% 1.0302 1.0106 1.0265 1.6% 0.9853 

𝑋1 2.0006 1.9802 -1.0% 2.0013 1.9459 1.9231 -1.2% 1.9558 2.0829 2.0213 -3.0% 2.0899 2.0000 1.9829 -0.9% 2.0137 

𝑋2 2.9766 2.9756 -0.0% 2.9759 2.9323 2.9174 -0.5% 2.9362 3.1859 3.1273 -1.8% 3.1994 2.9894 2.9941 0.2% 3.0003 

𝑋3 0.4955 0.4947 -0.2% 0.4966 0.4985 0.5021 0.7% 0.5029 0.5616 0.5500 -2.1% 0.5658 0.4994 0.5007 0.3% 0.5007 

𝜎𝑒 = 0.1, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,22) 

C 0.9839 0.9861 0.2% 0.9895 1.0276 1.0206 -0.7% 1.0292 1.0058 1.0063 0.0% 1.0226 0.9999 1.1347 13.5% 1.1609 

𝑋1 1.9912 1.9708 -1.0% 1.9904 1.9322 1.9003 -1.6% 1.9308 1.9862 1.9590 -1.4% 2.0152 1.9995 1.9294 -3.5% 1.9289 

𝑋2 3.0195 3.0180 -0.1% 3.0152 2.9057 2.8863 -0.7% 2.9007 2.9092 2.8815 -1.0% 2.9403 3.0011 2.9594 -1.4% 2.9490 

𝑋3 0.4968 0.4957 -0.2% 0.4957 0.5152 0.5080 -1.4% 0.5113 0.5200 0.5199 -0.0% 0.5291 0.5003 0.4919 -1.7% 0.4879 

𝜎𝑒 = 0.1, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,0.52) 

C 1.0010 0.9977 -0.3% 0.9967 0.9122 0.9030 -1.0% 0.9108 0.9845 0.9600 -2.5% 0.9816 1.0019 1.0671 6.5% 1.0486 

𝑋1 1.9988 1.9800 -0.9% 2.0001 1.9926 1.9536 -2.0% 1.9864 2.0560 1.9802 -3.7% 2.0472 2.0002 1.9533 -2.3% 1.9736 

𝑋2 3.0036 3.0071 0.1% 3.0087 3.2817 3.2562 -0.8% 3.2730 3.1741 3.0811 -2.9% 3.1565 2.9972 2.9917 -0.2% 2.9941 

𝑋3 0.4699 0.4675 -0.5% 0.4663 0.4822 0.4781 -0.9% 0.4799 0.5075 0.5038 -0.7% 0.5155 0.5002 0.5087 1.7% 0.5004 

𝜎𝑒 = 0.1, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,12) 

C 1.0109 1.0095 -0.1% 1.0110 1.0258 1.0229 -0.3% 1.0294 0.9713 0.9414 -3.1% 0.9559 1.0035 1.0055 0.2% 1.0037 

𝑋1 2.0113 1.9952 -0.8% 2.0132 2.1308 2.1128 -0.8% 2.1472 1.9846 1.8995 -4.3% 1.9543 1.9995 1.9936 -0.3% 2.0005 

𝑋2 2.9885 2.9886 0.0% 2.9869 3.0069 2.9950 -0.4% 3.0157 3.0657 2.9697 -3.1% 3.0301 2.9972 3.0079 0.4% 3.0061 

𝑋3 0.5063 0.4990 -1.4% 0.4986 0.5356 0.5317 -0.7% 0.5352 0.5288 0.5163 -2.4% 0.5257 0.4983 0.4939 -0.9% 0.4870 

𝜎𝑒 = 0.1, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,22) 

C 1.0120 1.0157 0.4% 1.0176 0.9796 0.9697 -1.0% 0.9766 0.9342 0.9082 -2.8% 0.9214 1.0031 0.9599 -4.3% 0.9058 

𝑋1 2.0097 1.9902 -1.0% 2.0107 1.9398 1.9074 -1.7% 1.9373 1.8013 1.7445 -3.2% 1.7880 2.0003 2.0447 2.2% 2.0824 

𝑋2 2.9791 2.9734 -0.2% 2.9705 2.8339 2.8138 -0.7% 2.8296 2.7562 2.7035 -1.9% 2.7466 2.9977 3.0067 0.3% 3.0132 

𝑋3 0.4981 0.5003 0.4% 0.5003 0.4830 0.4774 -1.1% 0.4796 0.4514 0.4440 -1.6% 0.4504 0.4999 0.4842 -3.1% 0.4833 

𝜎𝑒 = 0.1, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,0.52) 

C 1.0021 1.0049 0.3% 1.0029 0.9156 0.9112 -0.5% 0.9182 1.0390 1.0283 -1.0% 1.0500 1.0016 0.9836 -1.8% 0.9499 

𝑋1 1.9857 1.9615 -1.2% 1.9811 1.9157 1.8738 -2.2% 1.9038 1.9964 1.9527 -2.2% 2.0086 2.0010 1.9906 -0.5% 2.0172 

𝑋2 3.0014 2.9910 -0.3% 2.9942 2.9721 2.9420 -1.0% 2.9561 2.9795 2.9220 -1.9% 2.9790 2.9960 2.9981 0.1% 3.0033 

𝑋3 0.5037 0.5025 -0.3% 0.5008 0.5061 0.5017 -0.9% 0.5037 0.6136 0.6006 -2.1% 0.6130 0.4983 0.5059 1.5% 0.5084 

𝜎𝑒 = 0.1, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,12) 

C 1.0009 1.0065 0.6% 1.0057 0.9748 0.9599 -1.5% 0.9653 1.0085 0.9839 -2.4% 1.0020 1.0018 1.0299 2.8% 1.0114 

𝑋1 2.0191 2.0016 -0.9% 2.0230 1.8972 1.8587 -2.0% 1.8877 1.9616 1.8933 -3.5% 1.9467 1.9980 1.9832 -0.7% 1.9993 

𝑋2 2.9836 2.9784 -0.2% 2.9758 2.8382 2.8143 -0.8% 2.8271 2.9197 2.8442 -2.6% 2.9029 3.0036 2.9604 -1.4% 2.9560 

𝑋3 0.4909 0.4932 0.5% 0.4929 0.4705 0.4663 -0.9% 0.4697 0.4535 0.4353 -4.0% 0.4407 0.4988 0.5012 0.5% 0.5132 

𝜎𝑒 = 0.1, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,22) 

C 1.0067 1.0036 -0.3% 1.0040 0.9721 0.9717 -0.0% 0.9784 0.9761 0.9577 -1.9% 0.9791 0.9971 0.9986 0.2% 0.9746 

𝑋1 1.9972 1.9754 -1.1% 1.9957 2.0181 1.9824 -1.8% 2.0154 2.0454 1.9882 -2.8% 2.0568 2.0003 2.0234 1.2% 2.0421 

𝑋2 3.0133 3.0186 0.2% 3.0187 2.8542 2.8297 -0.9% 2.8477 3.0068 2.9658 -1.4% 3.0385 3.0011 2.9996 -0.0% 2.9959 

𝑋3 0.4992 0.5015 0.5% 0.5015 0.4789 0.4743 -1.0% 0.4769 0.4954 0.4880 -1.5% 0.4995 0.5000 0.4680 -6.4% 0.4743 

 

 

  



55 

8) 𝑋1 follows 𝑁(0,12) and has measurement error with 𝜎𝑒 = 0.3; 𝑋2 follows Bernoulli distribution with 𝑃𝑟(𝑋2 = 1) 

equals 0.7, 0.5, or 0.3; 𝑋3 follows normal distribution with standard deviation 0.5, 1, or 2. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  

𝜎𝑒 = 0.3, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,0.52) 

C 0.9966 0.9933 -0.3% 0.9970 1.0313 0.9543 -7.5% 0.9998 1.0489 0.9221 -12.1% 1.0422 0.9921 1.1712 18.1% 1.0017 

𝑋1 1.9998 1.8300 -8.5% 1.9943 1.9859 1.7209 -13.3% 1.9467 2.1745 1.6715 -23.1% 2.0380 2.0022 1.8142 -9.4% 2.0096 

𝑋2 3.0177 3.0093 -0.3% 3.0095 2.9783 2.8598 -4.0% 2.9930 3.2456 2.7097 -16.5% 3.0637 3.0036 3.0497 1.5% 3.0193 

𝑋3 0.5073 0.5048 -0.5% 0.5057 0.6059 0.5416 -10.6% 0.5625 0.5191 0.4472 -13.8% 0.4937 0.5002 0.4534 -9.4% 0.5194 

𝜎𝑒 = 0.3, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,12) 

C 1.0036 0.9777 -2.6% 0.9745 1.0753 1.0143 -5.7% 1.0638 0.9664 0.8744 -9.5% 1.0148 0.9954 1.0772 8.2% 1.0154 

𝑋1 1.9987 1.8300 -8.4% 1.9880 1.9116 1.6703 -12.6% 1.8782 2.0271 1.6900 -16.6% 2.1086 2.0011 1.8516 -7.5% 1.9655 

𝑋2 2.9812 3.0051 0.8% 3.0076 2.8151 2.6842 -4.7% 2.7856 3.0337 2.7339 -9.9% 3.1518 2.9999 3.0696 2.3% 3.0279 

𝑋3 0.4902 0.4991 1.8% 0.5048 0.4983 0.4673 -6.2% 0.4894 0.4548 0.4225 -7.1% 0.4928 0.5008 0.5218 4.2% 0.5495 

𝜎𝑒 = 0.3, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,22) 

C 1.0101 1.0174 0.7% 1.0139 0.9690 0.9351 -3.5% 0.9775 1.0903 0.9786 -10.2% 1.0957 0.9937 1.3898 39.9% 1.2008 

𝑋1 2.0099 1.8557 -7.7% 2.0171 1.9222 1.6964 -11.7% 1.9315 2.0379 1.6726 -17.9% 1.9980 2.0008 1.7782 -11.1% 1.9629 

𝑋2 2.9892 2.9973 0.3% 3.0013 2.9589 2.8032 -5.3% 2.9426 3.0125 2.6753 -11.2% 2.9966 3.0059 2.8627 -4.8% 2.8715 

𝑋3 0.5002 0.5037 0.7% 0.5044 0.4907 0.4678 -4.7% 0.4888 0.5344 0.4697 -12.1% 0.5293 0.4998 0.4659 -6.8% 0.4635 

𝜎𝑒 = 0.3, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,0.52) 

C 1.0164 0.9971 -1.9% 0.9978 0.9453 0.8991 -4.9% 0.9523 1.1099 0.9437 -15.0% 1.0611 1.0036 1.1220 11.8% 0.9385 

𝑋1 2.0059 1.8336 -8.6% 1.9865 2.0617 1.7752 -13.9% 2.0266 2.0665 1.6155 -21.8% 1.9480 1.9997 1.8331 -8.3% 2.0424 

𝑋2 2.9882 2.9981 0.3% 2.9954 3.0523 2.8536 -6.5% 3.0059 2.8800 2.4200 -16.0% 2.7058 2.9989 3.0465 1.6% 3.0130 

𝑋3 0.5033 0.4864 -3.4% 0.4762 0.4962 0.4779 -3.7% 0.5113 0.4487 0.3438 -23.4% 0.3830 0.4981 0.3655 -26.6% 0.4311 

𝜎𝑒 = 0.3, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,12) 

C 1.0018 0.9989 -0.3% 0.9960 0.9907 0.9510 -4.0% 0.9921 0.9467 0.8136 -14.1% 0.9118 0.9961 1.0238 2.8% 0.8992 

𝑋1 1.9998 1.8362 -8.2% 1.9927 1.9765 1.7377 -12.1% 1.9695 1.9706 1.5776 -19.9% 1.9007 2.0002 1.9302 -3.5% 2.0678 

𝑋2 3.0069 3.0236 0.6% 3.0290 3.0801 2.9439 -4.4% 3.0909 2.9474 2.5753 -12.6% 2.8959 3.0032 3.0513 1.6% 3.0203 

𝑋3 0.5085 0.5072 -0.3% 0.5091 0.4918 0.4623 -6.0% 0.4851 0.4599 0.3986 -13.3% 0.4408 0.5005 0.4371 -12.7% 0.4844 

𝜎𝑒 = 0.3, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,22) 

C 1.0148 1.0159 0.1% 1.0235 0.9332 0.8931 -4.3% 0.9337 0.9894 0.8525 -13.8% 0.9580 1.0028 1.1455 14.2% 1.0353 

𝑋1 2.0044 1.8459 -7.9% 2.0010 1.9293 1.6879 -12.5% 1.9059 1.9993 1.5278 -23.6% 1.8307 1.9990 1.8709 -6.4% 2.0225 

𝑋2 2.9769 2.9863 0.3% 2.9816 3.0267 2.8752 -5.0% 2.9840 3.0152 2.5352 -15.9% 2.8130 3.0001 3.0683 2.3% 2.9989 

𝑋3 0.4990 0.4987 -0.1% 0.5010 0.4660 0.4358 -6.5% 0.4538 0.4941 0.4284 -13.3% 0.4715 0.5000 0.4812 -3.7% 0.4828 

𝜎𝑒 = 0.3, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,0.52) 

C 0.9928 1.0038 1.1% 0.9988 0.9677 0.9255 -4.4% 0.9703 1.0010 0.8894 -11.1% 0.9892 0.9967 1.2543 25.8% 1.1952 

𝑋1 1.9953 1.8373 -7.9% 1.9949 1.9152 1.6721 -12.7% 1.9010 1.9299 1.5655 -18.9% 1.8835 1.9988 1.7575 -12.1% 1.8674 

𝑋2 3.0020 3.0027 0.0% 3.0015 2.9807 2.8447 -4.6% 2.9834 2.9608 2.5642 -13.4% 2.8712 3.0076 2.9856 -0.7% 2.9402 

𝑋3 0.4778 0.4802 0.5% 0.4774 0.4630 0.4199 -9.3% 0.4353 0.4932 0.4369 -11.4% 0.4968 0.5021 0.5633 12.2% 0.5413 

𝜎𝑒 = 0.3, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,12) 

C 1.0103 1.0124 0.2% 1.0183 1.1029 1.0105 -8.4% 1.0736 1.0196 0.8807 -13.6% 0.9773 0.9988 1.3232 32.5% 1.2144 

𝑋1 2.0037 1.8358 -8.4% 1.9928 2.0837 1.7950 -13.9% 2.0457 1.9905 1.5788 -20.7% 1.9003 1.9990 1.7361 -13.2% 1.8842 

𝑋2 2.9802 2.9775 -0.1% 2.9619 3.0117 2.8564 -5.2% 2.9694 2.9549 2.5782 -12.7% 2.8820 3.0037 2.9730 -1.0% 2.9390 

𝑋3 0.5042 0.5052 0.2% 0.5028 0.5366 0.5109 -4.8% 0.5349 0.5552 0.4775 -14.0% 0.5337 0.4988 0.4336 -13.1% 0.4336 

𝜎𝑒 = 0.3, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,22) 

C 1.0169 1.0144 -0.3% 1.0172 1.0004 0.9338 -6.7% 0.9840 1.0135 0.8860 -12.6% 0.9897 0.9984 0.8592 -13.9% 1.0582 

𝑋1 2.0040 1.8359 -8.4% 1.9980 2.0358 1.7738 -12.9% 2.0241 1.9897 1.6074 -19.2% 1.9480 2.0012 1.8955 -5.3% 1.9381 

𝑋2 3.0001 2.9903 -0.3% 2.9943 3.0574 2.8796 -5.8% 3.0433 2.9446 2.5825 -12.3% 2.9201 3.0002 3.0274 0.9% 2.9297 

𝑋3 0.4944 0.4933 -0.2% 0.4911 0.5414 0.4999 -7.7% 0.5268 0.5151 0.4525 -12.2% 0.5071 0.4999 0.6033 20.7% 0.5581 
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9) 𝑋1 follows 𝑁(0,12) and has measurement error with 𝜎𝑒 = 0.5; 𝑋2 follows Bernoulli distribution with 𝑃𝑟(𝑋2 = 1) 

equals 0.7, 0.5, or 0.3; 𝑋3 follows normal distribution with standard deviation 0.5, 1, or 2. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  

𝜎𝑒 = 0.5, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,0.52) 

C 0.9940 1.0152 2.1% 1.0427 1.1168 0.9888 -11.5% 1.0772 1.0299 0.7365 -28.5% 0.8642 1.0069 1.3524 34.3% 0.9410 

𝑋1 1.9990 1.5836 -20.8% 1.9260 1.9979 1.4380 -28.0% 1.8586 2.0025 1.2238 -38.9% 1.7079 1.9988 1.5642 -21.7% 1.9501 

𝑋2 3.0207 3.0032 -0.6% 2.9777 2.8757 2.5666 -10.7% 2.7823 2.9492 2.2547 -23.5% 2.7086 2.9966 3.1423 4.9% 3.1501 

𝑋3 0.4810 0.4544 -5.5% 0.4768 0.5134 0.4656 -9.3% 0.5006 0.5727 0.4795 -16.3% 0.5707 0.5007 0.4909 -2.0% 0.4768 

𝜎𝑒 = 0.5, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,12) 

C 1.0252 1.0306 0.5% 1.0437 1.0074 0.9068 -10.0% 1.0072 0.9722 0.6989 -28.1% 0.7860 0.9967 1.3114 31.6% 0.8667 

𝑋1 1.9958 1.5917 -20.2% 1.9262 2.0352 1.5073 -25.9% 1.9567 1.9269 1.1165 -42.1% 1.5211 2.0009 1.6154 -19.3% 1.9585 

𝑋2 2.9734 2.9726 -0.0% 2.9547 3.0461 2.8256 -7.2% 3.0599 2.9785 2.1747 -27.0% 2.5448 3.0028 3.0829 2.7% 3.2034 

𝑋3 0.4845 0.4767 -1.6% 0.4764 0.4997 0.4648 -7.0% 0.4940 0.4895 0.3413 -30.3% 0.3953 0.4996 0.4712 -5.7% 0.5051 

𝜎𝑒 = 0.5, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,22) 

C 1.0246 0.9971 -2.7% 0.9951 0.9737 0.8705 -10.6% 0.9644 0.9814 0.7266 -26.0% 0.8614 0.9936 1.3000 30.8% 1.3221 

𝑋1 1.9976 1.5886 -20.5% 1.9319 1.9547 1.4043 -28.2% 1.8103 2.0255 1.1748 -42.0% 1.6239 2.0002 1.5984 -20.1% 1.8373 

𝑋2 2.9923 3.0307 1.3% 3.0357 2.9866 2.6541 -11.1% 2.8458 3.0847 2.2718 -26.4% 2.6537 3.0058 2.8536 -5.1% 2.8158 

𝑋3 0.5016 0.4908 -2.2% 0.4861 0.5042 0.4543 -9.9% 0.4949 0.4914 0.3622 -26.3% 0.4268 0.5005 0.6291 25.7% 0.5354 

𝜎𝑒 = 0.5, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,0.52) 

C 0.9745 0.9868 1.3% 0.9837 1.0979 0.9836 -10.4% 1.0850 1.0760 0.8120 -24.5% 0.9650 0.9970 1.4447 44.9% 1.1067 

𝑋1 2.0083 1.5715 -21.8% 1.9255 2.0321 1.4697 -27.7% 1.9262 2.1008 1.2603 -40.0% 1.7563 2.0002 1.6039 -19.8% 1.9693 

𝑋2 3.0180 3.0107 -0.2% 3.0045 3.0902 2.8084 -9.1% 3.0636 2.9556 2.2041 -25.4% 2.6357 3.0031 2.9927 -0.3% 2.9452 

𝑋3 0.5080 0.5383 6.0% 0.5530 0.5788 0.5449 -5.9% 0.6138 0.6177 0.4465 -27.7% 0.5614 0.4980 0.3795 -23.8% 0.4982 

𝜎𝑒 = 0.5, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,12) 

C 1.0056 1.0503 4.4% 1.0518 0.9522 0.7730 -18.8% 0.8504 1.0393 0.7155 -31.2% 0.8361 0.9937 1.6622 67.3% 1.3432 

𝑋1 1.9959 1.5801 -20.8% 1.9122 2.0469 1.4290 -30.2% 1.8409 2.0394 1.1491 -43.7% 1.5895 2.0022 1.5740 -21.4% 1.9144 

𝑋2 2.9940 2.9441 -1.7% 2.9330 3.0951 2.7696 -10.5% 3.0093 3.0792 2.1890 -28.9% 2.5623 3.0035 2.6716 -11.1% 2.6363 

𝑋3 0.4944 0.4909 -0.7% 0.4924 0.4406 0.3852 -12.6% 0.4156 0.4953 0.3412 -31.1% 0.3996 0.4987 0.4255 -14.7% 0.4380 

𝜎𝑒 = 0.5, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,22) 

C 1.0082 0.9889 -1.9% 0.9951 1.0592 0.9384 -11.4% 1.0242 0.9196 0.6814 -25.9% 0.7894 0.9955 1.2447 25.0% 0.9474 

𝑋1 2.0049 1.5947 -20.5% 1.9316 2.0412 1.4205 -30.4% 1.8489 1.9472 1.1453 -41.2% 1.5549 2.0002 1.7026 -14.9% 2.0255 

𝑋2 2.9907 2.9822 -0.3% 2.9729 3.0597 2.6843 -12.3% 2.9300 3.1165 2.3267 -25.3% 2.6831 3.0041 2.8170 -6.2% 2.7986 

𝑋3 0.5032 0.5021 -0.2% 0.4971 0.5328 0.4743 -11.0% 0.5170 0.5142 0.3748 -27.1% 0.4338 0.5003 0.5573 11.4% 0.5361 

𝜎𝑒 = 0.5, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,0.52) 

C 0.9901 1.0097 2.0% 1.0077 1.0530 0.8913 -15.4% 0.9905 1.0448 0.7638 -26.9% 0.9056 1.0091 1.5509 53.7% 1.3664 

𝑋1 1.9978 1.5889 -20.5% 1.9296 2.1204 1.4543 -31.4% 1.9001 2.0713 1.2476 -39.8% 1.7276 1.9978 1.5193 -24.0% 1.8072 

𝑋2 2.9903 2.9508 -1.3% 2.9604 3.1082 2.7883 -10.3% 3.0578 3.0395 2.3444 -22.9% 2.7716 2.9956 2.9839 -0.4% 2.8436 

𝑋3 0.4890 0.4744 -3.0% 0.4927 0.4668 0.4111 -11.9% 0.4524 0.4613 0.3625 -21.4% 0.4191 0.5009 0.4373 -12.7% 0.4366 

𝜎𝑒 = 0.5, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,12) 

C 1.0101 1.0274 1.7% 1.0276 1.0059 0.9047 -10.1% 0.9792 0.9969 0.7288 -26.9% 0.8582 0.9915 1.3583 37.0% 0.9464 

𝑋1 1.9964 1.5965 -20.0% 1.9402 2.0244 1.4236 -29.7% 1.8647 1.9837 1.1740 -40.8% 1.6138 2.0007 1.5732 -21.4% 1.9600 

𝑋2 2.9941 2.9519 -1.4% 2.9615 2.9385 2.5888 -11.9% 2.8400 3.0962 2.3357 -24.6% 2.7092 3.0081 3.0953 2.9% 3.1073 

𝑋3 0.5007 0.4927 -1.6% 0.4926 0.4391 0.3887 -11.5% 0.4253 0.5053 0.3793 -24.9% 0.4523 0.4999 0.4013 -19.7% 0.4336 

𝜎𝑒 = 0.5, 𝑋2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,22) 

C 0.9862 1.0052 1.9% 1.0096 0.9623 0.8786 -8.7% 0.9497 1.0793 0.7626 -29.3% 0.9115 0.9929 1.2280 23.7% 0.7078 

𝑋1 1.9927 1.6140 -19.0% 1.9594 1.9232 1.3969 -27.4% 1.8140 2.1795 1.2445 -42.9% 1.7260 2.0015 1.5868 -20.7% 1.9444 

𝑋2 3.0255 3.0287 0.1% 3.0186 3.0881 2.8007 -9.3% 3.0258 3.1324 2.3097 -26.3% 2.7581 3.0048 3.2092 6.8% 3.3697 

𝑋3 0.5044 0.5074 0.6% 0.5120 0.5091 0.4633 -9.0% 0.5047 0.5503 0.3891 -29.3% 0.4681 0.4998 0.5612 12.3% 0.5808 
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10) 𝑋2 follows 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) and has misclassification with 𝑀00 = 0.8, and 𝑀11 = 0.8; 𝑋1 follows uniform 

distribution with values in [−0.5,0.5], [−1,1], or [−2,2]; 𝑋3 follows normal distribution with standard deviation 0.5, 

1, or 2. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0.0.52) 

C 1.0029 1.2902 28.6% 1.0195 1.0101 1.1406 12.9% 0.9996 1.0089 1.0606 5.1% 0.9833 0.9974 2.0563 106.2% 1.5065 

𝑋1 1.9688 1.9443 -1.2% 1.8847 2.0765 1.9384 -6.7% 2.0017 2.0625 1.8167 -11.9% 1.8846 2.0259 2.1498 6.1% 2.2137 

𝑋2 2.9897 1.5734 -47.4% 2.5259 3.1035 1.0612 -65.8% 1.8204 2.6801 0.6102 -77.3% 1.0409 2.9994 1.4855 -50.5% 2.3884 

𝑋3 0.5075 0.5168 1.8% 0.4927 0.4329 0.3730 -13.8% 0.3970 0.5831 0.4979 -14.6% 0.4932 0.4983 0.5086 2.1% 0.5074 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0.12) 

C 0.9810 1.2864 31.1% 1.0060 0.9376 1.0426 11.2% 0.8970 0.9946 1.0324 3.8% 0.9498 1.0140 1.9466 92.0% 1.3748 

𝑋1 2.0050 2.0242 1.0% 2.0251 2.0388 1.9183 -5.9% 2.0097 1.8751 1.6734 -10.8% 1.7231 1.9940 2.0669 3.7% 2.0430 

𝑋2 3.0137 1.5949 -47.1% 2.5596 2.8070 1.1673 -58.4% 2.0016 2.9811 0.7149 -76.2% 1.2353 2.9892 1.6041 -46.3% 2.5392 

𝑋3 0.5054 0.4915 -2.8% 0.4899 0.5573 0.5131 -7.9% 0.5444 0.5303 0.4495 -15.2% 0.4674 0.4999 0.5257 5.2% 0.5300 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0.22) 

C 1.0161 1.3177 29.7% 1.0407 1.0610 1.1508 8.5% 1.0117 0.9944 0.9826 -1.2% 0.9010 0.9994 2.0145 101.6% 1.4624 

𝑋1 1.9943 1.9283 -3.3% 1.9798 1.9875 1.8387 -7.5% 1.9209 1.9754 1.6339 -17.3% 1.7354 2.0022 2.0541 2.6% 2.0313 

𝑋2 2.9997 1.5539 -48.2% 2.4914 3.0144 1.1442 -62.0% 1.9063 3.1497 0.8131 -74.2% 1.3901 3.0032 1.5375 -48.8% 2.4479 

𝑋3 0.4960 0.4913 -1.0% 0.4921 0.4709 0.4256 -9.6% 0.4542 0.5147 0.4046 -21.4% 0.4323 0.4950 0.4412 -10.9% 0.4865 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0.0.52) 

C 1.0069 1.2925 28.4% 1.0114 0.9746 1.0876 11.6% 0.9521 1.0978 1.0805 -1.6% 0.9914 1.0032 2.0611 105.5% 1.5017 

𝑋1 1.9884 1.9514 -1.9% 1.9373 2.0499 1.8462 -9.9% 1.9416 2.2018 1.7971 -18.4% 1.8974 2.0061 1.9585 -2.4% 1.9285 

𝑋2 2.9809 1.6452 -44.8% 2.6085 3.0253 1.0972 -63.7% 1.8207 3.3483 0.8184 -75.6% 1.4033 2.9903 1.4962 -50.0% 2.4052 

𝑋3 0.5065 0.4811 -5.0% 0.4837 0.5715 0.4890 -14.4% 0.5203 0.5967 0.4452 -25.4% 0.4666 0.5016 0.4975 -0.8% 0.5080 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0.12) 

C 0.9971 1.2782 28.2% 1.0110 1.0000 1.1107 11.1% 0.9755 1.0313 1.0574 2.5% 0.9811 0.9991 2.1575 115.9% 1.6503 

𝑋1 2.0154 1.9563 -2.9% 1.9528 2.0401 1.8636 -8.6% 1.9398 2.0667 1.6857 -18.4% 1.7475 1.9978 1.9149 -4.2% 1.9019 

𝑋2 2.9848 1.5732 -47.3% 2.5176 3.0239 1.0403 -65.6% 1.7436 3.1105 0.6834 -78.0% 1.1646 3.0033 1.4586 -51.4% 2.2970 

𝑋3 0.4915 0.4936 0.4% 0.5049 0.4847 0.4377 -9.7% 0.4566 0.5073 0.3948 -22.2% 0.4179 0.4984 0.4853 -2.6% 0.4938 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0.22) 

C 0.9794 1.2696 29.6% 0.9917 1.0372 1.1347 9.4% 0.9958 1.0272 1.0093 -1.7% 0.9313 1.0066 2.1066 109.3% 1.5418 

𝑋1 1.9999 1.9682 -1.6% 1.9554 2.0681 1.8424 -10.9% 1.9384 1.9934 1.4602 -26.7% 1.5284 1.9971 1.9584 -1.9% 1.9477 

𝑋2 3.0163 1.6263 -46.1% 2.6233 2.9897 1.2465 -58.3% 2.1080 3.0905 0.7074 -77.1% 1.1910 2.9986 1.5209 -49.3% 2.4135 

𝑋3 0.5000 0.5076 1.5% 0.4902 0.5015 0.4324 -13.8% 0.4521 0.4870 0.3470 -28.7% 0.3668 0.4918 0.3968 -19.3% 0.4150 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0.0.52) 

C 0.9942 1.3028 31.0% 1.0294 1.0634 1.1320 6.4% 0.9873 1.0306 0.9469 -8.1% 0.8674 1.0000 2.0967 109.7% 1.5810 

𝑋1 1.9962 1.9836 -0.6% 1.9885 2.0014 1.7580 -12.2% 1.8659 2.0243 1.4539 -28.2% 1.5909 2.0017 1.9808 -1.0% 1.9719 

𝑋2 3.0181 1.5706 -48.0% 2.5133 2.8814 1.2879 -55.3% 2.1341 2.9401 1.0121 -65.6% 1.7165 2.9985 1.4899 -50.3% 2.3981 

𝑋3 0.5093 0.5804 14.0% 0.6211 0.4771 0.4353 -8.8% 0.4487 0.5506 0.3324 -39.6% 0.3587 0.4992 0.5551 11.2% 0.5519 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0.12) 

C 0.9906 1.2681 28.0% 0.9956 0.9812 1.0860 10.7% 0.9265 1.0616 0.9571 -9.8% 0.8875 1.0000 1.9776 97.8% 1.3313 

𝑋1 2.0032 1.9892 -0.7% 1.9915 2.0108 1.7420 -13.4% 1.8592 2.0652 1.3960 -32.4% 1.5384 2.0017 2.0372 1.8% 2.0473 

𝑋2 3.0208 1.6351 -45.9% 2.6386 3.0511 1.3393 -56.1% 2.2539 3.0739 0.9737 -68.3% 1.6140 3.0005 1.5711 -47.6% 2.5398 

𝑋3 0.4998 0.5053 1.1% 0.4970 0.4614 0.4038 -12.5% 0.4452 0.5524 0.3515 -36.4% 0.3902 0.4991 0.5158 3.4% 0.5327 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0.22) 

C 0.9970 1.2873 29.1% 0.9981 1.0360 1.1418 10.2% 1.0026 0.9952 2.0844 109.4% 1.5383 1.0125 1.8263 80.4% 1.6593 

𝑋1 1.9921 2.0052 0.7% 2.0187 2.0013 1.7310 -13.5% 1.8221 2.0208 2.0909 3.5% 2.0517 2.0099 2.0469 1.8% 2.0503 

𝑋2 2.9917 1.5762 -47.3% 2.5116 2.8248 1.1534 -59.2% 1.9148 3.0054 1.5037 -50.0% 2.4111 2.9894 0.2343 -92.2% 0.6254 

𝑋3 0.4976 0.4912 -1.3% 0.4892 0.4583 0.3931 -14.2% 0.4196 0.5002 0.5267 5.3% 0.5110 0.4747 0.5222 10.0% 0.5227 
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11) 𝑋2 follows 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) and has misclassification with 𝑀00 = 0.6, and 𝑀11 = 0.5; 𝑋1 follows uniform 

distribution with values in [−0.5,0.5], [−1,1], or [−2,2]; 𝑋3 follows normal distribution with standard deviation 0.5, 

1, or 2. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0.0.52) 

C 1.0125 1.8263 80.4% 1.6593 0.9646 1.3856 43.7% 1.3285 0.9983 1.1932 19.5% 1.1283 1.0054 2.7793 176.4% 2.5243 

𝑋1 2.0099 2.0469 1.8% 2.0503 2.0123 1.8349 -8.8% 1.8363 2.0310 1.6848 -17.0% 1.6814 2.0037 1.9772 -1.3% 1.9773 

𝑋2 2.9894 0.2343 -92.2% 0.6254 3.3398 0.0812 -97.6% 0.2178 2.6521 0.1031 -96.2% 0.2643 2.9960 0.3254 -89.1% 0.8658 

𝑋3 0.4747 0.5222 10.0% 0.5227 0.3651 0.3172 -13.1% 0.3164 0.5134 0.4111 -19.9% 0.4184 0.4983 0.4230 -15.1% 0.4210 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0.12) 

C 1.0044 1.7862 77.8% 1.6006 0.9924 1.3477 35.8% 1.1926 0.9695 1.1776 21.5% 1.1232 1.0030 2.7918 178.3% 2.6383 

𝑋1 2.0024 1.9959 -0.3% 2.0165 2.1788 1.9033 -12.6% 1.9386 1.9600 1.6529 -15.7% 1.6553 2.0030 1.8825 -6.0% 1.9048 

𝑋2 2.9883 0.2457 -91.8% 0.6806 3.4681 0.2202 -93.7% 0.5819 3.0920 0.0804 -97.4% 0.2077 2.9962 0.2124 -92.9% 0.5393 

𝑋3 0.4991 0.4943 -0.9% 0.4985 0.5201 0.4686 -9.9% 0.4689 0.4692 0.3756 -19.9% 0.3760 0.4981 0.4609 -7.5% 0.4635 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0.22) 

C 1.0029 1.7981 79.3% 1.6060 0.9958 1.4235 42.9% 1.3439 0.9631 1.1382 18.2% 1.0456 1.0015 2.7665 176.2% 2.5977 

𝑋1 2.0095 2.0638 2.7% 2.0749 1.8149 1.5196 -16.3% 1.5186 1.7935 1.4429 -19.5% 1.4535 1.9964 1.9025 -4.7% 1.9019 

𝑋2 3.0155 0.2748 -90.9% 0.7265 3.1526 0.1075 -96.6% 0.2887 3.0195 0.1431 -95.3% 0.3755 3.0034 0.2145 -92.9% 0.5918 

𝑋3 0.5096 0.5092 -0.1% 0.5120 0.4772 0.4117 -13.7% 0.4130 0.4693 0.3637 -22.5% 0.3636 0.4987 0.5033 0.9% 0.5048 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0.0.52) 

C 0.9978 1.8340 83.8% 1.7047 0.9916 1.3813 39.3% 1.2718 1.0697 1.2432 16.2% 1.1438 0.9885 2.7831 181.6% 2.5642 

𝑋1 1.9966 2.0243 1.4% 2.0173 2.0531 1.7922 -12.7% 1.7944 2.1276 1.7174 -19.3% 1.7225 2.0082 1.9565 -2.6% 1.9553 

𝑋2 3.0247 0.1703 -94.4% 0.4703 3.2656 0.1641 -95.0% 0.4376 3.0026 0.1402 -95.3% 0.3895 3.0103 0.2782 -90.8% 0.7359 

𝑋3 0.4795 0.4439 -7.4% 0.4417 0.3949 0.3909 -1.0% 0.3859 0.3843 0.2899 -24.6% 0.2871 0.5042 0.4976 -1.3% 0.4906 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0.12) 

C 0.9938 1.7939 80.5% 1.6124 0.9785 1.3821 41.2% 1.2544 0.9869 1.2161 23.2% 1.1898 1.0038 2.7980 178.7% 2.6058 

𝑋1 2.0006 2.0184 0.9% 2.0237 1.9929 1.6768 -15.9% 1.6744 1.9695 1.5740 -20.1% 1.5720 2.0039 1.9787 -1.3% 1.9842 

𝑋2 3.0150 0.2572 -91.5% 0.6821 3.0512 0.2026 -93.4% 0.5120 2.9746 0.0200 -99.3% 0.0768 2.9989 0.2449 -91.8% 0.6692 

𝑋3 0.4891 0.4791 -2.0% 0.4803 0.5796 0.4882 -15.8% 0.4880 0.4663 0.3328 -28.6% 0.3325 0.4983 0.4881 -2.0% 0.4809 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0.22) 

C 1.0221 1.8403 80.0% 1.6669 0.9539 1.3933 46.1% 1.3219 1.0001 1.1407 14.1% 1.0441 1.0082 2.7666 174.4% 2.5770 

𝑋1 2.0042 2.0121 0.4% 1.9987 1.9427 1.6184 -16.7% 1.6162 1.9271 1.4299 -25.8% 1.4233 2.0023 2.0737 3.6% 2.1009 

𝑋2 2.9765 0.2327 -92.2% 0.6312 2.8525 0.0923 -96.8% 0.2575 2.8328 0.1345 -95.3% 0.3681 2.9953 0.2237 -92.5% 0.5993 

𝑋3 0.4978 0.4991 0.3% 0.5000 0.4838 0.3843 -20.6% 0.3843 0.5105 0.3594 -29.6% 0.3598 0.4992 0.5270 5.6% 0.5333 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0.0.52) 

C 1.0013 1.7734 77.1% 1.5563 0.9014 1.3692 51.9% 1.3194 1.0985 1.1781 7.3% 1.0970 0.9941 2.6033 161.9% 2.3056 

𝑋1 1.9929 1.9901 -0.1% 1.9849 2.0179 1.6547 -18.0% 1.6538 2.1326 1.3109 -38.5% 1.3159 2.0019 2.0665 3.2% 2.0732 

𝑋2 2.9872 0.3128 -89.5% 0.8244 2.9869 0.0708 -97.6% 0.1818 3.0534 0.1129 -96.3% 0.3102 3.0032 0.3547 -88.2% 0.9642 

𝑋3 0.5004 0.4873 -2.6% 0.4950 0.5227 0.4542 -13.1% 0.4503 0.6389 0.3440 -46.2% 0.3403 0.5005 0.6250 24.9% 0.6945 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0.12) 

C 0.9999 1.8238 82.4% 1.6320 1.1048 1.4272 29.2% 1.2062 0.9453 1.0586 12.0% 0.9251 0.9949 2.8569 187.1% 2.7721 

𝑋1 1.9969 2.0096 0.6% 2.0105 1.9938 1.6619 -16.6% 1.6838 1.9629 1.2584 -35.9% 1.2668 1.9977 2.0097 0.6% 2.0166 

𝑋2 2.9974 0.2598 -91.3% 0.6990 2.7599 0.3501 -87.3% 0.9172 2.8531 0.2037 -92.9% 0.5345 3.0095 0.1016 -96.6% 0.2782 

𝑋3 0.5049 0.5093 0.9% 0.5126 0.5028 0.3939 -21.7% 0.3961 0.5109 0.3158 -38.2% 0.322 0.4993 0.5140 2.9% 0.5153 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0.22) 

C 0.9987 1.8218 82.4% 1.6446 1.0588 1.4869 40.4% 1.3916 1.0539 1.1748 11.5% 1.1105 0.9988 2.8323 183.6% 2.5891 

𝑋1 1.9868 1.9961 0.5% 1.9963 1.9604 1.6201 -17.4% 1.6215 2.0675 1.2863 -37.8% 1.2881 2.0022 1.9017 -5.0% 1.9032 

𝑋2 2.9840 0.2445 -91.8% 0.6516 2.9011 0.1423 -95.1% 0.3663 3.0427 0.0907 -97.0% 0.2412 2.9980 0.3226 -89.2% 0.8505 

𝑋3 0.5039 0.5005 -0.7% 0.5018 0.4983 0.4131 -17.1% 0.4133 0.5155 0.3123 -39.4% 0.3129 0.4996 0.5069 1.5% 0.5002 
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12) 𝑋2 follows 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) and has misclassification with 𝑀00 = 0.6, and 𝑀11 = 0.5; 𝑋1 follows uniform 

distribution with values in [−0.5,0.5], [−1,1], or [−2,2]; 𝑋3 follows normal distribution with standard deviation 0.5, 

1, or 2. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0.0.52) 

C 0.9972 2.3886 139.5% 2.1839 1.1002 1.7270 57.0% 1.4998 1.0160 1.3668 34.5% 1.2310 0.9875 3.2475 228.9% 3.0943 

𝑋1 1.9687 1.9616 -0.4% 1.9692 2.0628 1.8030 -12.6% 1.8099 1.9939 1.5908 -20.2% 1.5964 2.0130 2.0151 0.1% 2.0073 

𝑋2 3.0053 0.2706 -91.0% 0.7291 2.8968 0.3410 -88.2% 0.8921 2.8002 0.1826 -93.6% 0.4942 3.0086 0.1983 -93.4% 0.5187 

𝑋3 0.5074 0.4771 -6.0% 0.4636 0.5174 0.4592 -11.3% 0.4750 0.5481 0.4015 -26.7% 0.4029 0.4982 0.4723 -5.2% 0.4770 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0.12) 

C 0.9977 2.3802 138.6% 2.1996 0.9453 1.6479 74.3% 1.4783 1.0077 1.3693 35.9% 1.2773 0.9870 3.2747 231.8% 3.1521 

𝑋1 2.0044 1.9256 -3.9% 1.9292 2.2463 1.9079 -15.1% 1.9085 2.2120 1.6429 -25.7% 1.6467 2.0140 1.9932 -1.0% 2.0072 

𝑋2 2.9749 0.2416 -91.9% 0.6434 2.8196 0.2372 -91.6% 0.6232 2.9192 0.1268 -95.7% 0.3349 3.0123 0.1505 -95.0% 0.4059 

𝑋3 0.5055 0.5308 5.0% 0.5335 0.5193 0.4304 -17.1% 0.4342 0.4572 0.3421 -25.2% 0.3432 0.4989 0.5178 3.8% 0.5237 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝑁(0.22) 

C 1.0135 2.3854 135.4% 2.1375 1.0112 1.6717 65.3% 1.4011 1.0390 1.4077 35.5% 1.3296 0.9927 3.3289 235.3% 3.2254 

𝑋1 1.9941 2.0845 4.5% 2.0805 2.0193 1.5249 -24.5% 1.4933 2.0417 1.3436 -34.2% 1.3425 1.9918 1.9733 -0.9% 1.9825 

𝑋2 3.0048 0.3288 -89.1% 0.8733 2.8911 0.3819 -86.8% 1.0183 3.1598 0.0976 -96.9% 0.2756 3.0066 0.1321 -95.6% 0.3518 

𝑋3 0.4960 0.5103 2.9% 0.5118 0.4543 0.3739 -17.7% 0.3756 0.5196 0.3541 -31.9% 0.3543 0.5016 0.4840 -3.5% 0.4846 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0.0.52) 

C 0.9910 2.3384 136.0% 2.0920 1.0690 1.7733 65.9% 1.5816 0.9785 1.3737 40.4% 1.3039 0.9850 3.2450 229.4% 3.1158 

𝑋1 1.9883 2.0224 1.7% 2.0204 1.9698 1.6879 -14.3% 1.7111 2.0610 1.4257 -30.8% 1.4297 1.9992 2.0137 0.7% 2.0105 

𝑋2 3.0202 0.3327 -89.0% 0.8884 2.8373 0.2842 -90.0% 0.7342 3.2651 0.0966 -97.0% 0.2505 3.0151 0.1633 -94.6% 0.4385 

𝑋3 0.5065 0.5292 4.5% 0.5251 0.4822 0.4610 -4.4% 0.4592 0.5919 0.3823 -35.4% 0.3870 0.5026 0.4520 -10.1% 0.4543 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0.12) 

C 0.9948 2.3663 137.9% 2.1139 1.0522 1.8556 76.4% 1.7644 1.0291 1.4127 37.3% 1.3480 0.9942 3.2839 230.3% 3.1828 

𝑋1 2.0158 2.1134 4.8% 2.1238 2.1883 1.7466 -20.2% 1.7472 1.9786 1.3321 -32.7% 1.3350 2.0085 2.0139 0.3% 2.0111 

𝑋2 2.9958 0.3217 -89.3% 0.8653 3.0131 0.1152 -96.2% 0.3173 3.1806 0.1016 -96.8% 0.2561 3.0061 0.1307 -95.7% 0.3437 

𝑋3 0.4916 0.5131 4.4% 0.5183 0.4579 0.3329 -27.3% 0.3333 0.4466 0.2887 -35.3% 0.2896 0.4976 0.4933 -0.9% 0.4968 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝑁(0.22) 

C 0.9776 2.3244 137.8% 2.1101 1.0127 1.6846 66.3% 1.5013 1.1042 1.4211 28.7% 1.3070 0.9990 3.3099 231.3% 3.1853 

𝑋1 1.9995 2.0738 3.7% 2.0710 1.9404 1.5685 -19.2% 1.5783 2.0572 1.3668 -33.6% 1.3570 2.0023 1.9590 -2.2% 1.9517 

𝑋2 3.0135 0.2885 -90.4% 0.7727 2.7258 0.2789 -89.8% 0.7176 2.8857 0.1632 -94.3% 0.4304 2.9959 0.1774 -94.1% 0.4620 

𝑋3 0.5002 0.4759 -4.9% 0.4746 0.4895 0.3883 -20.7% 0.3910 0.4987 0.3124 -37.4% 0.3103 0.5011 0.4907 -2.1% 0.4842 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0.0.52) 

C 1.0126 2.3608 133.1% 2.0975 0.9680 1.7633 82.2% 1.6276 1.0081 1.2811 27.1% 1.1494 1.0009 3.2203 221.7% 2.9421 

𝑋1 1.9963 2.0235 1.4% 2.0250 1.9185 1.4841 -22.6% 1.4885 2.0660 1.0818 -47.6% 1.0910 1.9993 1.9796 -1.0% 2.0046 

𝑋2 2.9745 0.3548 -88.1% 0.9485 2.9176 0.2066 -92.9% 0.5364 3.1537 0.1850 -94.1% 0.4970 3.0006 0.2877 -90.4% 0.7787 

𝑋3 0.5090 0.4498 -11.6% 0.4547 0.4523 0.2789 -38.3% 0.2910 0.5362 0.2949 -45.0% 0.3039 0.4979 0.4875 -2.1% 0.5148 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0.12) 

C 1.0030 2.3940 138.7% 2.1804 0.9380 1.7333 84.8% 1.6045 0.9610 1.2843 33.6% 1.1814 1.0035 3.2545 224.3% 3.1037 

𝑋1 2.0032 2.0386 1.8% 2.0390 1.8910 1.4605 -22.8% 1.4602 1.9965 1.0911 -45.4% 1.0938 1.9993 2.0423 2.2% 2.0413 

𝑋2 2.9875 0.3017 -89.9% 0.7969 2.8140 0.1724 -93.9% 0.4750 2.9937 0.1404 -95.3% 0.3853 2.9988 0.1818 -93.9% 0.4968 

𝑋3 0.4999 0.4884 -2.3% 0.4927 0.4823 0.3297 -31.6% 0.3319 0.4273 0.2217 -48.1% 0.2241 0.5013 0.4768 -4.9% 0.4811 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝑁(0.22) 

C 0.9930 2.3657 138.2% 2.1953 1.0671 1.8077 69.4% 1.6273 1.0492 1.3426 28.0% 1.2326 1.0051 3.2496 223.3% 3.0455 

𝑋1 1.9922 1.9770 -0.8% 1.9762 1.9767 1.5116 -23.5% 1.5236 2.0340 1.1422 -43.8% 1.1421 1.9963 1.9590 -1.9% 1.9680 

𝑋2 3.0031 0.2166 -92.8% 0.5791 2.8788 0.2642 -90.8% 0.6958 3.0356 0.1518 -95.0% 0.3997 2.9993 0.2311 -92.3% 0.6270 

𝑋3 0.4976 0.5098 2.5% 0.5094 0.4999 0.3849 -23.0% 0.3820 0.5118 0.2572 -49.7% 0.2566 0.5005 0.5318 6.2% 0.5338 
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13) 𝑋2 follows 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) and has misclassification with 𝑀00 = 0.8, and 𝑀11 = 0.8; 𝑋1 follows uniform 

distribution with values in [−0.5,0.5], [−1,1], or [−2,2]; 𝑋3 follows Bernoulli distribution with 𝑃𝑟(𝑋3 = 1) equals 

0.3, 0.5, or 0.7. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 1.0112 1.3022 28.8% 1.0186 1.0505 1.2005 14.3% 1.0820 1.0038 1.0573 5.3% 0.9781 1.0018 1.9680 96.4% 1.3474 

𝑋1 1.9784 1.9887 0.5% 1.9633 2.0898 1.9370 -7.3% 1.9999 1.9273 1.7556 -8.9% 1.7985 2.0064 2.0325 1.3% 2.0939 

𝑋2 2.9675 1.5715 -47.0% 2.5276 3.1692 0.9483 -70.1% 1.6091 3.3488 0.5845 -82.7% 0.9730 2.9994 1.5973 -46.7% 2.5762 

𝑋3 0.5086 0.4921 -3.3% 0.5473 0.3871 0.3575 -7.6% 0.3721 0.4930 0.4525 -8.2% 0.4977 0.5096 0.5209 2.2% 0.5217 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 1.0015 1.2974 29.5% 0.9870 1.0713 1.2247 14.3% 1.1181 1.1028 1.1638 5.5% 1.1003 1.0242 2.1525 110.2% 1.6454 

𝑋1 1.9805 1.9837 0.2% 2.0060 2.0616 1.9849 -3.7% 2.0404 2.0604 1.9143 -7.1% 1.9847 2.0020 2.0790 3.8% 2.0875 

𝑋2 2.9823 1.6490 -44.7% 2.6417 2.8867 0.8564 -70.3% 1.4272 2.3496 0.5936 -74.7% 1.0126 2.9838 1.4508 -51.4% 2.3364 

𝑋3 0.5090 0.4979 -2.2% 0.5287 0.2900 0.2793 -3.7% 0.2874 0.4039 0.3565 -11.7% 0.3575 0.4892 0.4623 -5.5% 0.4269 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 0.9833 1.2417 26.3% 0.9567 1.0397 1.1752 13.0% 1.0525 0.9622 1.0275 6.8% 0.9684 0.9972 1.9434 94.9% 1.3052 

𝑋1 1.9746 1.9728 -0.1% 1.9171 2.2523 2.1126 -6.2% 2.1788 2.1823 1.9986 -8.4% 2.0730 1.9992 1.8973 -5.1% 1.9274 

𝑋2 3.0093 1.6393 -45.5% 2.6494 2.8038 1.0026 -64.2% 1.6972 3.4301 0.5913 -82.8% 0.9722 3.0034 1.6243 -45.9% 2.6500 

𝑋3 0.5036 0.5396 7.1% 0.5479 0.5943 0.5568 -6.3% 0.5787 0.5952 0.5421 -8.9% 0.5632 0.4964 0.5727 15.4% 0.4972 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 1.0075 1.3108 30.1% 1.0555 1.0388 1.1646 12.1% 1.0312 0.9802 1.0204 4.1% 0.9393 0.9951 1.9868 99.7% 1.3563 

𝑋1 1.9953 2.0574 3.1% 2.0439 1.9544 1.7835 -8.7% 1.8533 1.9248 1.6310 -15.3% 1.6986 2.0021 1.9753 -1.3% 2.0503 

𝑋2 3.0031 1.5472 -48.5% 2.4703 2.7499 1.0199 -62.9% 1.7128 3.2893 0.7111 -78.4% 1.2137 3.0030 1.6239 -45.9% 2.6083 

𝑋3 0.5105 0.5110 0.1% 0.4850 0.4770 0.4257 -10.8% 0.4331 0.4869 0.4372 -10.2% 0.4643 0.5001 0.4960 -0.8% 0.4575 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 1.0223 1.3155 28.7% 1.0406 0.9510 1.1095 16.7% 0.9814 0.9669 1.0260 6.1% 0.9461 0.9966 1.9976 100.4% 1.4143 

𝑋1 1.9832 1.9611 -1.1% 1.9745 2.0640 1.9229 -6.8% 1.9845 1.9969 1.7774 -11.0% 1.8596 2.0002 1.9643 -1.8% 1.9802 

𝑋2 2.9736 1.6091 -45.9% 2.5647 2.8068 1.0855 -61.3% 1.8478 2.6273 0.6939 -73.6% 1.1563 2.9983 1.5349 -48.8% 2.4802 

𝑋3 0.4907 0.4644 -5.4% 0.4753 0.5555 0.4947 -10.9% 0.5043 0.5325 0.4480 -15.9% 0.4681 0.5029 0.5222 3.8% 0.5381 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 1.0036 1.2845 28.0% 0.9939 0.9579 1.0847 13.2% 0.9326 0.9161 0.9594 4.7% 0.8806 0.9998 2.1392 114.0% 1.6266 

𝑋1 2.0009 1.9772 -1.2% 1.9934 1.9359 1.7793 -8.1% 1.8251 1.9282 1.6676 -13.5% 1.7704 2.0052 2.0019 -0.2% 1.9678 

𝑋2 2.9706 1.5815 -46.8% 2.5368 2.8322 0.9885 -65.1% 1.6615 3.0418 0.7617 -75.0% 1.3039 3.0053 1.3999 -53.4% 2.2274 

𝑋3 0.5119 0.5212 1.8% 0.5653 0.4775 0.4413 -7.6% 0.4743 0.5726 0.4916 -14.1% 0.5290 0.4950 0.4628 -6.5% 0.5054 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 1.0031 1.3106 30.7% 1.0240 0.9258 1.0401 12.3% 0.9099 1.0225 0.9119 -10.8% 0.8259 0.9949 2.0556 106.6% 1.4994 

𝑋1 2.0003 1.9835 -0.8% 1.9888 1.9659 1.6680 -15.2% 1.7587 1.9779 1.4617 -26.1% 1.6349 1.9988 1.9650 -1.7% 1.9895 

𝑋2 2.9747 1.5207 -48.9% 2.4432 3.1981 1.1995 -62.5% 1.9922 2.9634 1.1179 -62.3% 1.8992 3.0050 1.5073 -49.8% 2.3841 

𝑋3 0.5043 0.4958 -1.7% 0.5394 0.5549 0.5300 -4.5% 0.5201 0.5320 0.3952 -25.7% 0.4781 0.5000 0.5452 9.0% 0.5746 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 0.9848 1.2806 30.0% 0.9846 0.9713 1.1118 14.5% 0.9635 0.9010 0.8547 -5.1% 0.7880 0.9921 2.0264 104.3% 1.4730 

𝑋1 1.9937 1.9973 0.2% 1.9877 1.9310 1.6930 -12.3% 1.7859 2.0198 1.4099 -30.2% 1.5377 2.0027 2.0189 0.8% 2.0227 

𝑋2 3.0184 1.6531 -45.2% 2.6394 3.0993 1.3196 -57.4% 2.2435 3.1158 0.9415 -69.8% 1.5559 3.0019 1.4512 -51.7% 2.2953 

𝑋3 0.5137 0.4796 -6.6% 0.4866 0.5445 0.4398 -19.2% 0.4498 0.5549 0.3792 -31.7% 0.3841 0.5029 0.5529 9.9% 0.6219 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C .9892 1.3146 32.9% 1.0429 1.0664 1.2083 13.3% 1.0590 0.9974 0.9422 -5.5% 0.8707 0.9925 2.0521 106.8% 1.4110 

𝑋1 2.0039 1.9887 -0.8% 1.9799 2.0220 1.7542 -13.2% 1.8521 1.9688 1.4012 -28.8% 1.5587 2.0019 2.0125 0.5% 2.0023 

𝑋2 2.9993 1.5542 -48.2% 2.4779 2.8769 1.1806 -59.0% 1.9541 2.9648 1.0342 -65.1% 1.7541 3.0025 1.5572 -48.1% 2.5011 

𝑋3 0.5115 0.5150 0.7% 0.5284 0.4923 0.3831 -22.2% 0.4338 0.4531 0.2609 -42.4% 0.2764 0.5021 0.3695 -26.4% 0.4556 
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14) 𝑋2 follows 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) and has misclassification with 𝑀00 = 0.6, and 𝑀11 = 0.5; 𝑋1 follows uniform 

distribution with values in [−0.5,0.5], [−1,1], or [−2,2]; 𝑋3 follows Bernoulli distribution with 𝑃𝑟(𝑋3 = 1) equals 

0.3, 0.5, or 0.7. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 0.9924 1.7892 80.3% 1.6291 1.0505 1.4303 36.1% 1.3423 1.0117 1.1927 17.9% 1.0855 0.9884 2.8004 183.3% 2.6619 

𝑋1 2.0155 2.0041 -0.6% 1.9913 1.9578 1.8845 -3.7% 1.8836 2.0705 1.8403 -11.1% 1.8550 2.0108 2.0416 1.5% 2.0435 

𝑋2 2.9989 0.2269 -92.4% 0.6009 2.8253 0.1117 -96.0% 0.3155 3.3947 0.1619 -95.3% 0.4373 3.0124 0.1867 -93.8% 0.4868 

𝑋3 0.4985 0.5626 12.8% 0.5670 0.4417 0.4151 -6.0% 0.4186 0.5923 0.4879 -17.6% 0.4871 0.4956 0.4787 -3.4% 0.482 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 0.9911 1.7859 80.2% 1.5983 1.0233 1.3619 33.1% 1.2242 0.9356 1.1403 21.9% 1.0863 0.9731 2.7619 183.8% 2.5937 

𝑋1 2.0122 2.0497 1.9% 2.0387 1.8775 1.7623 -6.1% 1.7681 2.1337 1.8471 -13.4% 1.8461 2.0137 2.0442 1.5% 2.0594 

𝑋2 2.9889 0.2726 -90.9% 0.7244 3.0746 0.2160 -93.0% 0.5553 3.3342 0.0864 -97.6% 0.2149 3.0157 0.2369 -92.1% 0.6053 

𝑋3 0.5252 0.4830 -8.0% 0.4782 0.4455 0.4309 -3.3% 0.4343 0.5777 0.5219 -9.7% 0.5246 0.5072 0.5298 4.5% 0.5313 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 0.9899 1.7690 78.7% 1.5304 0.9315 1.3138 41.0% 1.2014 1.0224 1.2067 18.0% 1.1554 0.9965 2.7844 179.4% 2.6327 

𝑋1 2.0172 2.1480 6.5% 2.1389 1.8365 1.7155 -6.6% 1.7184 1.8298 1.6753 -8.4% 1.6732 1.9919 1.8323 -8.0% 1.8346 

𝑋2 2.9850 0.3199 -89.3% 0.8643 3.2076 0.1757 -94.5% 0.4490 3.2239 0.0978 -97.2% 0.2316 3.0044 0.2021 -93.3% 0.5292 

𝑋3 0.5307 0.5085 -4.2% 0.5115 0.5244 0.4865 -7.2% 0.4880 0.5059 0.4604 -9.0% 0.4599 0.4929 0.4638 -5.9% 0.4657 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 1.0120 1.8187 79.7% 1.6482 1.0030 1.3417 33.8% 1.1744 0.9478 1.1815 24.7% 1.1347 0.9961 2.7792 179.0% 2.5250 

𝑋1 1.9822 1.9597 -1.1% 1.9648 2.1075 1.8989 -9.9% 1.9138 1.8846 1.5313 -18.7% 1.5315 1.9997 1.9260 -3.7% 1.9155 

𝑋2 3.0035 0.2398 -92.0% 0.6432 2.8908 0.2518 -91.3% 0.6495 3.0494 0.0599 -98.0% 0.1692 3.0030 0.3222 -89.3% 0.8654 

𝑋3 0.4721 0.4699 -0.5% 0.4691 0.5592 0.4943 -11.6% 0.5050 0.5312 0.4100 -22.8% 0.4073 0.5029 0.5360 6.6% 0.5381 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 0.9842 1.8781 90.8% 1.7461 0.9687 1.3306 37.4% 1.1680 1.0362 1.2423 19.9% 1.1685 1.0043 2.7680 175.6% 2.7140 

𝑋1 2.0066 2.0283 1.1% 2.0314 2.0539 1.8430 -10.3% 1.8463 1.9074 1.6157 -15.3% 1.6208 2.0009 2.0685 3.4% 2.0681 

𝑋2 3.0219 0.1864 -93.8% 0.4951 3.2226 0.2220 -93.1% 0.6164 2.9634 0.0831 -97.3% 0.2469 2.9898 0.0699 -97.7% 0.2087 

𝑋3 0.5191 0.4191 -19.3% 0.4231 0.4762 0.4436 -6.8% 0.4406 0.3919 0.3306 -15.7% 0.3353 0.5010 0.5956 18.9% 0.5876 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 1.0114 1.8121 79.2% 1.6162 0.9985 1.4094 41.2% 1.2665 1.0002 1.2314 23.1% 1.1926 0.9920 2.8743 189.8% 2.7126 

𝑋1 2.0180 2.0475 1.5% 2.0478 2.0805 1.8630 -10.5% 1.8536 2.0459 1.7375 -15.1% 1.7368 1.9991 1.9698 -1.5% 1.9773 

𝑋2 2.9759 0.2767 -90.7% 0.7294 3.2144 0.1971 -93.9% 0.5268 3.0085 0.0655 -97.8% 0.1586 3.0018 0.2015 -93.3% 0.5341 

𝑋3 0.4839 0.4221 -12.8% 0.4211 0.5792 0.4532 -21.7% 0.4606 0.5236 0.4246 -18.9% 0.4205 0.5103 0.4509 -11.6% 0.4 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 1.0079 1.8109 79.7% 1.6491 0.9994 1.3943 39.5% 1.2237 1.0883 1.1836 8.8% 1.0673 1.0031 2.7184 171.0% 2.5792 

𝑋1 2.0090 2.0440 1.7% 2.0452 2.0507 1.6989 -17.2% 1.7127 2.0010 1.2489 -37.6% 1.2546 1.9979 2.0517 2.7% 2.0583 

𝑋2 3.0043 0.2414 -92.0% 0.6250 2.9963 0.2626 -91.2% 0.6890 2.9842 0.1642 -94.5% 0.4416 2.9985 0.2034 -93.2% 0.5139 

𝑋3 0.4998 0.4613 -7.7% 0.4523 0.5766 0.4399 -23.7% 0.4558 0.4243 0.2034 -52.1% 0.2103 0.5019 0.4565 -9.0% 0.4527 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 0.9902 1.8149 83.3% 1.6697 1.1352 1.4857 30.9% 1.2847 1.0132 1.1437 12.9% 1.0246 1.0002 2.6701 167.0% 2.4796 

𝑋1 1.9908 1.9829 -0.4% 1.9801 1.9058 1.6152 -15.2% 1.6339 1.9356 1.2603 -34.9% 1.2665 1.9985 2.1054 5.3% 2.0968 

𝑋2 3.0184 0.2229 -92.6% 0.5845 2.7627 0.3123 -88.7% 0.8132 2.9415 0.1595 -94.6% 0.4497 3.0035 0.2619 -91.3% 0.6831 

𝑋3 0.5012 0.4718 -5.9% 0.4633 0.3806 0.2936 -22.9% 0.2983 0.3916 0.2297 -41.3% 0.2329 0.4974 0.5116 2.9% 0.5017 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 0.9953 1.8488 85.8% 1.6449 0.9964 1.4600 46.5% 1.4245 1.1396 1.2357 8.4% 1.1761 0.9950 2.7345 174.8% 2.5390 

𝑋1 1.9991 2.0215 1.1% 2.0197 1.9320 1.5700 -18.7% 1.5695 2.0647 1.3232 -35.9% 1.3252 2.0008 2.0038 0.2% 2.0119 

𝑋2 3.0053 0.2807 -90.7% 0.7438 2.8823 0.0379 -98.7% 0.1180 3.0125 0.0943 -96.9% 0.2375 3.0024 0.2622 -91.3% 0.6895 

𝑋3 0.5054 0.3801 -24.8% 0.3937 0.5341 0.4004 -25.0% 0.3989 0.4181 0.2697 -35.5% 0.2714 0.5033 0.5984 18.9% 0.5897 
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15) 𝑋2 follows 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) and has misclassification with 𝑀00 = 0.6, and 𝑀11 = 0.5; 𝑋1 follows uniform 

distribution with values in [−0.5,0.5], [−1,1], or [−2,2]; 𝑋3 follows Bernoulli distribution with 𝑃𝑟(𝑋3 = 1) equals 

0.3, 0.5, or 0.7. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 0.9929 2.3837 140.1% 2.2049 1.0197 1.7819 74.8% 1.7763 1.0521 1.4029 33.3% 1.3152 0.9885 3.2626 230.0% 3.0909 

𝑋1 1.9781 1.9683 -0.5% 1.9731 1.9836 1.7387 -12.3% 1.7388 2.0698 1.6579 -19.9% 1.6575 2.0047 2.0178 0.6% 2.0162 

𝑋2 3.0171 0.2219 -92.6% 0.6138 2.9218 0.0219 -99.3% 0.0326 2.4498 0.1360 -94.4% 0.3515 3.0180 0.2121 -93.0% 0.5643 

𝑋3 0.5088 0.6039 18.7% 0.6156 0.4731 0.4608 -2.6% 0.4598 0.4887 0.4269 -12.6% 0.4188 0.4935 0.4976 0.8% 0.5008 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 0.9881 2.3963 142.5% 2.1807 1.1129 1.8089 62.5% 1.6659 1.0090 1.4105 39.8% 1.3455 1.0017 3.2883 228.3% 3.1769 

𝑋1 1.9810 1.9091 -3.6% 1.9157 1.9375 1.7048 -12.0% 1.6979 2.0850 1.7157 -17.7% 1.7197 2.0082 1.9740 -1.7% 1.9721 

𝑋2 3.0153 0.2883 -90.4% 0.7727 2.9735 0.2150 -92.8% 0.5545 2.3285 0.0901 -96.1% 0.2418 2.9933 0.1462 -95.1% 0.3841 

𝑋3 0.5094 0.4835 -5.1% 0.4749 0.2577 0.2063 -20.0% 0.2021 0.5553 0.4360 -21.5% 0.4338 0.5037 0.4884 -3.0% 0.4833 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.5,0.5), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 0.9965 2.4224 143.1% 2.2428 1.0222 1.7361 69.8% 1.5496 0.9406 1.3238 40.7% 1.2120 1.0186 3.2189 216.0% 3.0646 

𝑋1 1.9747 1.9592 -0.8% 1.9585 2.0751 1.8660 -10.1% 1.8736 2.1333 1.7205 -19.4% 1.7303 2.0048 2.1874 9.1% 2.1749 

𝑋2 2.9795 0.2264 -92.4% 0.6123 3.2037 0.2524 -92.1% 0.6980 2.6007 0.1362 -95.0% 0.3884 2.9776 0.1959 -93.4% 0.5177 

𝑋3 0.5033 0.4530 -10.0% 0.4619 0.4887 0.4269 -12.7% 0.4291 0.6944 0.5522 -20.5% 0.5601 0.4998 0.5567 11.4% 0.5611 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 1.0131 2.3821 135.1% 2.1674 0.9220 1.6489 78.8% 1.4740 1.0088 1.4211 40.9% 1.3520 1.0002 3.2667 226.6% 3.1080 

𝑋1 1.9952 1.9436 -2.6% 1.9434 1.9041 1.6266 -14.6% 1.6226 2.0066 1.4450 -28.0% 1.4457 1.9994 2.0098 0.5% 2.0142 

𝑋2 2.9905 0.2987 -90.0% 0.7874 2.9182 0.2517 -91.4% 0.6628 2.9408 0.0958 -96.7% 0.2513 2.9978 0.2018 -93.3% 0.5415 

𝑋3 0.5103 0.4278 -16.2% 0.4149 0.6485 0.4808 -25.9% 0.4730 0.5426 0.3636 -33.0% 0.3687 0.4998 0.5418 8.4% 0.5339 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 1.0042 2.3004 129.1% 2.0478 0.9246 1.7536 89.7% 1.6057 0.9083 1.3538 49.0% 1.3269 1.0010 3.3040 230.1% 3.1500 

𝑋1 1.9832 2.0256 2.1% 2.0297 2.0442 1.6805 -17.8% 1.6942 2.0306 1.5183 -25.2% 1.5188 2.0017 1.9321 -3.5% 1.9296 

𝑋2 3.0210 0.3313 -89.0% 0.8965 3.1383 0.1990 -93.7% 0.5460 2.9901 0.0257 -99.1% 0.0842 2.9991 0.1889 -93.7% 0.4904 

𝑋3 0.4902 0.6005 22.5% 0.5974 0.4961 0.3234 -34.8% 0.3270 0.6082 0.4628 -23.9% 0.4625 0.4973 0.4754 -4.4% 0.4847 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 0.9914 2.3655 138.6% 2.1686 1.0389 1.7345 67.0% 1.4952 0.9578 1.3717 43.2% 1.2747 1.0190 3.2493 218.9% 3.1102 

𝑋1 2.0013 2.0145 0.7% 2.0163 1.8636 1.6040 -13.9% 1.6177 1.9228 1.4376 -25.2% 1.4436 1.9959 1.9995 0.2% 2.0086 

𝑋2 3.0068 0.2686 -91.1% 0.7117 2.9582 0.3160 -89.3% 0.8767 3.0025 0.1453 -95.2% 0.3866 2.9829 0.1750 -94.1% 0.4703 

𝑋3 0.5122 0.5312 3.7% 0.5382 0.3712 0.3067 -17.4% 0.3104 0.5358 0.3531 -34.1% 0.3483 0.5003 0.5622 12.4% 0.5672 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) 

C 0.9773 2.3614 141.6% 2.1558 1.1049 1.8775 69.9% 1.7161 0.9949 1.2864 29.3% 1.1231 0.9966 3.3293 234.1% 3.1493 

𝑋1 1.9998 2.0560 2.8% 2.0574 2.0068 1.5281 -23.9% 1.5334 2.0392 1.0677 -47.6% 1.0763 1.9996 1.9717 -1.4% 1.9684 

𝑋2 3.0365 0.2659 -91.2% 0.7101 2.9798 0.2285 -92.3% 0.5947 3.1473 0.2339 -92.6% 0.6380 3.0043 0.2271 -92.4% 0.6140 

𝑋3 0.5047 0.5080 0.7% 0.4991 0.3996 0.2260 -43.4% 0.2280 0.4405 0.1897 -56.9% 0.1853 0.5006 0.4240 -15.3% 0.4290 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7) 

C 0.9977 2.3306 133.6% 2.0934 0.8935 1.7070 91.1% 1.4661 1.0503 1.3854 31.9% 1.2988 1.0005 3.3127 231.1% 3.1659 

𝑋1 1.9938 2.0016 0.4% 2.0014 1.9748 1.4642 -25.9% 1.4771 2.0382 1.1359 -44.3% 1.1376 2.0024 1.9719 -1.5% 1.9626 

𝑋2 2.9854 0.3019 -89.9% 0.8031 3.0934 0.3586 -88.4% 0.9609 3.0018 0.1334 -95.6% 0.3479 2.9986 0.1929 -93.6% 0.5064 

𝑋3 0.5134 0.5220 1.7% 0.5396 0.4986 0.3339 -33.0% 0.3340 0.4254 0.1677 -60.6% 0.1652 0.4966 0.5053 1.7% 0.5207 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−2,2), 𝑋3~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) 

C 0.9861 2.4170 145.1% 2.2718 1.0238 1.7561 71.5% 1.5188 1.0122 1.3873 37.1% 1.3124 1.0003 3.2508 225.0% 3.0931 

𝑋1 2.0040 1.9866 -0.9% 1.9851 1.9909 1.5233 -23.5% 1.5315 2.0114 1.1647 -42.1% 1.1637 1.9999 2.0230 1.2% 2.0216 

𝑋2 3.0057 0.2000 -93.3% 0.5230 3.0407 0.3090 -89.8% 0.8524 2.9534 0.1020 -96.5% 0.2809 3.0029 0.1999 -93.3% 0.5426 

𝑋3 0.5115 0.4825 -5.7% 0.4772 0.3649 0.2830 -22.4% 0.2889 0.5512 0.2600 -52.8% 0.2523 0.4974 0.4518 -9.2% 0.4468 
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16) 𝑋2 follows 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) and has misclassification with 𝑀00 = 0.8, and 𝑀11 = 0.8; 𝑋1 follows Bernoulli 

distribution with 𝑃𝑟(𝑋1 = 1) equals 0.3, 0.5, or 0.7; 𝑋3 follows normal distribution with standard deviation 0.5, 1, 

or 2. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑋3~𝑁(0,0.52) 

C 1.0047 1.2853 27.9% 1.0191 1.0108 1.1476 13.5% 1.0177 1.0171 1.0890 7.1% 1.0221 0.9908 2.0204 103.9% 1.4144 

𝑋1 1.9948 2.0199 1.3% 2.0069 1.9734 1.9012 -3.7% 1.9240 1.8798 1.8024 -4.1% 1.8535 1.9993 2.0105 0.6% 1.9757 

𝑋2 2.9896 1.5725 -47.4% 2.5241 3.0977 1.0125 -67.3% 1.7320 4.9821 0.4777 -90.4% 0.8039 3.0072 1.5770 -47.6% 2.5537 

𝑋3 0.5075 0.5168 1.8% 0.4929 0.4353 0.3815 -12.4% 0.4031 0.5372 0.4856 -9.6% 0.4774 0.5067 0.4827 -4.7% 0.4828 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑋3~𝑁(0,12) 

C 0.9788 1.2765 30.4% 1.0005 1.0154 1.1462 12.9% 1.0075 1.0241 1.0744 4.9% 1.0042 1.0002 2.0154 101.5% 1.4186 

𝑋1 2.0072 2.0325 1.3% 2.0183 2.1205 2.0417 -3.7% 2.0813 1.8025 1.7025 -5.5% 1.7433 2.0006 2.0147 0.7% 2.0112 

𝑋2 3.0136 1.5947 -47.1% 2.5592 2.5784 0.9757 -62.2% 1.6912 5.4040 0.6062 -88.8% 1.0353 3.0014 1.5583 -48.1% 2.5103 

𝑋3 0.5054 0.4916 -2.7% 0.4899 0.5158 0.4820 -6.5% 0.5030 0.4771 0.4180 -12.4% 0.4302 0.5002 0.4514 -9.8% 0.4360 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑋3~𝑁(0,22) 

C 1.0145 1.3340 31.5% 1.0568 1.0247 1.1295 10.2% 0.9794 0.9306 0.9741 4.7% 0.8993 0.9948 2.0489 106.0% 1.5239 

𝑋1 2.0052 1.9454 -3.0% 1.9456 2.0997 2.0141 -4.1% 2.0640 1.8969 1.6607 -12.4% 1.7236 2.0007 2.0310 1.5% 1.9935 

𝑋2 2.9999 1.5546 -48.2% 2.4922 3.1809 1.0846 -65.9% 1.8401 2.8297 0.6630 -76.6% 1.1344 3.0057 1.5236 -49.3% 2.4218 

𝑋3 0.4960 0.4913 -0.9% 0.4922 0.4884 0.4471 -8.4% 0.4726 0.4770 0.3954 -17.1% 0.4183 0.4993 0.4723 -5.4% 0.4676 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,0.52) 

C 1.0007 1.2735 27.3% 0.9951 0.9984 1.1307 13.2% 1.0267 1.0652 1.1310 6.2% 1.0651 0.9973 2.1105 111.6% 1.5292 

𝑋1 2.0125 2.0387 1.3% 2.0333 1.9769 1.9284 -2.5% 1.9455 1.8254 1.7396 -4.7% 1.7690 1.9969 1.9779 -1.0% 2.0025 

𝑋2 2.9808 1.6444 -44.8% 2.6073 2.7525 0.8487 -69.2% 1.3747 4.7471 0.4921 -89.6% 0.8380 3.0035 1.4944 -50.2% 2.4075 

𝑋3 0.5065 0.4805 -5.1% 0.4827 0.6282 0.6084 -3.1% 0.6027 0.3429 0.3125 -8.9% 0.3152 0.5022 0.5496 9.4% 0.4917 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,12) 

C 1.0006 1.2329 23.2% 0.9452 1.0391 1.1981 15.3% 1.0853 1.0421 1.1057 6.1% 1.0410 1.0077 2.0239 100.8% 1.3961 

𝑋1 1.9931 2.0888 4.8% 2.1282 1.9456 1.8574 -4.5% 1.8919 1.8476 1.7091 -7.5% 1.7512 1.9872 1.9616 -1.3% 1.9867 

𝑋2 2.9845 1.5753 -47.2% 2.5217 3.4716 0.9295 -73.2% 1.5260 5.5686 0.5754 -89.7% 0.9837 3.0014 1.5838 -47.2% 2.5529 

𝑋3 0.4915 0.4937 0.5% 0.5051 0.5151 0.5309 3.1% 0.5393 0.5136 0.4619 -10.1% 0.4849 0.5019 0.4828 -3.8% 0.5090 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,22) 

C 0.9810 1.2624 28.7% 0.9875 1.0245 1.1935 16.5% 1.0813 1.1253 1.1475 2.0% 1.0750 0.9984 2.1291 113.2% 1.5069 

𝑋1 1.9968 2.0145 0.9% 2.0086 1.9431 1.8306 -5.8% 1.8599 2.0505 1.7909 -12.7% 1.8753 1.9996 1.9407 -2.9% 1.9970 

𝑋2 3.0163 1.6260 -46.1% 2.6225 2.8906 0.8710 -69.9% 1.4608 2.8840 0.6693 -76.8% 1.1324 2.9981 1.5569 -48.1% 2.4930 

𝑋3 0.5000 0.5075 1.5% 0.4901 0.4885 0.4394 -10.1% 0.4460 0.5579 0.4644 -16.8% 0.4908 0.5002 0.4689 -6.3% 0.4742 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,0.52) 

C 0.9879 1.2512 26.7% 0.9647 0.9456 1.0732 13.5% 0.9624 0.9513 1.0099 6.2% 0.9284 0.9903 2.0522 107.2% 1.4613 

𝑋1 2.0091 2.0734 3.2% 2.0918 2.1322 2.0831 -2.3% 2.1002 1.8484 1.7692 -4.3% 1.8175 2.0073 1.9782 -1.5% 1.9917 

𝑋2 3.0180 1.5715 -47.9% 2.5149 2.9281 0.8818 -69.9% 1.4831 4.9611 0.5642 -88.6% 0.9902 3.0044 1.5435 -48.6% 2.4722 

𝑋3 0.5093 0.5813 14.1% 0.6228 0.5410 0.5463 1.0% 0.5478 0.4473 0.4110 -8.1% 0.3999 0.4992 0.4366 -12.6% 0.4629 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,12) 

C 0.9950 1.2448 25.1% 0.9775 1.0108 1.1264 11.4% 0.9770 1.0149 1.0390 2.4% 0.9590 1.0119 2.0584 103.4% 1.4913 

𝑋1 1.9936 2.0335 2.0% 2.0262 1.9049 1.8248 -4.2% 1.8529 2.0570 1.9793 -3.8% 2.0924 2.0012 2.0428 2.1% 2.0545 

𝑋2 3.0208 1.6352 -45.9% 2.6384 2.9894 1.1345 -62.0% 1.9887 5.3765 0.6641 -87.6% 1.1238 2.9898 1.4757 -50.6% 2.3639 

𝑋3 0.4998 0.5055 1.1% 0.4972 0.5551 0.5306 -4.4% 0.5510 0.4653 0.4188 -10.0% 0.4554 0.4968 0.4720 -5.0% 0.4842 

Scenario (1): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.8, and 𝑀11 = 0.8, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,22) 

C 0.9914 1.3224 33.4% 1.0546 0.8995 0.9979 10.9% 0.8131 0.8517 0.9133 7.2% 0.8282 0.9995 1.9874 98.8% 1.4033 

𝑋1 2.0081 1.9499 -2.9% 1.9193 1.9243 1.8150 -5.7% 1.8710 2.1856 1.8850 -13.8% 1.9380 2.0030 1.9955 -0.4% 1.9031 

𝑋2 2.9918 1.5768 -47.3% 2.5124 3.0846 1.2675 -58.9% 2.2581 6.4808 0.6540 -89.9% 1.1273 2.9983 1.6549 -44.8% 2.6683 

𝑋3 0.4976 0.4914 -1.3% 0.4894 0.4994 0.4843 -3.0% 0.5062 0.4695 0.3857 -17.8% 0.3994 0.4999 0.4732 -5.3% 0.4691 
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17) 𝑋2 follows 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3) and has misclassification with 𝑀00 = 0.6, and 𝑀11 = 0.5; 𝑋1 follows Bernoulli 

distribution with 𝑃𝑟(𝑋1 = 1) equals 0.3, 0.5, or 0.7; 𝑋3 follows normal distribution with standard deviation 0.5, 1, 

or 2. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑋3~𝑁(0,0.52) 

C 1.0133 1.8172 79.3% 1.6605 1.0838 1.4626 34.9% 1.4094 1.0296 1.2050 17.0% 1.1303 1.0054 2.7726 175.8% 2.6030 

𝑋1 1.9909 1.9769 -0.7% 1.9738 1.7407 1.6695 -4.1% 1.6696 1.9815 1.8531 -6.5% 1.8691 2.0042 1.9986 -0.3% 2.0060 

𝑋2 2.9660 0.2280 -92.3% 0.6072 2.5646 0.0607 -97.6% 0.1833 2.9565 0.1145 -96.3% 0.2976 2.9900 0.2264 -92.4% 0.5931 

𝑋3 0.4947 0.4827 -2.4% 0.4916 0.4643 0.4194 -9.7% 0.4213 0.5008 0.4651 -7.1% 0.4662 0.4937 0.5841 18.3% 0.5968 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑋3~𝑁(0,12) 

C 0.9768 1.7512 79.3% 1.5507 0.9751 1.3007 33.4% 1.1156 0.9632 1.1558 20.0% 1.1013 1.0051 2.7879 177.4% 2.5590 

𝑋1 2.0113 1.9616 -2.5% 1.9532 2.1090 1.9866 -5.8% 1.9941 2.5554 2.3417 -8.4% 2.3526 1.9897 1.9740 -0.8% 1.9857 

𝑋2 3.0019 0.2814 -90.6% 0.7544 2.8754 0.2751 -90.4% 0.7241 3.4332 0.0944 -97.4% 0.2200 3.0017 0.2807 -90.6% 0.7690 

𝑋3 0.5030 0.5095 1.3% 0.5052 0.4891 0.4256 -13.0% 0.4239 0.5134 0.4498 -12.4% 0.4508 0.5011 0.4581 -8.6% 0.4592 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑋3~𝑁(0,22) 

C 0.9888 1.8069 82.7% 1.6533 0.9902 1.3582 37.2% 1.1781 0.9619 1.1599 20.6% 1.0979 0.9995 2.7090 171.0% 2.5000 

𝑋1 1.9800 2.0214 2.1% 2.0176 1.7289 1.6022 -7.3% 1.6118 2.0077 1.6817 -16.2% 1.6746 1.9986 2.0508 2.6% 2.0415 

𝑋2 3.0071 0.2187 -92.7% 0.5795 3.2873 0.2476 -92.5% 0.6852 2.9679 0.0779 -97.4% 0.2266 3.0013 0.2585 -91.4% 0.7060 

𝑋3 0.5028 0.4927 -2.0% 0.4924 0.4991 0.4417 -11.5% 0.4432 0.4770 0.3852 -19.2% 0.3869 0.5003 0.5259 5.1% 0.5308 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,0.52) 

C 0.9938 1.7998 81.1% 1.6159 0.9920 1.3705 38.2% 1.2660 1.0212 1.2686 24.2% 1.3086 1.0015 2.8574 185.3% 2.6713 

𝑋1 2.0031 1.9974 -0.3% 1.9976 2.0096 1.9038 -5.3% 1.9079 1.7469 1.6074 -8.0% 1.6029 1.9975 1.9595 -1.9% 1.9551 

𝑋2 2.9980 0.2580 -91.4% 0.6776 2.9861 0.1380 -95.4% 0.3892 2.9331 -0.0528 -101.7% -0.1481 3.0005 0.2361 -92.1% 0.6402 

𝑋3 0.4945 0.4488 -9.2% 0.4487 0.4197 0.3700 -11.8% 0.3668 0.5576 0.4864 -12.8% 0.4865 0.5012 0.4810 -4.0% 0.4943 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,12) 

C 1.0184 1.8018 76.9% 1.6377 0.9353 1.3571 45.1% 1.2809 1.0190 1.2438 22.1% 1.1931 1.0117 2.8039 177.2% 2.6568 

𝑋1 1.9822 2.0379 2.8% 2.0296 2.2835 2.1669 -5.1% 2.1642 2.1058 1.8820 -10.6% 1.8815 1.9937 1.9580 -1.8% 1.9508 

𝑋2 3.0207 0.2315 -92.3% 0.6198 3.6956 0.0979 -97.4% 0.2795 2.4731 0.0510 -97.9% 0.1681 2.9945 0.1939 -93.5% 0.5133 

𝑋3 0.5022 0.5206 3.7% 0.5279 0.4910 0.4462 -9.1% 0.4450 0.5082 0.4289 -15.6% 0.4285 0.4975 0.5160 3.7% 0.5136 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,22) 

C 1.0142 1.8320 80.6% 1.6681 0.9490 1.3356 40.7% 1.1520 0.9789 1.1876 21.3% 1.1206 0.9852 2.7573 179.9% 2.5186 

𝑋1 1.9730 1.9374 -1.8% 1.9328 2.1087 1.8891 -10.4% 1.9041 1.9659 1.6771 -14.7% 1.6831 2.0053 2.0299 1.2% 2.0329 

𝑋2 3.0182 0.2381 -92.1% 0.6285 3.1968 0.2540 -92.1% 0.6674 3.1715 0.0907 -97.1% 0.2497 3.0112 0.2702 -91.0% 0.7610 

𝑋3 0.5025 0.5112 1.7% 0.5120 0.5634 0.4968 -11.8% 0.5009 0.4968 0.3983 -19.8% 0.3987 0.4993 0.5318 6.5% 0.5326 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,0.52) 

C 0.9917 1.7397 75.4% 1.5790 0.9236 1.3091 41.7% 1.2758 1.0254 1.2772 24.6% 1.3017 1.0018 2.8050 180.0% 2.6537 

𝑋1 2.0101 2.0295 1.0% 2.0189 1.9717 1.9219 -2.5% 1.9208 1.8539 1.7155 -7.5% 1.7189 1.9988 2.0220 1.2% 2.0213 

𝑋2 3.0157 0.2450 -91.9% 0.6395 2.4920 0.0270 -98.9% 0.1003 3.0012 -0.0461 -101.3% -0.1082 3.0003 0.1909 -93.6% 0.5147 

𝑋3 0.5254 0.4870 -7.3% 0.4876 0.5735 0.4887 -14.8% 0.4890 0.5761 0.5020 -12.9% 0.5025 0.5038 0.4613 -8.4% 0.4708 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,12) 

C 1.0166 1.7811 75.2% 1.5905 1.0494 1.4554 38.7% 1.3825 0.9633 1.1598 20.4% 1.0903 0.9991 2.7996 180.2% 2.6032 

𝑋1 1.9876 2.0274 2.0% 2.0329 1.8352 1.6990 -7.4% 1.6958 2.3337 2.1369 -8.4% 2.1299 2.0030 1.9706 -1.6% 1.9650 

𝑋2 3.0166 0.2646 -91.2% 0.7006 2.7670 0.1125 -95.9% 0.2902 3.3847 0.1183 -96.7% 0.3028 2.9974 0.2570 -91.4% 0.6807 

𝑋3 0.4977 0.4940 -0.7% 0.4911 0.5127 0.4621 -9.9% 0.4616 0.5251 0.4676 -11.0% 0.466 0.4983 0.4734 -5.0% 0.4720 

Scenario (2): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,22) 

C 0.9973 1.8388 84.4% 1.6716 0.9895 1.4109 42.6% 1.3373 0.9207 1.1509 25.0% 1.0790 1.0104 2.7519 172.4% 2.5207 

𝑋1 2.0087 1.9301 -3.9% 1.9285 2.1141 1.9830 -6.2% 1.9785 1.8845 1.5778 -16.3% 1.5736 1.9941 2.0099 0.8% 2.0187 

𝑋2 3.0033 0.2391 -92.0% 0.6384 2.7060 0.0650 -97.6% 0.2326 3.3522 0.0808 -97.6% 0.2468 2.9945 0.2814 -90.6% 0.7668 

𝑋3 0.4982 0.5005 0.5% 0.4991 0.5186 0.4843 -6.6% 0.4839 0.4665 0.3834 -17.8% 0.3820 0.4997 0.5045 0.9% 0.4982 
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18) 𝑋2 follows 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) and has misclassification with 𝑀00 = 0.6, and 𝑀11 = 0.5; 𝑋1 follows Bernoulli 

distribution with 𝑃𝑟(𝑋1 = 1) equals 0.3, 0.5, or 0.7; 𝑋3 follows normal distribution with standard deviation 0.5, 1, 

or 2. 

 OLS Logit Probit Poisson 

 𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  𝑏 𝑏′ % 𝑏𝑠𝑖𝑚𝑒𝑥  

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑋3~𝑁(0,0.52) 

C 0.9990 2.3921 139.5% 2.1872 1.1325 1.8009 59.0% 1.6720 1.0606 1.3969 31.7% 1.2746 0.9921 3.2984 232.5% 3.1873 

𝑋1 1.9947 1.9887 -0.3% 1.9888 2.0763 1.9975 -3.8% 1.9995 1.8927 1.6696 -11.8% 1.6752 1.9953 1.9716 -1.2% 1.9633 

𝑋2 3.0053 0.2708 -91.0% 0.7295 2.9694 0.1843 -93.8% 0.4835 3.1854 0.1644 -95.0% 0.4404 3.0101 0.1426 -95.3% 0.3884 

𝑋3 0.5075 0.4771 -6.0% 0.4636 0.4612 0.4402 -4.6% 0.4437 0.6259 0.4965 -20.7% 0.4957 0.4998 0.4318 -13.6% 0.4284 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑋3~𝑁(0,12) 

C 0.9956 2.3938 140.4% 2.2136 0.9600 1.6574 72.7% 1.5766 0.9596 1.3365 39.3% 1.2590 1.0023 3.2450 223.8% 3.1015 

𝑋1 2.0069 1.9554 -2.6% 1.9530 1.9095 1.8197 -4.7% 1.8169 2.0778 1.7944 -13.6% 1.7824 2.0084 1.9888 -1.0% 1.9799 

𝑋2 2.9750 0.2420 -91.9% 0.6446 2.5873 0.1308 -94.9% 0.3106 3.4817 0.0995 -97.4% 0.2715 2.9923 0.1928 -93.6% 0.5019 

𝑋3 0.5056 0.5309 5.0% 0.5335 0.4386 0.3882 -11.5% 0.3890 0.4244 0.3492 -17.7% 0.3482 0.4968 0.5092 2.5% 0.5022 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.3), 𝑋3~𝑁(0,22) 

C 1.0121 2.3552 132.7% 2.1066 0.9994 1.7351 73.6% 1.5303 1.0197 1.4013 37.4% 1.3301 1.0013 3.1996 219.6% 3.0208 

𝑋1 2.0050 2.0997 4.7% 2.1006 1.9639 1.6568 -15.6% 1.6605 2.2327 1.6747 -25.0% 1.6810 2.0042 2.0428 1.9% 2.0457 

𝑋2 3.0046 0.3291 -89.0% 0.8743 3.0117 0.2901 -90.4% 0.7650 3.2787 0.1049 -96.8% 0.2651 2.9941 0.2057 -93.1% 0.5630 

𝑋3 0.4960 0.5102 2.9% 0.5117 0.4800 0.4043 -15.8% 0.4051 0.5305 0.3830 -27.8% 0.3827 0.5001 0.5413 8.2% 0.5437 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,0.52) 

C 0.9847 2.3527 138.9% 2.1044 1.0247 1.7182 67.7% 1.5266 0.9534 1.2863 34.9% 1.1439 1.0033 3.2691 225.8% 3.1127 

𝑋1 2.0126 1.9713 -2.1% 1.9753 1.9877 1.8397 -7.4% 1.8349 1.8684 1.6675 -10.8% 1.6864 1.9966 1.9780 -0.9% 1.9821 

𝑋2 3.0202 0.3326 -89.0% 0.8882 3.2154 0.2805 -91.3% 0.7370 3.1631 0.1802 -94.3% 0.5053 2.9980 0.1942 -93.5% 0.5180 

𝑋3 0.5064 0.5293 4.5% 0.5252 0.4907 0.4223 -14.0% 0.4247 0.5600 0.4606 -17.8% 0.4628 0.4963 0.4616 -7.0% 0.4701 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,12) 

C 0.9982 2.4251 143.0% 2.1778 1.0623 1.8203 71.4% 1.8496 1.0070 1.4378 42.8% 1.4515 0.9988 3.2919 229.6% 3.1692 

𝑋1 1.9927 1.8824 -5.5% 1.8736 1.8572 1.7831 -4.0% 1.7826 2.2402 1.9145 -14.5% 1.9114 2.0030 1.9872 -0.8% 1.9813 

𝑋2 2.9962 0.3207 -89.3% 0.8628 2.6149 -0.0403 -101.5% -0.1088 5.8379 -0.0018 -100.0% -0.0373 2.9996 0.1663 -94.5% 0.4296 

𝑋3 0.4916 0.5129 4.3% 0.5181 0.3863 0.3117 -19.3% 0.3109 0.5676 0.4549 -19.9% 0.4543 0.4990 0.5057 1.3% 0.5095 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑋3~𝑁(0,22) 

C 0.9790 2.3719 142.3% 2.1562 0.9981 1.7457 74.9% 1.6467 1.0609 1.4119 33.1% 1.2864 0.9810 3.3139 237.8% 3.2728 

𝑋1 1.9973 1.9051 -4.6% 1.9077 2.1923 1.9577 -10.7% 1.9618 1.8652 1.3645 -26.8% 1.3820 2.0080 2.0007 -0.4% 2.0021 

𝑋2 3.0134 0.2886 -90.4% 0.7730 2.8000 0.1320 -95.3% 0.3522 3.0025 0.2089 -93.0% 0.5235 3.0112 0.0609 -98.0% 0.1546 

𝑋3 0.5002 0.4763 -4.8% 0.4750 0.5351 0.4603 -14.0% 0.4608 0.4964 0.3426 -31.0% 0.3463 0.5012 0.5016 0.1% 0.5004 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,0.52) 

C 1.0065 2.4210 140.5% 2.1554 0.8864 1.6461 85.7% 1.4817 1.0602 1.3467 27.0% 1.1662 0.9964 3.2695 228.1% 3.1216 

𝑋1 2.0086 1.9143 -4.7% 1.9185 2.1753 1.9694 -9.5% 1.9824 2.1403 1.9459 -9.1% 1.9848 2.0053 2.0062 0.0% 2.0083 

𝑋2 2.9746 0.3540 -88.1% 0.9464 2.9575 0.2365 -92.0% 0.6123 3.0909 0.2488 -92.2% 0.6965 2.9957 0.1832 -93.9% 0.4856 

𝑋3 0.5090 0.4490 -11.8% 0.4541 0.5308 0.4005 -24.6% 0.4158 0.5468 0.4840 -11.5% 0.5086 0.4972 0.5419 9.0% 0.5352 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,12) 

C 1.0074 2.4538 143.6% 2.2458 0.9541 1.6838 76.5% 1.5118 1.0232 1.4159 38.4% 1.3682 1.0069 3.2909 226.8% 3.1562 

𝑋1 1.9936 1.9133 -4.0% 1.9043 1.9644 1.7896 -8.9% 1.8047 2.0105 1.7130 -14.8% 1.7122 1.9922 1.9669 -1.3% 1.9674 

𝑋2 2.9876 0.3027 -89.9% 0.7994 2.9658 0.2410 -91.9% 0.6283 2.8228 0.0627 -97.9% 0.1709 3.0005 0.1820 -93.9% 0.4648 

𝑋3 0.4998 0.4878 -2.4% 0.4920 0.5312 0.4544 -14.5% 0.4594 0.4709 0.3539 -24.8% 0.3534 0.5010 0.5166 3.1% 0.5148 

Scenario (3): 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑀00 = 0.6, and 𝑀11 = 0.5, 𝑋1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.7), 𝑋3~𝑁(0,22) 

C 0.9874 2.3311 136.1% 2.1588 0.9784 1.7639 80.3% 1.6064 0.9772 1.3955 42.8% 1.3020 0.9905 3.2760 230.7% 3.1935 

𝑋1 2.0081 2.0495 2.1% 2.0521 1.7924 1.5674 -12.6% 1.5742 2.2613 1.7444 -22.9% 1.7547 2.0025 2.0182 0.8% 2.0251 

𝑋2 3.0032 0.2166 -92.8% 0.5792 3.1735 0.2152 -93.2% 0.5785 2.5797 0.1174 -95.4% 0.3208 3.0075 0.1089 -96.4% 0.2789 

𝑋3 0.4976 0.5097 2.4% 0.5093 0.4605 0.4016 -12.8% 0.4010 0.5255 0.4024 -23.4% 0.4038 0.4995 0.4967 -0.6% 0.4983 

 

 


