SIEANTANU IDUTTA, MARK BERGEN.
DANIII, IEVY, ROIBIBT VENABLE

Menu Costs, Posted Prices, and

Multiproduct Retailers

Abstract

We use a migue store-keve data se to directly mearure menu costs anc to study the price change process at a large U.S. drugstore chain. We compare and contrast the magnitude of the measures with similar measures from four large US.S. supermarked chans. We find that (1) the actual magnitude of menu costs as a thate of revemes, (2) mentu costs per price change. (3) the frequent use of promotional pricing, and (4) the use of weekly pricing rules are similar acress both retai formats. Given that the main common features of these two types of retail formats are that (i) they both use posted prices, and (ii) boh are multiproduct retailers selling al large numher of products, our lindings suggest that the magnitude of the me u cost components we meastre, and the price change practices we document, may be gencralizable across retail lomats with the se moteralures.

In this PAP: we use a unique store-level data set to analyze the price change process at a large U.S. drugstore chain, in order to directly measure the costs of changing nominal prices (ment costs) the chain fices. Menu costs play an important role in macrocomomies since they can be a source of price rigidity, and thus can provide a mierohased explanation for monetary nomeuradity. Further, recent studies have demonsitated that menu cost models may he useful in providing answers to numerous questions on the behavior of the short-run aggegate supply curve. Consequently, menu ensts have received considerable attention in the theoretical literature as many predictions of the traditional Keynesian and more recent new Keynesian models crucially depend on the existence of some form of price rigidity. Moreover, at the micro level menu costs may lorm a harrier to individual price adjustments that may lead to inefficient allowations. See for example, Caplin

[^0]Shanianu Dutta is asseciate professor of matering athe Umiversity of Sombern Culifornia. Mark Bergiev is associate professer of matheting at the lameenty of Minesota, Danita
 vice president of equity rexomit at Robert W. Baird, amd Co.

Journal of Money, ('redit, ami Bemking. Vol. 31. No. \& (November 1999)
Copyright 1999 by The (Ohio State Cniversity Press
and Leahy (1991), Mankiw and Romer (1991), Sheshinski and Weiss (1993), Andersen (1994), Ball and Mankiw (1994), Wynne (1995), Romer (1996), Danziger (1999), and studies cited therein.

Yet, despite the theoretical importance of menu costs, little is known about their actual magnitude. The lack of empirical evidence on the magnitude of menu costs has been noted by Gordon (1990), Carlton (1989), Blinder (1991), Carlton and Perloft (1994), and Blinder et all. (1998), among others. For example, Blinder (1991, p. 90), speaking about menu cost theories, states: "In principle, fixed costs of changing prices can be observed and measured. In practice, such costs take disparate forms in diflerent firms, and we have no data on their magnitude. So the [menu cost] theory can be tested at best indirectly, at worst not at all." Indeed, of the empirical evidence that does exist, almost all rely on indirect assessment of the importance of menu costs. These studies include Sheshinski, Tishler, and Weiss (1981), Rotemberg (1982), Lieberman and Zilberfarb (1985), Carlton (1986), Cecchetti (1986), Danziger (1987), Ball, Mankiw, and Romer (1988), Carlson (1992), Lach and Tsiddon (1992, 1996a, 1996b), Eden (1994, 1995, 1996), Amano and Macklem (1995); Ball and Mankiw (1995); Kashyap (1995), Warner (1995), Warner and Barsky (1995), Balke and Wynne (1996), Buckle and Carlson (1996), Slade (1996. 1998), and Blinder et al. (1998).

Several authors, such as Gordon (1990) and Ball and Mankiw (1994), have expressed the view that menu costs, if interpreted literally, may not be high enough to cause substantial effects. It has been argued, therefore, that these costs should be viewed metaphorically, like a parable, to formalize the fact that prices are not adjusted continuously. For example, according to Ball and Mankiw (1994, p. 143), "Walras observed that prices move to equilibrate supply and demand, and he captured this tendency with the parable of an auctioneer. Similarly, macroeconomists have noted that many prices are sticky in the short run, and they capture this fact with the parable of menu costs. It is no more appropriate to insist on an exact identification of menu costs than it is to demand the social security number of the Walrasian auctioneer."

Nevertheless, in Ball and Mankiw's view "it is still interesting to go beyond the parable to better understand the foundations of nominal frictions. Future research could examine information-gathering and processing costs in actual firms, for example." Slade (1998, p. 104) also suggests that "given the large number of theoretical papers that evaluate the implications of |price adjustment costs, oblaining direct evidence that such costs are present seems crucial." In this paper we follow this line of thought and argue that given the theoretical importance of menu costs, it can indeed be very valuable to identify and, if possible, measure these costs of changing prices in real market settings. This is because such an identification and measurement can be useful for our understanding of the empirical relevance of menu costs. Further, documenting and measuring these costs are a useful step toward our understanding of why these costs might exist. Finally, studying the structure and magnitude of menu costs across a variety of markets, industries, and countries can be valuable for our understanding of the role menu costs play in the variation of price rigidity across these and other dimensions (Caplin 1993).

In this paper we contribute to this literature by using a mique store-level data set to provide diree measures of menu cost and a detailed analysis of the price change process at a large U.S. drugstome chain. We have dollar measures of two components of menu costs: (1) the costs, of the labor used in changing price tags on the store shelves, and (2) the costs of printing and delivering the shelf price tag. Our data set allows us to measure these costs in great detail. documenting the exact time required for each stage of the price dange process and the costs associated with them. We also describe the exact mix of the various price changes the chain makes in a typical week, from hasic price changes to specific promotional price changes such as sales, rebates, and clearance. Further, we provide evidence that stores in this chain change prices on a weekly hasis, clesely resembling time-dependent pricing rules often employed in the new Keynesian cost of a!jusiment litcrature.

This paper builds upon the study of Levy, Bergen, Duta, and Venable ($; 997$) and Levy. Dutta, Bergen, and Venable (fyos), who hase documented the price change process and provided direct measurements of ment cosis for another type of retail format. large L.S. supermarke chains. Here we extend their work to a different type of retail format, chain drusstores. Given that numerous auhors (for example. Lach and Tsiddon (9)2 and Ball and Mankiw 1994) have suggested the impertance of studying price setting at establishments selling suall staple retail items, this extension to drugstores is a matural step forward in the study of menu costs. We compare and contrast the findings we report here for the drugstore chain to their lindings for the supermarket chains. For the most , art we find that the results Levy et al. (1997, 19981 report in their paper for supernarke chains continue to hold for the chain dragstore. Specilically. we lind that menu costs per price change. memu cosis as a share of revenues, as well at the level of promotional activity, and the time-dependent nature of the price change decisions, are similar for the drughtore and the supermarket chains. Given that the common features of these two types of retal formats are that (i) they both use posted prices, and (ii) both are multiproduct retailers selling a large number of products, our tindings suggest that the magnitude of menu cost components we measure, and the price change prastices we document, may be gencralizable across retail formats with these two features, such as department stores, hardware stores. spectalty stores. ete.. where the steps involved in the price change process are likely to be similar to the seps reported and documented here.

For the components of the price change cosis we are able to meatare in dollar tems, we find that menu costs for the chain drugstore averate $\$ 0.33$ per price change which constitutes ahout (0.59 percent of reventes. This is similar in magnitude to menu costs of $\$ 0.39$ per price change comprising 0.53 percent of revenues Levy et al. (1997) report for arge L.S. supermarket chams (for the same components of menu costs). These menu cost figures are nontrivial and if interpeted in the context of the existing theoretical models of menu cosis, they may even be sufficient to form a barrier to price changes. Moncover, given that menu cost digures we report here do not include several components of hroadly defined menu costs, our menu cosi estimates may be consikered a bower hound of the true costs of changing prices. This. combined with the lindings of Akertof and Yellen (1985). Mankiw (1985).

Parkin (1986), Blanchard and Kiyotaki (1987), and Caplin and Leahy (1997) among others, that even small menu costs may be sufficient to generate substantial aggregate nominal rigidity, suggests that costs of physically changing prices, at least in the type of establishments we study, may be higher than previously thought (Carlton 1989; Gordon 1990; and Ball and Mankiw 1994).

The quantitative significance of our findings becomes evident if we recall that supermarket and drugstore chains combined constitute about $\$ 450$ billion in annual sales, or about 20 percent of the total retail sales. Since retail sales account for about 9.3 percent of the GDP, the menu cost figures we find may apply to as much as 1.93 percent of the GDP which is substantial. Moreover, since the price change practices we document here are commonly used in other types of multiproduct retail establishments, such as department stores, hardware stores, and specialty stores, the menu cost figures we present here likely apply to much larger proportion of the retail sales.

We also describe the price change activity of the drugstore chain in some detail. We provide evidence that a large percentage of the drugstore price change activity is promotional, as is the case also in retail supermarket stores. ${ }^{\text {I }}$ This points to the promotional nature of many price changes in markets where posted prices are the norm and suggests that the benefits to frequently changing prices can be high when firms post prices, which is consistent with arguments made by Hoch, Drèze, and Purk (1995), Carlton (1986), and Bergen, Dutta, and Shugan (1996). We also provide evidence on the weekly schedule and timing of price changes which suggests that the price change decisions in the chain drugstore have some time-dependent element. This provides empirical support for the assumption of time-dependent pricing schemes frequently employed in the cost-of-adjustment literature.

The rest of the paper is organized as follows. The data set is described in section I. In section 2, we describe in detail the structure of the menu costs and their absolute magnitude at the chain drugstore. In section 3, we describe relative measures of the menu costs and discuss their quantitative significance. In section 4, we discuss the price change activity of the chain drugstore, and in section 5 , we present evidence on the chain's timing of price changes in the context of time-dependent pricing rules. In section 6 , we conclude with suggestions for future research.

I. THE IDATA

The data come from a company that sells electronic shelf label systems. ${ }^{2}$ These systems allow retailers to manage the pricing in real time by displaying the shelf prices on a small calculator-like digital display attached to the shelves. The system consists of a PC-based system controller, wireless communication network, and

[^1]electronic shelf labels and rails. Obtaining information from the in-store item and the database, the system broadeasts this information to the shelf latels through a controller at each gondola. The system also maintains a continuous surveillance of the electronic shelf labels to ensure that they are present and that they are displaying the correct information. In addiaon, this label polling process creates data on the physical location of the label within the store. The system is controlled wirelessly from a central computer where price changes are actually done. Because of this setup, the electronic sheif label systems can be dsed by drugstore chains to greatly reduce the physical costs, lead times, and the frequency of mistake occurrences currently associated with changing paper-fag-based shelf prices. In order to sell the product, the electronic shelf label company had to quantify the measurable benefits of its electronic shelf label systems. Tor this they had to measure the existing costs of changing shelf prices, that is, menu costs. This company received access from corporate headquarters of the drugstore chain to go to representative stores of the chain and carefully record the exact steps involved in the price chatnge process. A researcher worked with the people involved in the process of changing prices on the store foor where the shelf tags were physically changed, and underook detailed time and motion measurements to estimate the frequency of various steps undertaken in the price change process, along with the required fabor time and cost of each step. The study required hundreds of man bours to complete and was condected over a four-month period, from July to October of 1992. .

The study considered the entire price change and its implementation process in the chain. Observations of the process were conducted in four stores of the chain to verify its accuracy. Information received from the chain's pricing systems, in-store observations, and in-store counts and measurements were used to determine the volume of work performed in each step of the tasks, the weekly frequency of each step performed. and the amount of time required to perform one unit of the work. After computing the total hours per task, this information was reconciled with the known total hours spent each week. This allowed for task level comparisons for the existing and test process.

Although we believe meru costs reported in this paper are representative of menu costs in the U.S. drugstore industry, we should mention that they may be biased upward because the electronic shelf lathel company had an incentive to overestimate the magnitude of menu costs in order to sell its computer-controlled price change systems. We, however, think that menu cost measures we report here are not subject to significant biases of this son for a number of reasons. First, the measurements were made by the electronic shelf label company people working alongside with the chain's employees, together following and documenting their activities, and using the company's wage figures. Second, time and motion measurements of the type used for measuring menu cests we report here are routinely done by drugstore chains themselves in order to assess the efficiency of their price change processes. The managers compared their figures to the electronic shell label company figures and in

[^2]most cases found them to be similar. If there was a discrepancy between the two, the electronic shelf label company studies used the more conservative estimate. Further. these figures were presented to upper management of the chain and they were found to be representative of its cost structure. Moreover, the validity of menu cost estimates constructed by the electronic shelf label company was not disputed in these meeting.s. If there was any disagreement hetween the electronic shelf label company and the chain, it was about the size of the savings the electronic shelf label system would provide, not about the accuracy of menu cost measurements themselves. Finally, we looked at these reports and searched for ligures that could be biased upward. There were a few, such as goodwill cost estimates and inventory holding cost estimates, and to be on the conservative side, we did not include them in our measures of menu costs. Thus we only report measurements for which we could see no upward bias. Note, however, that menu cost figures we report here for the drugstore chain are also biased downward because we were unable to measure in dollar terms several components of menu costs and thus they are not included in our estimates.

The retailer involved in this study is a large L.S. drugstore chain. ${ }^{+}$At the request of the chain and the electronic shelf label company, we need to keep the chain's name anonymous. Thus, we are not able to report any detailed description of this chain, but it is reasonably representative of large drugstore chains currently selling in the United States. According to the National Association of Chain Drugstores, as of 1995 there were 28,381 chain drugstores operating in the United States with total annual sales of $\$ 65.1$ billion. ${ }^{5}$ This constitutes about 80 percent of the total, chain and independent drugstore sales (combined) of $\$ 81.4$ billion, so the chain in our study is a representative of a major class of the retail trade. ${ }^{\text {. }}$

Table 1 reports some general information about the chain drugstore we study. According to the first column of the table, the drugstore chain tends to carry around 15,000 different products on a regular basis. ${ }^{7}$ On an average week the stores of the

[^3]TABII:

	(11:all	Siupecturak (hamm
Approximate namber of products cambed	15.000	25.0600
Vumber of price changes per store per week	1.131	3.916
Percentage of protuchs for which prices ehange in in ancruge week	$7.5+4$	15.66\%/

chain change prices of 1.131 products, which constitute about 7.5 percent of the products they carry, on average.'

2. ABSOLATF MEASI RES OF WIENU COSTS

Our data contains dollar measures of the following two components of menu costs: (1) the costs of the labor used in changing price tage and price sigus on the store shelves, and (2) the costs of printing and delivering these shelf priee tage and the price signs. The fomer consists of (i) the cost of labor used in preparation of the price change process, (ii) the cost of :abor used to actaally change the shelf price tags and the price signs. and (iii) the tabor cost of verifying the accuracy of the price changes once these changes have been implemented. Below, we go through each of these cost componems in more detail (see Table 2) followed by a comparison of the results we report here for the chain drugstore with the results Levy et al. (1997) report for large U.S. supermathet chains.

2.I Cost of the Labor Used to Change Shelf Prices

The price change process, as described below, is performed each week. The only difference from week to week is in the products for which the prices are changed. A price change process begins by preqaring for it. For this new shelf price tags and price signs are ordered an: delivered, which are sorted by deparments. The information on specitic price changes and the products to which they apply is also received in the form of computer printout. As the price change time approaches the store-level employees in charge of the price change process colleet these reports and price tags and signs atong with office supplies and go to the designated aisles where the shelf price tag and price sign changes are physically done. To compute the total labor time used in changing prices on a weekly hasis. we combine data collected through in-store time and rootion ohservations with the information on the volume of products for which prices are changed. These weekly hours are multiplied by the

[^4]TA＇3LL：2

Menuctut compenciat	1）blevari （がにな）	Supernatkel （hamas
Talor cos af price changes tincludes conts of price thange preparation and price change verifications		
Coshor prinkime and deliverion new price tans	$\$ 15.461$	． 74.267
	＋19．620	$\begin{array}{r} \$ 6,014 \\ \$ 80,281 \end{array}$
Costs of mistats mate dating the price change process	$84.193{ }^{12}$	$\$ 20.140$
Costs of in－store upervision of the price chatas procest	\＄1．138	\＄5．466
Tolal ammal menu cost per store	\＄24．951	S105，887

wage rates（adjusted for fringe bencfits）of the employees used in the price change process to give us the total menu costs ansociated with the labor required to change prices．

Labor Crst of Price Change Preparation．The store－leve！price change prepar－ attion on average takes 13 weekly hours，of which 8 hours are spent on Mondays （4 hours are spent on cosmetics products． 2 hours on over－the－counter products，and 2 hours on tie rest of the products），and 5 hours on Fridays on all advertised（that is．sale）products．The hourly wage of the workers doing this preparation is $\$ 9.40$ ， which includes 33 percent loading for fringe benetits．Thus，the annual labor cost component of mena costs spent on price change preparation equals $13 \times 52 \times 9.40 \times$ $0.7948=55.050 .{ }^{.}$This constitutes 32.7 percent of the total lahor cost component we measure in this study．
iabor Cost of the Actual Price Changes．The physical shelf price tag and price sign change process is very repelitive and time consuming and involves the follow－ ing main steps．A worker collects the new price tags and the new price signs along with the computer printout of the list of the product for which prices need to be changed．Then the worker needs to locate the aisle，followed by the product category group，and linally the product itself．Once the product is located，the worker removes the old price tag or the price sign from the shelf and replaces it with a new price tag or a price sign．These steps are repeated until all price changes are done．In total，the chain drugstore on an average week uses 21.8 hours of labor to actuatly implement

 shelf ！abel combany are based om the wackly price tate changes which in addibon to price changer atso in－

 measures we report here downwat by the factor 0.795 to capture moly the wos of the price lage changes that are related to athal price shamges．
these price changes, which in amual terms cost $21.8 \times 52 \times 9.40 \times 0.7948$ $\$ 8.469$. This is the largest component of the labor cost we measure in this study, constituting 54.8 percent of the total labor component of ment costs. ${ }^{10}$

Lahor C'ost of Price Change Verification. Chain drugstores put considerable elfort and resources into buiding customer conlidence that they oller low prices. Frequently, however, diserepancies oceur between the price at the shelf and the price at the chechout cash register. This damages the comsumers confidence which imposes costs on the retailer in the fom of lost eustomer goodwill and the resulting damaged reputation for the chain. which can be substantial (Okun 1981). To minimize these costs, workers equipped with a list of new prices go back to the aisles to verily that the price changes have heen done comectly. This lask requires an average of five hours per week, leading to ammal ment cost of $5 \times 52 \times 9.40 \times$ $0.7948=\$ 1.942$. This is the smallest component of the labor cost we measure in this study, constituting only 12.5 pereen of the total hather cost component of ment cost.

Thus, the totat anmal lahor cost of price change preparation, price change implementation, and price change verilication comes $10.5 .050: 8.469+1.942=\$ 15.461$ (see Table 2, row 1). The labor costs associated with changing prices are the largest component of menu costs we report in this study, making up about 7 e pereent of the total menu costs. Note, however, that menu cost measures we report do not inchade several components of ment costs, thereby probably biasing downwatd the estimates of menu costs.

2.2 Costs of Printing and Iomoring Now Price Tags

There are direet costs associated with printing and delivering the price and sign tags. The order for new price hass and price sions must be recorded and processed at the chatin, sent to the printer, recorded and processed at the printer, printed. packaged, and then delivered to each store. The total anmal stock and printing eost of price tags equals $\$ 4.778$ per store, which is based on 1.423 price tag changes. Therefore, after multiplying this by the factor of $0.7^{\circ} 48$, we get a total annal cost of $\$ 3.797$, which is equivalent 106.46 eents per price has dor 1,131 weekly price changes). The annual cost of delivering these price tags. after similar adjustment. comes to $\$ 362$ per store which is equivalent to 0.62 cents per price tate. These iwo figures combined yield $\$ 4.150$ per store as the lotal ambal con of printing and delivering price lags (see lable 2. row 2). These costs constitute about 21 percent of the total ment costs we report in this study.

[^5]
2.3 Total Menu Costs

The total annual menu cost for this drugstore chain is the sum of the components described in sections 2.1-2.2, which according to the third row of Table 2 yields a total amount of $\$ 19,620 \mathrm{per}$ store on average.

It should be emphasized that in this paper, as in Levy et al. (1997), we only report measures of the marginal cost of changing prices. The costs of putting a price tag for the first time, and other costs that would be included in the average cost, are not included in the figures we report. Moreover, the most time-consuming steps of the price change process need to be repeated each time a price is changed. These include the steps undertaken during the stages of changing a price lag, changing a price sign, and verifying that these changes were done correctly. ${ }^{11}$ Also, we could not tind many tasks that generated significant returns to scale. Further, the menu cost measures we report do not include the cost of changing prices in cases where items are moved from shelf to shelf, or where shelf space is reallocated by increasing the shelf space for some products at the expense of others. However, they do include the cost of pricing new products when they are first introduced. Although this could bias the menu cost measures upward since it really captures the cost of pricing rather than the cost of changing price, the size of this bias, in comparison to the number of products for which prices are changed each week $(1,131)$, is marginal due to the small number of new products (about ten to thirty) the chain drugstore introduces each week.

2.4 Comparison with Supermarket Chains:

As Table 2 indicates, in absolute terms the total annual menu costs per store for the chain drugstore constitutes only about a quarter of the total annual menu cost of the supermarket chains. The main reason for this difference is the significantly less frequent price change activity at the drugstore chain: we find that the chain drugstore changes prices on an average of 1,131 products each week in contrast to an average of 3,916 products at the supermarket chains. The large difference in the frequency of price change activity between these two retail formats may be due to differences in the target customers of the two retailers. Specifically, studies have shown that supermarket customers may be more price sensitive than drugstore customers (Quelch 1981; and Bob Ruckert, in private conversations). Further, most people spend more money in supermarkets than in drugstores: a basket of products bought on an average trip to a drugstore is significantly smaller than what most of us buy during our weekly supermarket visit, and according to Nagle and Holden (1995), customers tend to be more price sensitive when total expenditures are higher, ceteris paribus. Another reason for this difference may be the different shopping patterns and buying cycles of customers frequenting these two types of retail formats. Customers at
11. According to Levy et all. (1997. Table It), ahout 85 percent of the rexources devoted to changing price tags and price signs in the retail supermarket chains are used in the stages of price tag change process, price tag change verilication, handmade price sign change process, and preprinted price sign change process. Further, levy et al. (1998. Figures 3, 4, 8, and ${ }^{9}$ and their corresponding Tables 4, 6, 10, and II) report that most time consuming steps undertaken during these stages must be repeated each time a price is changed.
drugstores tend to buy much less frequenty relative to supermarke customers who usually shop for the basic items at least on a weekly basis. Also, the purchases made at drugstores tend 10 be more random. ${ }^{22}$ The tower frequency of price changes at chain drugstores is a major reason why chath drugstores have the lower ment cost per product and the lower menu cost to gross margin ration relative to the supermarket chains.

In order to assess their relative magnitude we express the absolute measures of the annal menu costs relative to the chain drugstores (i) net margins, (ii) revenues. and (iii) number of price changes (see table 3, rows 3 5). ${ }^{13}$ Below we discuss these figures and compare them with the tigures reported by levy et al. (1997) for large U.S. supermarkel chains.

3. I Relative Meastres of Mem Costs

Net margins of chain drugstores of the size stadied here average about 2.75 percent of reventes. Further, the revenue for an average store is about $\$ 3,350,000$ (see motes d-e bencath Table 3 for the source of these figures), and therefore, menu cost to ne margirz ratio at this chation drugsore averages 21.3 percent, which seems substantial. ${ }^{1+}$ As a shate of reventes, menu costs constitute 0.59 percent. Finally, we find that mentu costs at an average store equal 80.33 per price change, which is computed as the ratio of the total annual ment costs $(\$ 19,620$, from Table 2) to the annual trequency of price changes $(1.131 \times 52 \text {. From Table } 1)^{15}$

[^6]TABLE 3
Relative Measerls of Mivi: Cost (1992 domars)

	Druevem ('hatin	Supromarker "laim"
Menu cost of labor and new price tags per product carried ${ }^{\text {b }}$	\$1.31	\$3.21
Menu cost of labor and new price tags/gross margin	1.71\%	2.13%
Menu eost of labor and new price tags/nel marginst	21.30%	26.67%
Menu cost of labre and new price tags/revenues	0.59\%	0. 5.53%
Menu cost of labor and new price tags per price changer	S0.33	\$0.39
Total mertu cost/net margins	27.08\%/6	35.17\%
Tond menu costrevenues	0.74\%	0.70\%
Total menu cost per price change	\$0.42	\$0.52

 ats the numberator:

 drugstare
(f) The number of priee thange conmes lexut the sexond row of Table I

3.2 Comparison with Supermarket Chains

In order to compare these figures to the estimates reported by Levy et al. (1997), in the right-hand side of Table 3 we report equivalent relative measures of menu costs for four large U.S. supermarket chains they study. Menu cost per price change in these supermarkets average $\$ 0.39$, which indicates that the magnitude of menu costs per price change is similar across these two types of establishments. Further, menu cost to revenue ratio at these supermarkets average 0.53 percent, which again is similar to the magnitude of 0.59 percent we find for the drugstore chain.

Menu cost figures we reported so far include only the labor and price tag costs. In addition to these two components, menu cost measures reported in Levy et al. (1997) also include the costs of mistakes made in the price change process as well as the costs of in-store supervision of the price change process. It lurns out that the relative magnitude of menu cost figures we find for the chain drugstore does not change dramatically if we add estimates of these two components. For example, in the botom three rows of Table 2 we report the estimates of these two components along with total estimated annual menu costs for the supermarket chains as reported by Levy et al. (1997), along with the corresponding figures for the chain drugstore. In estimating these costs for the chain drugstore, we have used the ratio of the missing components (mistake and in-store supervision costs) to the labor cost, as reported for the supermarket chains, to approximate the corresponding ratios for the drugstore. ${ }^{16}$ In

[^7]the bottom three rows of Table 4, we report the key refative measures of total menu costs per store: the ratios of menu costs to net margins and menu costs to revenues, and menu costs per price change. As the table indicates, these figures remain stable across the two retail formats. These findings sugeest that, at least for the menu cost components considered, the menu cost figures reported here and in Levy et al. (1997) may be generalizable across multiproduct retail formats that rely on posted prices.

3.3 Quantitative Significance of the Menu Cost Figures

To appreciate the quantitative significance of our findings, note that supermarket and drugstore chains combined constitute about $\$ 450$ billion in annual sales, or about 20 percent of the total retail sales. ${ }^{17}$ Retail sales account for about 9.3 percent of the GDP. ${ }^{18}$ Therefore, the menu cost figures we find may apply to as much as 1.93 percent of the GDP. Moreover, the menu cost figures we present here probably apply to a much larger proportion of the retail sales. This is bectuse the price change practices we document here are commonly used in other types of multiproduct retail establishments, such as department stores, hardware stores, specialty stores, ect.

In order to assess the macroeconomic relevance of the menu cost ligures we find, consider the numbers reported in Table 3, which show that the menu cost to revenue ratio for the drugstore chain averages 0.74 percent. Similar figures have been reported for the retail supermarket chains by Levy et al. (1997) which suggests that these figures and the conclusions that follow from them may be generalizable to the broader category of multiproduct retail settings that rely on posted prices. Levy et al. suggest that menu cost of this magnitude is nontrivial and may be suflicient to form a barrier to price changes, when interpreted in the context of the theoretical menu cost models of Blanchard and Kiyotaki (1987) and Ball and Romer (1990). The existence of numerous unmeasured menu cost components discussed below also raises the strong possibility that the actual menu costs incurred by the drugstore chain may be even higher. However, we do not wan to overemphasize the linkage of our empirical findings with these theoretical modets because, unlike the frequent price changes in the chain drugstore, in the macrocconomic environment of these models. prices can go unchanged for appreciable periods of time.

Finally, some components of menu costs we were unable to measure due to data limitations: These include the cost of changing prices of the products handled by direet store delivery vendors, the costs implicit in the lost eustomer goodwill caused by mistakes made in the price change process, costs of informing customers on price changes (advertisement cost), and the costs of making corporate level managerial decisions on price changes. The amount of direct store delivery is much lower in

[^8]drugstores than in supermarkets (about 2-5 percent, in contrast to 20-40 percent in supermarket chains), and the costs induced by the mistakes made in the price change process are also likely to be lower due to the lower volume of prices changed each week.

Costs of managerial decisions on price changes, however, may be important. Several authors have suggested that this may be one of the most important components of menu costs. ${ }^{19}$ Much like supermarket chains, prices at drugstore chains are generally set at corporate headquarters in a meeting held weekly. At this meeting the manager in charge of setting prices for a given product will look at a varicty of information including (a) any manufacturer wholesale price changes and promotions, (b) past sales for this product, and (c) competitors' prices from the last week. Based on this information and discussions with other managers, the corporate manager in charge of price setting will decide whether to change prices, and if so. by how much. We do not have data on these costs although it is likely that the wage rates of pricing managers at the corporate headquarters are higher than at the store level. Also, since the pricing decisions made at the corporate level have chain-wide significance, it is likely to include more considerations than price change issues arising at the store level. We should note, however, that these pricing decisions are made for the entire chain and therefore, these costs per store may not be as high, especially for the larger chains. ${ }^{20}$

4. PRICE CHANGE ACTIVITY OF THE CHAIN DRUGSTORE

We find that the chain drugstore changes prices on an average of 1,131 products each week. Of these price changes, 694 are promotional price changes. Specifically, 401 are sale price changes, 250 are budget buy changes, 14 are rebates, and 10 are clearance items (sce Table 4). It is clear from these figures that a great deal of the price change activity in the chain drugstore is promotional in nature. Over 61 percent of the price changes seem to have some advertising or merchandising dimension. In the grocery industry promotional pricing of some form is also the norm in many categories. ${ }^{21}$ This points to the promotional nature of price changes in many retail establishments where posted prices are the norm.

This suggests that the benefits to frequently changing prices through promotions can be high when firms post prices. For example, Hoch, Drèze, and Purk (1995) find

[^9]TABI．I： 4

（hatil 1 Maswore			Supermarkit（lamen $\mathrm{A}^{\text {a }}$		
		＇time い1 Il心 wick whon atic damod		Vembinaral pirmbict lif whon prose ithans：	time of the weck ahery 1he proce
All idvertised prodesels（saten）	$\begin{gathered} 40! \\ (35 .+6) \end{gathered}$	Iriday			
Basic price related chatgos	$\begin{gathered} +.37 \\ (.38 .6 \%) \end{gathered}$	Montay	Gencral merchandine． adverlised	$\begin{gathered} 72 \\ (1.7 / 6) \end{gathered}$	Saturday
Budget huy	$\begin{gathered} 250 \\ (22.14) \end{gathered}$	Momday	（irocery	$\begin{aligned} & 2.100 \\ & (49.1 \%) \end{aligned}$	Sunday
Compare and sate	$\left.\begin{array}{c} 19 \\ (1.7 \% \end{array}\right)$	Monday	Mankel（prochace）	$\begin{gathered} 171 \\ (4.0 / 4) \end{gathered}$	Sumblay
Clarance items	$\begin{gathered} 10 \\ \left(0 . y^{2}\right) \end{gathered}$	Monday	Genoral merohatalise	$\begin{gathered} 1.853 \\ (.4 .36 / 6) \end{gathered}$	Mondiay
R¢わate	$\begin{gathered} 14 \\ (1.2 \% \end{gathered}$	Vomolay	Grocery，atrertised	$\begin{gathered} x_{2} \\ \left.(1)^{9 / 1}\right) \end{gathered}$	Tuesday
lotal number of weehly price changes	$\begin{aligned} & 1.1 .31 \\ & \text { 1000 is } \end{aligned}$		Tiral member ot weekly price changes	$\begin{aligned} & 1.278 \\ & (100 \%) \end{aligned}$	

that high／low pricing was more profitable than a fatter every－day－low－price strategy for the stores in their sample．${ }^{22}$ Carton（1986）has suggested that changing prices frequently can make it more diflicult for customers to compare prices of branded items across retail outlets due to higher search costs．This would be similar to using price complexity to create differentiation between retail outlets．Similarly．Bergen， Duttit，and Shugan（1996）show how product variation can be used to create com－ plexity，induce higher search costs．and therehy lead to differentiation across retail outlets．${ }^{23}$ Also note that the promotional price changes observed in the usual retail settings（such as supermarkets．drugstores，deparment stores，hardware stores，ete．） usually involve price fluctuation between the regular and few sale prices．For exam－ ple，prices are often marked down by，say 10 or 20 percent，typically for a period ol one week or sometimes two，and at the end of the＂sale＂period prices go back to the original level．${ }^{2+}$ This sugeests that such traditional forms of temporary sales may be

22．Onder the every－day－fow－price strategy．the retailers prices are low for an extended periods of time and theretore it will offer lewer promolional sales or diseounts．Under the high／low pricing stratesy． in contrast，the rebailers prices are higher．and the retaber tends to offer mone frequent discounts drough sales and promotions．The pricing strategy．therefore，witl hate and effect on the frepuency of price changes observed．

23．Another reason for the frequen price changes of the drugstore chain is the fience competition it faces（Blatheres and Neslin．1989：Nagle and Ioden．1995）．The margin in the reail drugstore industry is
 tional and regional chains all competing in eath markel．Nho．there is a strong competition in many prod－ uet categories such an healdh．beaty paper products，and analgesics．from nondruphore retailers． including grecery stores．supermathe chains，diseom stores and mase merchandisers．Note that product categories such is heatho beaty，paper products．and athatesion ate the categories that experience the ma－ jority of the price changes．and this seems to be directly related to the level of competition in the retail drugstore industry．

24．Similar sale paterns have heen dowmented for the retail orange juice marke by Dutat．Bergen． and Levy（1998）and Levy．Dutta，and Bergen（1996）．
designed to assure the consumers that a markdown this week is not likely to be followed by an even larger markdown next week (Okun 1981; Warner and Barsky 1995; and Warner 1995).

It is also interesting to note that promotional prices are set during different days of the week in the different retail formats. In the chain drugstore this is done on Fridays, tied to weekend advertisements, whereas at supermarket stores it is typically done early in the week. Thus drugstores' advertising and price change process is more in line with weekend shopping considerations (Warner and Barsky 1995). This is probably due to the differences in the buying process of drugstore and supermarket customers. Traditionally, food sections in local newspapers are published midweek, such as on Wednesdays, and supermarkets often choose to promote their products in those sections. Comparing the shopping behavior of supermarket customers with drugstore customers, supermarket weekly shopping is more regular than drugstore trips. This is probably because of the large number of items needed on a weekly basis. Further, most food items are not durable and hence they have to be purchased more frequently. Most of us have experienced writing or using a shopping list. And food expenditures are significant enough to be part of family budgets. Therefore, given the weekly shopping planning cycle, supermarket customers may need a day or two to be able to use the promotional information effectively. ${ }^{25}$

5. TIMING OF PRICE CHANGES

We also have some evidence that these firms' pricing scheme has some time-dependent element. The price changes of the chain drugstore are done regularly on a weekly basis, which is very similar to the weekly pricing cycle reported by Dutta, Bergen, and Levy (1998) and Levy et al. (1997, 1998) for large U.S. supermarket chains. The prices at the stores of this particular chain drugstore are changed on the same days of the week (see Table 4). Specifically, the stores change the majority of their prices on Mondays. These include all unadvertised prices of cosmetics and over-the-counter drugs, which make up 65 percent of the labor cost (730 weekly price changes of the total 1,131). The remaining 35 percent of the labor cost is spent on changing prices of all advertised products (401 weekly price changes), which is done on Fridays. Thus all price changes are done within a period of two days. Levy et al. (1997) provide evidence (reproduced in the right hand side of Table 4) that the large U.S. supermarket chains tend to follow a similar practice. ${ }^{26}$ Specifically, they find that 96.4 percent of the weekly price changes in the supermarket chains are done during a two-day (Sunday and Monday) period, on a regular basis. Lach and Tsiddon (1996b) suggest that at a multiproduct firm, store-specific menu costs may induce this kind of price change timing synchronization. Many components of

[^10]menu costs we document in this paper are indeed store-specific, rather than prod-uct-specific.

This similarity in the price change process provides empirical evidence in support of the idea that firms selling many products and relying on posted prices tend to use a form of time-dependent pricing rules, as predicted by Carlton (1989) and Sheshinski and Weiss (1977). This may be due to the large amount of information and coordination effort required to change the prices of huge number of products they carry. This is consistent also with arguments made by Danziger (1983), Caballero (1989), and Ball and Mankiw (1994), who suggest that time-dependent price adjustments of the type documented here can be optimal if the cost ol gathering information about the state exceeds the cost of making the price adjustment itself. It could also be due to the use of promotional pricing, which requires advance planning with the newspapers (or other advertising outlets) and may be tied to the consumer buying patterns. weekly shopping phenomenon in the case of supermarkets, or sporadic weekend shopping at drugstores. Overall, our evidence identifies two major retail formats that use a version of time-dependent pricing rules providing some empirical support to the common use of such rules in the cost-of-adjusiment literature. ${ }^{.7}$

6. CONCLUSIONS

In this paper we present an analysis of the price change process at a large U.S. drugstore chain, and report the results of direct measurements of some components of menu costs this chain faces. We find that menu costs per price change for the drugstore chain are similar in magnitude to those reported for large U.S. supermarket chains by Levy et al. (1997). We also show that both retail formats rely heavily on promotional pricing strategies, and that both use a form of time-dependent pricing rules. This suggests that at least some components of menu costs we study are likely to be generalizable across a much wider variety of multiproduct retail formats that use posted prices.

While our data do not talk directly to the issue of monetary nonneutrality, recall that menu costs are relevant even if they are small since they may be sufficient to generate large aggregate rigidity. Therefore, as Blinder (1994), Kashyap (1995), and Slade (1998) emphasize, it is important to scarch for direct evidence that such costs are indeed present at the micro level. By directly identifying, documenting,
27. This does not mean, however, that state-dependent pricing rules are unimportant. Even if price changes across product categories follow a preschedaled weekly time table. the decision on prices of which products to change is likely to contan a siate-dependent component. For example, it could depend on changes in supply and demand conditions such as competiors price change decisions. Latch and Tsiddon ($199(b$) suggest that a multiproduct retailer experiencing both. store-specific and product-specilic shocks, are likely to make both, time-dependent as well as state-dependent typer of price adjustments. It should be mentioned that, unforlunately, the dita we have do not allow us to be more specilic about the nature of time versus state dependence of the price changes at this drugstore chain. In particular, based on the data we have. we cannot really tell whether the probability of changing a price is a function of the namber of periods that have elapsed since that last change occurred. or perhaps that prohability is history-independent.
and measuring the magnitude of menu costs at the store level we are taking an important step in that direction. Cleady much work remains to be done.

A possibic ironic limitation of this study is that if the electronic shell label systems were some day in the future widely adopted, many of these physical components of the menu costs could be greatly diminished. Unfortunately for the electronic shelf label company, as of today, the retail industry has heen slow to adopt this technology, however. This seems to be due to the difliculty of measuring all the benefits of the electronic shelf label system, the high direct cost of the system (about $\$ 150,000$), strict capital investment constraints. limited applicability of the technology in some departments (for example, the electronic sheff label system does not work well with peg, cosmeties, and pharmacy labels, and a concern over the evolving technology standatrd and technological obsolescence.

It should be emphasized, however, that even if these technologies are widely adopted, there are significant components of menu costs that the electronic shelf label systems were not designed to sate, and therefore these menu cost components are here to stay. They include the costh of managerial decisions such as the information gathering costs and "thinking costs," and the costs born by consumers directly and indirectly due to the price changes. For example, Ritson et al. (1998) and Zbaracki et al. (1999) report preliminary measures of these managerial and consumer menu costs for an industrial firm and find that these menu costs seem to exist in the entire organization. Moreover, they find that these costs maty be significandy larger than the physical costs of changing prices. These preiminary findings reinforce the importance of studying the magnitude and the structure of the manderial and customer menu costs, which are unlikely to change in the foresceable future despite the potential changes in the physical price change technology.

This study can be extended also to other retail formats and markets. Although we would expect our results to generalize to some of the retal settings with posted prices, it is not clear how our results will generalize to many other industry settings. This is because there are a variety of industries for which the steps involved in changing prices would be significantly different from those reported here. For exanple, business-to-husiness salles which often rely on a salesforee will require changes in the list price sheets, changes in the instructions to the salesforce, etc. The busj-ness-1o-business prices also often have more complex pricing schemes including quantity discounts, bundling, and individually negotiated prices. Simitarly, the very composition of menu costs is likely to vary from market to market, such as magazines at newsstands (Cechetti 1986) or products sold through catalogues (Kashyap 1995). Therefore, future empirical work should look at these ment costs in a variety of other industries, markets, and countries, and should also consider other types of ments costs. ${ }^{2 x}$

[^11]
LITERATURE (ITED)

Akerlof, George A., and Jane l.. Yellen. "A Near-Raional Model ol Business Cycle, with Wage and Price Inertia." (Gtatterf Jommal of Ecomomic: 100 (1985), 823 38.
Amano, Robert A. and R. Tifl Macklem, "Menu Costs. Relative Prices, and hoflation: Lividence for Canada." Working paper. Rescarch Department, Bank of Canada, 1995.
Andersen. Torben M. Irtie Rigidity: (canses amd Maroeconomic Imp/ications. Oxford: Clarendon Press. 1994.
Balke, Nathan S.. and Mark A. Wymne. "Supply Shocks and the Distribution of Price Changes." Feacral Reserwe Benk of I allas Eiconomic Review (1996), 10-18.
Ball. Laturence, and N. Gregory Mankiw. "A Sticky-Price Manilesto." (armewo-Rochestor Conference Sories on Public Policy (1994), 127-52.
"Relative Price Changes as Aggregate Supply Shocks." Qumtery Jommal of Economics (J995), 161-93.
Ball. Laurence, N. Gregory Mankiw, and David Romer, "The New Keynesian Economics and the Output-Inlkation Trade-oti". Brookings Papers on Economic Achivity I (1988), 165.
Ball. Laturence, and David Romer, "Real Rigidities and Nonneutrality of Money." Review of Economic Studte's 57 (1990). 183.203.

Bergen, Mark. Shamtanu Dutta, and Seven M. Shegan. "Using Branded Variants.". Jommal of Marketimg Researeh 33 (1996). 9-19.
Blanchard Olivier J., and Nohuhiro Kiyotaki. "Monopolistic Competition and the Effects of Aggregate Demand." Ameriran Eiconomic Revers 77 (1987), 647-66.
Blatherg. Robert C.. and Scom A. Neslin. Sales Promotion: Comepts, Mathods, and Stratege's. Englewood Cliffs. N.J.: Prentice Hall, 1989.
Blinder, Alan S. "Why Are Prices Sticky? Preliminary Rexults From an Interview Study." Americon EConomic Rewive 81 (1991), 89 96.
.... "On Sticky Prices: Acalemic Theories Mee the Real Workd." In Monctay Police: edited by N. Gregory Mankiw, plo. 117 50. NBER: University of Chicago Press. 1994.
Blinder, Ntan S., Elie R.D. Canclli, David E. Lebow, and Jeremy B. Rudd. Asking ahout Prices: A New Approath to Understanding Price Stickiness. New York: Russell Sage Foundation, 1998.
Buckle, Robert A.. and John A. Carlsom. "Intlation and Asymmetric Price Adjusment," Working paper no. 9(n-013. Center For Internationad Business Education and Researeh, Purdue University. 1996.
Caballero, Ricardo J. "Time-Dependent Rules. Ageregate Stickiness, and Information Extermalities." Discussion paper no. 428 . Columbia University, 1989.
Caplin. Andrew. "Individual Inertia and Aggregate Dynamics," In Ophimal Pricing, Infation. and the Cost of Price Adinstment, edited by E. Sheshinski and Y. Weiss. pp. 19-45. Cambridge. Mass.: The Mrl Press. 1993.
Caplin, Andrew S., and John leahy. "State Dependent Pricing and the Dynamics of Money and (Output." Quarterly Jommal of Eothomics 109 (1991), 683-708.
"Aggreqation and Optimization with State-Dependent Pricing." Itomometrica 65 (1907). 60) - 25.

Caplin. Andrew S.. and Daniel F: Spulber, "Menu Costs and the Nemtrality of Money." Quarterls Jownal of Eiconomic: 102 (1987), 703.25.
Carkon, John A. "Some Evidence on Lump Sum versus Convex Costs of Changing Prices." Ec(onomic Inquiry 30 (1992), 322-31.
Cirlon, Demnis W. "The Rigidity of Prices," Americun Eromomir Review 76 (1986), 6.37-58.

. "The Theory and the Facts of How Markets Clear: Is Industrial Organization Valuable

 for Understanding Macrocconomics?" In Handbook of Industrial Organization, Vol. 1. edited by Richard Schmalensee and Rohert D. Willig, pp. 909-46. Amsterdam; North Holland, 1989.Carlton, Dennis W., and Jeffrey M. Perloff. Modern Industrial Organization. New York: Harper Collins, 1994.
Cecchetti, Stephen G. "The Frequency of Price Adjustment: A Study of the Newsstand Prices of Magazines." Journal of Econometrics 31 (1986), 255-74.
Danziger, Leil. "Price Adjustments with Stochastic Inflation." International Economic Review 24 (1983), 699-707.
\qquad "Inflation, Fixed Cost of Price Adjustments, and Measurement of Relative Price Variability." American Economic Review 77 (1987), 704-13.
\qquad . "A Dynamic Economy with Costly Price Adjustment." American Economic Review, fortheoming, 1999.
Dutta, Shantanu, Mark Bergen, and Daniel Levy, "Price Flexibility in Channels of Distribution: Evidence from Scanner Data." Working paper, Emory University, 1998.
Eden. Benjamin. "Time Rigidities in the Adjustment of Prices to Monetary Shocks: An Analysis of Micro Data." Discussion paper no. 94.16. Bank of Israel, 1994.
. "The Choice of Nominal Price Changes by Individual Stores: An Empirical Analysis of Data from High Inflation Periods." Working paper no. 96/01, The University of Haifa, 1995.
"Inflation and Price Dispersion: An Analysis of Micro Data." Working paper no. 96/02. University of Haifa, 1996.
Gordon, Robert J. "What Is New-Keynesian Economics?"'Journal of Economic Literature 28 (1990), 1115-71.

Hoch, Stephen J., Xavier Drèze, and Mary E. Purk. "EDLP, Hi-Lo, and Margin Arithmetic." Journal of Marketing 58 (1994), 16-27.
Kashyap, Anil K. "Sticky Prices: New Evidence from Retail Catalogues." Quarterly Journal of Economics 110 (1995), 245-74.
Lach. Saul, and Daniel Tsiddon. "The Behavior of Prices and Inflation: An Empirical Analysis of Disaggregated Data." Journal of Political Economy 100 (1992), 349-89.
\qquad . "Staggering and Synchronization in Price-Setting: Evidence from Multiproduct Firms." American Economic Review 86 (1996a), 1175-96.
. "Small Price Changes and Menu Costs." Working paper no. 96.06, The MFIER, Jerusalem, 1996b.
Levy, Daniel, Mark Bergen, Shantanu Dutta, and Robert Venable. "The Magnitude of Menu Costs: Direct Evidence from Large U.S. Supermarket Chains." Quarterly Journal of Economics 112 (August 1997), 791-825.
Levy, Daniel, Shantanu Dutta, Mark Bergen, and Robert Venable. "Price Adjustment at Multiproduct Retailers." Managerial and Decision Economics 19 (February 1998), 81-120.
Levy, Daniel, Shantanu Dutta, and Mark Bergen. "Heterogeneity in Price Rigidity and Shock Persistence." Working paper, University of Chicago and Emory University, 1996.
Liebermann. Yehoshua, and Ben-Zion Zilberfarb. "Price Adjustment Strategy under Conditions of High Inflation: An Empirical Examination." Journal of Eronomics and Business 37 (1985). 253-65.

Mankiw, N. Gregory. "Small Menu Costs and Large Business Cycles: A Macroeconomic Model of Monopoly." Quarterly Journal of Economics 100 (1985), 529-39.
Mankiw. N. Gregory, and David Romer. New Kevnesian Economics. Cambridge, Mass.: MIT Press. 1991.

Meltaer, Allan H. "Information. Sticky Prices, and Matoceonmic Foundations." Foderd Reseme Ramk of St. Lomis Review 77 (1905). 10I 18.

Montgomery, Alan I.. "The lmpact of Micro-Marketine on Pricing Strategies." Ph.D. thesis, Graduation School of Business. University of Chicago. 190.4.
Nagle. Thomas T.. and Reed K. Holden. The Strateg and Thetics of Pricing, 2d ed., Fonglewool Clilts, V.I: Prontice Hall. 1995.
 Brookings Institution, 1981.
Parkin. Michael. "The Output-Intlation Trade-ofl When Prices Are Costly to Change." Inmmal of Political Liconoms 94 (1986), 200-24.
Quelch, John A. "Vaseline Petroleum Jelly." Case sudy, Chesebrough Pond`s Inc.. Harvard Business School. Iosi.

Ritson, Mark, Mark 7hamacki, Shantam Dutta, Mark Bergen, and Daniel Levy. "Manage Pricing. Not Prices: The Three Cipitals of Pricing." Working paper, University ol Minnesota, 1998.

Rotemberg, J. I. "Sticky Prices in the United States.". Jommal of Politiot Ecomome 90 (1982). 1187 1211.

Sheshinski, Eytan. Asher Tishler. and Yoram Weiss. "Intlation. Costs of Price Adjustments. and the Amplitude of Real Price ('hanges: An 「ampirical Analysis." In I O wolopmon in an Inflationary Wond. edied by J. Fanders and Assal Razin. New York: Aeademic Press. 1981.

Sheshinski Fiytan, and Voran Weiss. "Inllation and Costs of Price Adjustments." Review of Eromomic Studice $4+(1977), 287.303$.
 MII Press. 1993.
Stade, Mareare E. "Sticky Prices in a Dynamic Otigopoly: An Investigation of (s, S) Thresholds." The C Enversity ol British Columbia, manuseript, 1906.
. "Optimal Pricing with Costly Adjustment: Exidence from Retail-Grocery Prices." Review of Economic Shaties 65 (1998), 87107.
Warner. Elizalleth J. "Pricing in the Retail Industry: A Case Stady" I Iamilon College, 1995.
Warner, Elizabeth J. and Rober Barsky. "The Timing and Magnitude of Retail Store Markdowns: Evidence from Weekends and Holidays." Unamtrols Jommal of Economics IIO (1995), 321-52.

Wynne, Mark A. "Sticky Prices: What Is the Evidence'?" Foberal Resowe Bunk of Dallas Eionomir Rervew (Firs Quarter. 1995), I-I2.
Zharacki. Mark, Mark Ritson. Daniel Levy, Mark Bergen. and Shantant Duta. "Mamagerial Menu Costs in Industrial Markes." Mantuscript presented at the Igog American Economic Association Meeting in New York (1999).

Copyright of Journal of Money, Credit \& Banking is the property of Ohio State University Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

[^0]: The authors are indebed to tho anonymon referes for providing useful comments and sugestions. They are thanktul also w Peter Aramon. Robert (apenter, Rolvert Chirimes, Christopher Curan. Brett Drey. Steve Hoch, Anil Kablyap, Akshay Raco. Paml Rabin. Boh Ruckert. Jelf Sandgren. Som Somanathan. Wendy Williamson, the late Martin I. Batey, and the Emory University economics semitar
 of coumhorship.

[^1]: I. By promotional price changes we mean not only advertised price changes such as regular sales, rebates. and clearance sales, but also in-store feature advertisings such as "Manager's Special," "Todays Special," This Week's Advertised Feature," "Compare and Save." end-ot-the-aisle displays, etc.
 2. Here we briefly describe the dataset. For more details, see levy et al. (1997).

[^2]: 3. The company that provided us with the data in also the source of the data used by [evy et at. (f997).
[^3]: 4. The specilic chain we study operates two types of stores One type of store is the standard standalone store. The second type of store is located inside a supermarke chain. The representative sample stores selected for the study that collected the data set we use here included both types of stores, at least two of each type. The ligures reported here are their averages. These stores are identical to each other in toms of pricing practice, price change frequency, store size and managerial structure. The only main difference belween them is in the type of product carried. For example. The stores located within supermarkets are carrying more items not sold by the supermarket. Overall, the stand-atone stores tend wearry greater variely of products in comparisen to the stores located within supermakets. In our sample, the difference in the number of products carried was about 15 pereent.
 5. The source of these ligures is "Positive Sign: Chain Drugstore Sales Came on Strong in 1995. National Association of Chain Drug Stores Reports," Drus Topics. January 8. 1996, vol. I40, no. 1, p. 91.
 6. The total revenue extimate of $\$ 81.4$ billion is an average of two estimates we were able to find: (i) $\$ 80.8$ billion reported in "Annual Drugstore Sales Nearly Double in Decade," Drwe Topics, June 13, 1994, vol. 138. no. I I, p. 118: and (ii) $\$ 82.4$ hillion estimate derived by Vies sen company from its Household Panel Survey as reported in "Latest Nielsen Data: Inside Today" Drugstore Shopper," Drow Topica, Jane 13. 1994, vol. 138. no. 11.89-100.
 7. The source of this ligure is a national trade publication that explicitly identifies the drugstore chain we study, and therefore, or protech the chatin's anonymity, we cannot report the exact reference. It should be mentioned, however. that an internal stady of the electronic shell label company reports a similar ligure. Although chan drug stores often have about $20.000-25.000$ universal product code (CPC) numbers in their computer database, there are unaally no more tham about 15.000 products actually carricd at any given time. The extra universal product code numbers are for seasonat sizes and packinge of products, for promotional packages and products, and for discontinued products.
[^4]: ries hate heen chatged. This is hewame many product prices are changed very matrequently. Unfortu-
 categomics.

[^5]:

 of changine a price is not ator.

[^6]:

 cated a presence of both, fixed an well its comex costs of adjuntment. In sum. the overwhelming magory of the firms serveyed seen forace some form of ment cost.
 15. Ment cost per price change. \$0.33, we repre here is lower than the deures fopored by Slate
 ments of the resoumes that go into the price change procens. Whereas she estimates ment costs ecome

 ures do mot inclade atl compronents of ment costs; and (4) there could be ditterences in wage rates which may be importam aiver the signdiance of the labof cost componcom in mentu cosis.

[^7]: 16. See note (b) bencath Table 2 for details. It is likely that the chain drugstores also incur these forms of menu costs. Indeed, discussions with chain drugstore managers reveal that handing mistakes, espe-
[^8]: cially for promoted and advertised items, can lead to kost cashier and management dime, refunds. Iost customer goodwill. and inventory mistakes associated with incorree shell tage just as in supermarkel chains. See Levy et al. (1997. 1998).
 17. These ligures are calcukted using the Citibase serice RTRR (IV-3-1). RT754I (IV-3-2). and $\mathrm{R}^{\prime} \mathrm{T}^{\prime} / 59$) (1V-3-2).
 18. The ratio of the Citibase series (iAGR (X-6-15) to GADP (X-6-14) is 9.3 percent.

[^9]: 19. See. for example, Ball and Mankiw (1994), Kashyap (1995), and Meltzer (1995). Since the electronic shelf latel system was not designed to save the costs of corporate headquarter managerial time spent on price change decisions, the electronic shelf label company did not measure this component of menu costs.
 20. Levy et al. (1997) estimate that the chainwide managerial decision costs for supermarket chains fall in the range of $\$ 2.3-\$ 2.9$ million a year, or aboul $\$ 7,250$ per store. They show, however, that a decentralization of the price change decisions may casily double (or even triple) the store-level menu costs.
 21. For example, Dutti, Bergen, and Levy (1998) and Ievy, Dutta, and Bergen (1996) find that at one major midwestern supermarket chain in the frozen and refrigerated orange juice categorics, at least one of the three brands of the orange juice they studied was promoted every week throughout the year. Thus at least $1 / 3$ of the calegory was being promoted, and an even higher percentage of the category was being sold at promoted prices.
[^10]: 25. This is especially true if they use coupons which must be clipped from the newspaper.
 26. Note that the existence of such a work-week schedule may make search costs and demand elasticities vary across the week.
[^11]: 28. As another interesting extemson one cold ube de data reported in this paper and in [evy at al. (1997) to calibate a new Keynesian model of husiness cycle: to see whether the magntude of the mem costs we find is adequate for a sticky price model to produce predietions that mateh the data.
